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Abstract—Although linear representations are frequently used in image analysis,

their performances are seldom optimal in specific applications. This paper

proposes a stochastic gradient algorithm for finding optimal linear representations

of images for use in appearance-based object recognition. Using the nearest

neighbor classifier, a recognition performance function is specified and linear

representations that maximize this performance are sought. For solving this

optimization problem on a Grassmann manifold, a stochastic gradient algorithm

utilizing intrinsic flows is introduced. Several experimental results are presented to

demonstrate this algorithm.

Index Terms—Optimal subspaces, Grassmann manifold, object recognition,

linear representations, dimension reduction, optimal component analysis.
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1 INTRODUCTION

THE task of recognizing objects from their 2D images generally
requires excessive memory storage and computation as images are
rather high-dimensional. High dimensionality also prohibits
effective use of statistical techniques in image analysis since
statistical models on high-dimensional spaces are difficult both to
derive and to analyze. On the other hand, it is well understood that
images are generated via physical processes that in turn are
governed by a limited number of physical parameters. This
motivates a search for methods that can reduce image dimensions
without a severe loss in information. A commonly used technique
is to project images linearly to some predefined low-dimensional
subspaces and use these projections for image analysis. For
instance, let U be an n� d orthogonal matrix denoting a basis
of an orthonormal d-dimensional subspace of IRn (n >> d) and let
I be an image reshaped into an n� 1 vector. The vector
aðIÞ ¼ UTI 2 IRd, also called the vector of image coefficients,
provides a d-dimensional representation of I. Statistical methods for
computer vision tasks, such as image classification, object
recognition, and texture synthesis, can now be developed by
imposing probability models on a.

Within the framework of linear representations, several

standard bases, including principal components (PCA) and Fisher

discriminant basis (FDA), have been widely used. Although they

satisfy certain optimality criteria, they may not necessarily be

optimal for a specific application at hand (for empirical evidence,

see, e.g., [2], [8]). A major goal of this paper is to present a

technique for finding linear representations of images that are optimal

for specific tasks and specific data sets. Our search for optimal linear

representation, or an optimal subspace, is based on a stochastic

optimization process that maximizes a prespecified performance

function over all subspaces. Since the set of all subspaces (known

as the Grassmann manifold) is not a vector space, the optimization
process has been modified to account for its curved geometry.
Although the search for orthonormal bases can be performed
using constrained optimization (with Lagrange multipliers) also,
the use of intrinsic geometry of Grassmannians allows for
efficiency and sophistication. In particular, it allows for MCMC
(Markov chain Monte Carlo) type algorithms for optimization.

The remaining paper is organized as follows: In Section 2, we
set up the problem of optimizing the recognition performance over
the set of subspaces and describe a stochastic gradient technique to
solve it in Section 3. Experimental results are shown in Section 4.
Sections 5 concludes the paper with a brief discussion.

2 OPTIMAL RECOGNITION PERFORMANCE

We start with a mathematical formulation of the problem. Let U 2
IRn�d be an orthonormal basis of a d-dimensional subspace of IRn,
where n is the size of an image and d is the required dimension of
the optimal subspace (generally n >> d). For an image I,
considered as a column vector of size n, the vector of coefficients
is given by aðI; UÞ ¼ UT I 2 IRd. To specify a recognition
performance measure F for appearance-based applications, let
there be C classes to be recognized from the images; each class has
ktrain training images (denoted by Ic;1; . . . ; Ic;ktrain ) and ktest test
images (denoted by I 0c;1; . . . ; I

0
c;ktest

) to evaluate F . In order to utilize
a gradient-based algorithm, F should have continuous directional
derivatives. To ensure that, we define �ðI 0c;i; UÞ to be the ratio of the
between-class-minimum distance and within-class minimum dis-
tance of a test image from class c indexed by i, given by

�ðI 0c;i; UÞ ¼
minc0 6¼c;j dðI 0c;i; Ic0 ;j;UÞ
minj dðI 0c;i; Ic;j;UÞ þ �0

;

where dðI1; I2;UÞ ¼ kaðI1; UÞ � aðI2; UÞk (k � k denotes the 2-norm)
and �0 > 0 is a small number to avoid division by zero. Then,
define F according to:

