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Image and Texture Segmentation Using
Local Spectral Histograms
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Abstract—We present a method for segmenting images con-
sisting of texture and nontexture regions based on local spectral
histograms. Defined as a vector consisting of marginal distribu-
tions of chosen filter responses, local spectral histograms provide
a feature statistic for both types of regions. Using local spectral
histograms of homogeneous regions, we decompose the segmenta-
tion process into three stages. The first is the initial classification
stage, where probability models for homogeneous texture and
nontexture regions are derived and an initial segmentation result
is obtained by classifying local windows. In the second stage,
we give an algorithm that iteratively updates the segmentation
using the derived probability models. The third is the boundary
localization stage, where region boundaries are localized by
building refined probability models that are sensitive to spatial
patterns in segmented regions. We present segmentation results on
texture as well as nontexture images. Our comparison with other
methods shows that the proposed method produces more accurate
segmentation results.

Index Terms—Filtering, image segmentation, integral his-
togram image, local spectral histogram, spectral histogram,
texture segmentation.

I. INTRODUCTION

SCENE analysis is a central task in numerous applications
including autonomous robots, intelligent human computer

interfaces, and content-based image and video retrieval sys-
tems. Its essential goal is to derive a meaningful description of
the input. While a hypothetical solution can be constructed by
building a look-up table with one entry for each possible input
(see, e.g., [19]), the complexity of labeling the table entries,
storing the table, and finding a match for a given input makes
it impossible to implement.1 Clearly, the complexity is a key
requirement for scene analysis and the focus of research is thus
on developing efficient and effective models and algorithms.

To illustrate the plausible approaches to scene analysis,
Fig. 1(a) shows a natural image of a cheetah. One choice is to
detect objects by exhaustively searching over all possible
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1For example, assuming that the input is a gray-level image of size 256� 256
with pixel levels from 0 to 255, the table would have about 10 entries.

Fig. 1. Illustrative example. (a) Natural image of a cheetah. (b) Typical edge
detection result. (c) Manually segmented result.

variations, including locations, scales, and orientations; this
strategy is used by some face detection algorithms (e.g., [25]).
This approach, however, is not effective given the large number
of possible objects and their variations in the input. It seems
that a more promising approach is to decompose scene analysis
into two stages: an initial generic scene segmentation followed
by some iterative recognition and model-specific segmentation
loop. In this paper, we study the initial or bottom-up scene
segmentation problem. Note that the initial segmentation stage
is critical for the decomposition to be effective; otherwise, it
would reduce to exhaustive detection. In this setting, the goal of
scene segmentation is not to obtain an ideal segmentation—in
fact, it was argued that an ideal segmentation like the one shown
in Fig. 1(c) is not feasible without specific models [21]—but to
provide candidate regions to initiate recognition, classification,
or other higher level processes.

This formulation makes clear the goal of generic scene seg-
mentation, as well as its constraints. Clearly, generic scene seg-
mentation should not utilize object-specific models as they are
not available. Also, a solution should work on different kinds
of images such as texture and nontexture images. There are
two broad categories of approaches to bottom-up scene seg-
mentation. The first category is to group basic elements that
can be computed easily (e.g., edges) to form more meaningful
boundaries. However, meaningful elements may not be obtained
readily due to complex textures of natural objects. For example,
Fig. 1(b) shows a typical edge-detection result for Fig. 1(a) using
the Canny edge detector [4]. It is clear that grouping these edges
into meaningful boundary segments is a complicated task, if not
infeasible. The other category is to identify regions based on
statistics of local features, including region growing, split-and-
merge, and so on. Here, segmentation can be defined as a con-
strained partition problem, where each partitioned region should
be as homogeneous as possible and neighboring ones should be
as different as possible. Two fundamental issues can be identi-
fied. The first one is the underlying image model that defines
region homogeneity and thus specifies what a good segmenta-
tion should be, and the second one is to design an algorithm to
compute a solution, exactly or approximately.
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There are numerous algorithms for segmentation. A key dif-
ference among them is the underlying segmentation criterion,
either explicitly or implicitly defined. For gray-level images
with piecewise smooth regions, the Mumford-Shah model [16]
is representative in that criteria used in most existing segmenta-
tion algorithms are its special cases [15]. While their model has
led to numerous optimization algorithms (see, e.g., [5] and [7]),
its success is limited to nontexture images; for texture regions,
local smoothness is not adequate as a homogeneity criterion.
In this paper, we extend the Mumford-Shah model to images
consisting of piecewise smooth texture and nontexture regions
using local spectral histograms [10], [12]. Because a local
spectral histogram of an image window consists of histograms
of response images of chosen filters, it captures local spatial
patterns through filtering and global patterns through his-
tograms and constraints among different filters. Assuming that
a representative spectral histogram is available for each region,
we derive a segmentation algorithm as follows: 1) estimating a
probability model for each region and classifying image win-
dows to obtain an initial segmentation; 2) iteratively updating
segmentation and local spectral histograms of pixels along
region boundaries based on the derived probability models;
and 3) further localizing region boundaries using refined prob-
ability models derived based on spatial patterns in segmented
regions. Additionally, we address the issues of automatically
identifying representative regions. While histograms of filtered
images have been used for texture modeling [2], [8], [10], [28],
texture classification [1], [10], [13], and segmentation based on
clustering [9], the proposed method leads to robust and accurate
segmentation by using adaptive feature extraction and boundary
localization, which have not been studied and used. The main
contributions of this paper are 1) we give a segmentation
method that is effective for both texture and nontexture regions,
justified by experimental results on different kinds of images;
2) we give new ways to estimate probability models, which
lead to more accurate segmentation results in comparison with
normalized cut method [20] and other methods [6], [17]; and
3) we give a novel algorithm that computes spectral histograms
of local windows efficiently.