F ðUÞ ¼ 1

Cktest

XC
c¼1

Xktest
i¼1

hð�ðI 0c;i; UÞ � 1Þ; ð1Þ

where hð�Þ is a monotonically increasing and bounded function. In
our experiments, we have used hðxÞ ¼ 1=ð1þ expð�2�xÞÞ, where
� controls the smoothness of F . Note that I 0c;i is classified correctly
according to the nearest neighbor rule under U if and only if
�ðI 0c;i; UÞ > 1. It follows that F is precisely the recognition
performance of the nearest neighbor classifier when � ! 1.

Under this formulation, F ðUÞ ¼ F ðUHÞ for any d� d orthogo-
nal matrix H as the distance dðI1; I2;UÞ ¼ dðI1; I2;UHÞ; the choice
of 2-norm in dðI1; I2;UÞ allows for this equality. In other words, F
depends on the subspace spanned by U but not on the specific
basis chosen to represent that subspace. Therefore, our search for
optimal representation(s) is on the space of d-dimensional sub-
spaces rather than on their bases.

Let Gn;d be the set of all d-dimensional subspaces of IRn; it is
called a Grassmann manifold.1 It is a compact, connected manifold
of dimension dðn� dÞ. An element of this manifold, i.e., a
subspace, can be represented either by a basis (nonuniquely) or
by a projection matrix (uniquely). Choosing the former, let U be an
orthonormal basis in IRn�d such that spanðUÞ is the given subspace
of IRn. Let ½U � denote the set of all the orthonormal bases of
spanðUÞ, i.e., ½U� ¼ fUHjH 2 IRd�d; HTH ¼ Idg 2 Gn;d. The pro-
blem of finding optimal linear subspaces for recognition becomes
an optimization problem: ^½U�½U� ¼ argmax½U�2Gn;d

F ð½U�Þ. Since the set
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Gn;d is compact and F is a smooth function, the optimizer ^½U�½U� is
well-defined. ^½U�½U� may not be unique, i.e., it may be set-valued
rather than being point-valued.

3 OPTIMIZATION VIA SIMULATED ANNEALING

We have chosen a simulated annealing process to estimate the
optimal subspace ^½U�½U�. In particular, we adopt a Monte Carlo
version of simulated annealing using acceptance/rejection at every
step and the proposal distribution results from a stochastic
gradient process. Gradient processes, both deterministic and
stochastic, have long been used for solving nonlinear optimization
problems. Since the Grassmann manifold Gn;d is a curved space, as
opposed to being a (flat) vector-space, the gradient process has to
account for its intrinsic geometry. Deterministic gradients such as
the Newton-Raphson method on such manifolds with orthogon-
ality constraints have been studied in [3]. We will start by
describing a deterministic gradient process (of F ) on Gn;d and later
generalize it to a Markov chain Monte Carlo (MCMC) type
simulated annealing process.

3.1 Deterministic Gradient Flow

The performance function F can be viewed as a scalar-field on Gn;d.
A necessary condition for ^½U�½U� to be a maximum is that, for any
tangent vector at ^½U�½U�, the directional derivative of F in the direction
of that vector should be zero. To define directional derivatives on
Gn;d, let J be the n� d matrix made up of first d columns of the
n� n identity matrix In; ½J � denotes the d-dimensional subspace
spanned to the first d axes of IRn.

1. Derivative of F at ½J� 2 Gn;d: Let Eij be an n� n skew-
symmetric matrix such that, for 1 � i � d and d < j � n,

Eijðk; lÞ ¼
1 if k ¼ i; l ¼ j
�1 if k ¼ j; l ¼ i
0 otherwise:

8<
: ð2Þ

Consider the products EijJ ; there are dðn� dÞ such

matrices that form an orthogonal basis of the vector space

tangent to Gn;d at ½J �. That is: T½J �ðGn;dÞ ¼ spanfEi;jJg.
Notice that any tangent vector at ½J � is of the form: For

arbitrary scalars �ij,

Xd
i¼1

Xn
j¼dþ1

�ijEijJ ¼ 0d B
�BT 0n�d

� �
J 2 IRn�d; ð3Þ

where 0i is the i� i matrix of zeros and B is a d� ðn� dÞ
real-valued matrix. The gradient vector of F at ½J � is an

n� d matrix given by Að½J �ÞJ where

Að½J �Þ ¼ ð
Xd
i¼1

Xn
j¼dþ1

�ijðJÞEijÞ 2 IRn�n

and where �ijðJÞ ¼ lim
�#0

F ð½e�EijJ �Þ � F ð½J �Þ
�

� �
2 IR:

ð4Þ

�ijs are the directional derivatives of F in the directions

given by Eij, respectively. The matrix Að½J �Þ is a skew-

symmetric matrix of the form given in (3) (to the left of J)

for some B, and points to the direction of maximum

increase in F , among all tangential directions at ½J �.
2. Derivative of F at any ½U� 2 Gn;d: Tangent spaces and

directional derivatives at any arbitrary point ½U � 2 Gn;d

follow similarly. For a given ½U�, letQbe ann� n orthogonal

matrix such that QU ¼ J . In other words,QT ¼ ½UV �where

V 2 IRn�ðn�dÞ is any matrix such that V TV ¼ In�d and

UTV ¼ 0. Then, the tangent space at ½U� is given by

T½U �ðGn;dÞ ¼ fQTA : A 2 T½J�ðGn;dÞg, and the gradient of F

at ½U� is an n� dmatrix given by Að½U�ÞJ where:

Að½U�Þ ¼ QT ð
Xd
i¼1

Xn
j¼dþ1

�ijðUÞEijÞ 2 IRn�n

and where �ijðUÞ¼ lim
�#0

F ð½QTe�EijJ �Þ � F ð½U �Þ
�

� �
2IR:

ð5Þ

The deterministic gradient flow on Gn;d is a solution of the

equation:

dXðtÞ
dt

¼ AðXðtÞÞJ; Xð0Þ ¼ ½U0� 2 Gn;d ð6Þ

with Að�Þ as defined in (5). Let G � Gn;d be an open neighborhood

of ½ÛU� and XðtÞ 2 G for some finite t > 0. It can be shown that XðtÞ
converges to a local maximum of F , but, to achieve a global

maximum, we will have to add a stochastic component to XðtÞ.
Numerical Approximation of Gradient Flow: Since the

gradient of F is not available analytically, it is approximated

using finite differences:

�ij ¼
F ð½ ~UU�Þ � F ð½U �Þ

�
; 1 � i � d; and d < j � n; ð7Þ

for a small value of � > 0. Here, the matrix ~UU � QTe�EijJ is an n� d

matrix that differs from U in only the ith-column which is now

given by ~UUi ¼ cosð�ÞUi þ sinð�ÞVj, where Ui, Vj are the ith and jth

columns of U and V , respectively, with V defined as earlier.
For a step size � > 0, we will denote the search process at

discrete times Xðt�Þ by Xt. Then, a discrete approximation of the

solution of (6) is given by:

Xtþ1 ¼ QT
t expð�AtÞJ;

where At ¼
Xd
i¼1

Xn
j¼dþ1

�ijðXtÞEij and Qtþ1 ¼ expð��AÞQt:
ð8Þ

In general, the expression expð�AtÞ will involve exponentiating an

n� n matrix, a task that is computationally very expensive.

However, given that the matrix At takes the skew-symmetric form

before J in (3), this exponentiation can be accomplished in order

Oðnd2Þ computations, using the singular value decomposition of

the d� ðn� dÞ submatrix B contained in At [5]. Qt can also be

updated for the next time step using an Oðnd2Þ update.

3.2 Simulated Annealing Using Stochastic Gradients

The gradient process XðtÞ has the drawback that it converges only

to a local maximum. For global optimization or to compute

statistics under a given density on Gn;d, a stochastic component is

often added to the gradient process to form a stochastic gradient

flow, also referred to as a diffusion process. We begin by

constructing a stochastic gradient process on Gn;d and then add a

Metropolis-Hastings type acceptance-rejection step to it to generate

an appropriate Markov chain.
One can obtain random gradients by adding a stochastic

component to (6) according to

dXðtÞ ¼ AðXðtÞÞJdtþ
ffiffiffiffiffiffi
2T

p Xd
i¼1

Xn
j¼dþ1

EijJ dWijðtÞ
 !

; ð9Þ

where WijðtÞ are real-valued, independent standard Wiener

processes. It can be shown that (refer to [12]), under certain

conditions on F , the solution of (9), XðtÞ, is a Markov process with

a unique stationary probability density given by f given by:
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fð½U �Þ ¼ 1

ZðT Þ expðF ð½U�Þ=T Þ;

where ZðT Þ ¼
Z
Gn;d

expðF ð½U�Þ=T Þ:
ð10Þ

T 2 IR denotes the temperature and f is a density with respect to
the Haar measure on Gn;d.

For a numerical implementation, (9) has to be discretized with
some step-size � > 0. The discretized time process is given by:

dAt ¼ AðXtÞ�þ
ffiffiffiffiffiffiffiffiffiffi
2�T

p Xd
i¼1

Xn
j¼dþ1

wijEij;

Xtþ1 ¼ QT
t expð�dAtÞJ;Qtþ1 ¼ expð��dAtÞQt;

ð11Þ

where wijs are i.i.d standard normals. It can be shown that, for
� ! 0, the process fXtg converges to the solution of (9). fXtg
provides a discrete implementation of the stochastic gradient
process.

The stochastic component of Xt helps avoid getting stuck in a
local maximum, but has the drawback of occasionally leading to
states with low values of F . This drawback is removed by using an
MCMC-type simulated annealing algorithm where we use the
stochastic gradient process to generate a candidate for the next
point but accept/reject it with appropriate probabilities. That is,
the right side of (11) becomes a candidate Y that is selected as the
next point Xtþ1 according to a criterion that depends on F .

Algorithm 1 MCMC Simulated Annealing: Let Xð0Þ ¼ ½U0� 2
Gn;d be any initial condition. Set t ¼ 0.

1. Calculate the gradient matrix AðXtÞ according to (5).
2. Generate dðn� dÞ independent realizations, wijs, from

standard normal density. Using the value of Xt, calculate
a candidate value Y according to (11).

3. Compute F ðY Þ, F ðXtÞ, and set dF ¼ F ðY Þ � F ðXtÞ.
4. Set Xtþ1 ¼ Y with probability minfexpðdF=TtÞ; 1g, else set

Xtþ1 ¼ Xt. (note that expðdF=TtÞ ¼ fðY Þ
fðXtÞ ).

5. Set Ttþ1 ¼ Tt=�, t ¼ tþ 1, and go to Step 1.

Here, � > 1 is the cooling ratio for simulated annealing with a
typical value of 1.0025. This algorithm is a particularization of
A.20 [9, p. 200] where its convergence properties are discussed.
The limiting point X� ¼ limt!1 Xt can be shown to be the
maximizer ^½U�½U�.

A brute force implementation of Algorithm 1 will be compu-

tationally expensive. However, note that the discrete update rules

(given in (11)) can be achieved in Oðnd2Þ as mentioned earlier; �ijs

(given by (7)) can also be evaluated efficiently by exploiting the

facts that 1) ~UU and U differ only in one column (as mentioned

earlier) and 2) since � is small, �ðI 0c;i; ~UUÞ can be approximated

efficiently using �ðI 0c;i; UÞ and, thus, F ð½ ~UU�Þ can be computed

efficiently also. This implementation yields an Oðnd2Þ complexity

for each iteration. One can further reduce the computational cost

using a hierarchical optimization process [13]. In the context of

object recognition using linear representations, we term our

technique optimal component analysis (OCA).

4 EXPERIMENTAL RESULTS

We have applied the proposed algorithm to research for optimal

linear bases on a variety of data sets. Due to limited space, we

presents results using only two data sets: the ORL face recognition

data set2 and the CMU PIE data set. The ORL data set consists of

faces of 40 different subjects with 10 images each. The CMU PIE

data set is a comprehensive face data set consisting of images of 66

subjects under a variety of conditions [10]. However, since not all

images are cropped precisely, we use only those frontal images

(under different lighting conditions) that are cropped manually.

4.1 Optimizing Performance Using Algorithm 1

Similar to all gradient-based methods, the choice of free para-

meters, such as �, �, d, ktrain, ktest, and U0, may have a significant

effect on the results of Algorithm 1. While limited theoretical

results are available to analyze the convergence of such algorithms

in IRn, the case of simulated annealing over the space Gn;d is

considerably more difficult. Instead of pursuing asymptotic

convergence results, we have conducted extensive numerical

simulations to demonstrate the convergence of the proposed

algorithm, under a variety of values for the free parameters.

To support the choice of MCMC-type stochastic algorithm,

Fig. 1 shows three examples (with different initial conditions)

comparing 1) the deterministic gradient algorithm, 2) the stochastic

gradient algorithm (acceptance probability is set to one), and 3) the

proposed MCMC stochastic algorithm. Throughout this paper,

UICA is computed using the FastICA algorithm by Hyvarinen [6]

and UFDA is calculated based on the procedure given by

Belhumeur et al. [2]. While the deterministic gradient algorithm

can be effective in some cases, it generally ends up in a local

maximum. On the other hand, the stochastic gradient algorithm

does not suffer from the problem of local maximum although its

convergence is much slower than the proposed algorithm. As

shown in these examples and the ones in Figs. 2 and 3, the

proposed algorithm converges quickly under different kinds of

conditions. We attribute this mainly to the fact that, taking the

geometry of the manifold into account, the gradient flow provides

the most efficient way for updating [1]. (In fact, Amari [1] has

shown that such a dynamical system is Fisher efficient.) Obviously,

the effectiveness of the proposed algorithm depends on the choice

of parameters; through experiments we have found that it works

for a wide range of parameter values.
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Fig. 1. Evolution of F ðXtÞs versus t for different initial conditions. In each panel, the dashed line shows a deterministic gradient process, the dotted line a stochastic

gradient process, and the solid line plots the proposed algorithm. For these curves, n ¼ 10; 304, (that is 92� 112), d ¼ 5, ktrain ¼ 5, and ktest ¼ 5. (a) X0 ¼ UPCA,

(b) X0 ¼ UICA, (c) X0 ¼ UFDA.

2. http://www.uk.research.att.com/facedatabase.html.



We have studied the variation of optimal performance versus

the subspace rank denoted by d and ktrain using the ORL data set.

Figs. 2a, 2b, and 2c show the results for three different values of d

with ktrain ¼ 5, ktest ¼ 5. In Fig. 2a, for d ¼ 3, it takes about 2,000

iterations for the process to converge to a solution with perfect

performance while, in Fig. 2c, for d ¼ 20, it takes less than 200

iterations. This is expected as larger d implies a bigger space and,

hence, an improved performance or easier to achieve perfect

performance. Figs. 2d, 2e, and 2f show three results with three

different values of ktrain with n ¼ 154 and d ¼ 5. Here, the division

of images into training and test sets was chosen randomly. In view

of the nearest neighbor classifier being used to define F , it is easier

to obtain a perfect solution with more training images. The

experimental results support that observation. Fig. 2d shows the

case with ktrain ¼ 1 (ktest ¼ 9) where it takes about 3,000 iterations

for the process to converge to a perfect solution. In Fig. 2f, where

ktrain ¼ 8 (ktest ¼ 2), the process converges to a perfect solution in

about 300 iterations.
As another example, we have applied the proposed algorithm

to a subset of the CMU PIE data set [10]. The subset we have used

includes the frontal images (with lighting variations) that were

cropped manually. Fig. 3 shows three examples of the algorithmic

results. As in the previous examples, the proposed algorithm

improves the performance significantly, often converging to

solutions with perfect recognition performance.

4.2 Comparisons with Standard Subspaces

So far, we have described results on finding optimal subspaces

under different conditions. In this section, we focus on comparing

empirically the performances of these optimal subspaces with the

frequently used subspaces, namely, UPCA, UICA, and UFDA.
Figs. 4a and 4b show the recognition performance (for the ORL

database) with different d and ktrain for four different kinds of

subspaces:

1. optimal subspace X� computed using Algorithm 1,
2. UPCA,
3. UICA, and
4. UFDA.

These results highlight the fact that the recognition performance of

linear representations can vary significantly depending on the

parameters and data sets. To reach any conclusion, a comparison

of a few standard bases is not enough and some technique such as

the one proposed here seems necessary.
The above examples represent experimental situations where

the performance measure F can be evaluated over the whole

database. In practice, however, we often have a limited number of

training images and we are interested in linear subspaces that lead

to better performance on an unknown test set. To simulate this

setting, we have modified � to be

�ðIc;i; UÞ ¼ minc0 6¼c;j dðIc;i; Ic0 ;j;UÞ
minj 6¼i dðIc;i; Ic;j;UÞ þ �0

:

This definition is related to the leave-one-out recognition perfor-

mance on the training set. We have applied this modified measure

on the ORL data set by randomly dividing all the images into a

nonoverlapping training and test set. Fig. 4d shows the recognition

performance on a separate test set of Xt by maximizing the
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Fig. 2. Evolution of F ðXtÞ versus t for different values of d and ktrain. (a) d ¼ 3 and ktrain ¼ 5. (b) d ¼ 10 and ktrain ¼ 5. (c) d ¼ 20 and ktrain ¼ 5. (d) d ¼ 5 and ktrain ¼ 1.

(e) d ¼ 5 and ktrain ¼ 2. (f) d ¼ 5 and ktrain ¼ 8.

Fig. 3. Three examples of F ðXtÞ versus t on the CMU PIE data set. Here, n ¼ 100� 100. (a) X0 ¼ UPCA and d ¼ 10. (b) X0 ¼ UICA and d ¼ 10. (c) X0 ¼ UFDA and d ¼ 5.



performance on the training set only, which is given in Fig. 4c.

Fig. 4e shows the leave-one-out recognition performance on the

training images and Fig. 4f the performance on a separate test set

of the optimal subspaces along with common linear representa-

tions. The optimal subspaces found using only the training set also

provide better performance on the test set in all these cases. Such

results point to the possibility of improving generalization using

the proposed algorithm, which requires further exploration.

5 DISCUSSION

We have proposed an MCMC-based simulated annealing algo-

rithm to find the optimal linear subspaces assuming that the

performance function F can be computed. By formulating an

optimization problem on the Grassmann manifold, an intrinsic

optimization algorithm is presented. Extensive experiments

demonstrate the effectiveness and feasibility of this algorithm.
While the focus here has been recognition, the proposed

algorithm can be extended to any performance function. In fact,

we have applied the algorithm and its generalized versions to

1) finding optimal linear filters that are both sparse and effective

for recognition and 2) finding optimal representations for image

retrieval applications. While F given by (1) is based on the nearest

neighbor rule, it can be easily generalized to other classifiers such

as support vector machines.
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Fig. 4. (a) and (b) F of different linear subspaces versus d (ktrain ¼ 5) and ktrain (d ¼ 5), respectively, on the ORL data set. Solid line is F ðX�Þ, dashed line is F ðUFDAÞ,
dotted line is F ðUPCAÞ, and dash-dotted line is F ðUICAÞ. (c) Evolution of F ðXtÞ versus t, where F ðXtÞ is defined using the training set only. (d) The corresponding

performance on a separate test set of Xt given in (c). (e) and (f) leave-one-out recognition on the training set and a separate test set with d ¼ 5 using the same legend in

(a) and (b).
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