The rest of the paper is organized as follows. Section II intro-
duces the local spectral histogram representation and discusses
its properties; we also present an algorithm that computes spec-
tral histograms of local windows using a fixed number of arith-
metic operations regardless of window size. In Section III, we
present our segmentation algorithm which couples the feature
detection and segmentation steps together by extracting fea-
tures based on the currently available segmentation result. In
Section IV, we propose a novel method to further localize re-
gion boundaries. Section V presents an algorithm for identifying
regional features in homogeneous texture regions. Section VI
provides experimental results and comparisons, and Section VII
concludes the paper with a summary.

II. LOCAL SPECTRAL HISTOGRAM REPRESENTATION

Given a window in an input image and a chosen bank
of filters , we compute, for each filter

, a sub-band image through a linear convolution, i.e.,
, where

Fig. 2. Different types of images characterized by spectral histograms. In each
column, the top row shows an observed image and the bottom a typical image
that shares the same spectral histogram. (a) Gray-level image consisting of two
piecewise constant regions with additive Gaussian noise. (b) Texton image con-
sisting of cross elements. (c) Stochastic texture image.

and specify pixel locations. For , we define its his-
togram, a bin of which is given by

(1)

where and specify the range of the bin. We then define the
spectral histogram with respect to the chosen filters as

(2)

The spectral histogram of an image window is essentially a
vector consisting of marginal distributions of filter responses
and the size of the window is called integration scale. Because
they consist of probability distributions, a similarity measure
between two spectral histograms can be defined as -statistic
(e.g., [9]) given by

(3)
The spectral histogram provides a normalized feature statistic
to compare image windows of different sizes. The input image
windows do not need to be aligned; misalignment is a serious
problem for approaches that use filter responses directly as fea-
tures, such as those studied in [17], due to the inhomogeneity
of filter responses. When proper filters are chosen, the spec-
tral histogram is sufficient in characterizing texture appearance.
Fig. 2 shows three types of images, where the typical images are
generated using a Gibbs sampler [27]. In Fig. 2(a), the spectral
histogram captures the perceptual appearance of both regions.
Given that the circular boundary is used for a typical image,
the typical image represents closely the observed one. Fig. 2(b)
shows a texton image, where the spectral histogram captures
the texton elements and the element density. Fig. 2(c) shows a
stochastic texture and the spectral histogram captures the per-
ceptual appearance well. In this paper, eight filters are used:
the intensity filter, two gradient filters, LoG with two scales and
three Gabor filters with different orientations; they are not tuned
for particular images but chosen to capture general aspects of
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texture as well as nontexture regions (see Section VI-C for com-
parison of different filters).

Note that the spectral histogram is defined on any type of
images. Piecewise-constant images with additive Gaussian
noise are a special case where the spectral histogram has a
unique pattern. In addition, it can also characterize patterns with
topological structures (e.g., a face) with appropriate boundary
conditions [11]. The spectral histogram representation was first
suggested in psychophysical studies on texture modeling [2],
and has been used in texture modeling and synthesis [8], [28],
[10], texture classification [1], [10], [13], and modeling human
texture discrimination [12]. Histograms of local fields have also
been used for object recognition and detection [11], [18], [25].
While spectral histogram representations have been used for
classification where labeled training samples are assumed [11],
[13], this paper addresses image segmentation where no labeled
training samples are available. For robust segmentation, we
introduce adaptive feature extraction and boundary localization,
which are not studied in earlier classification and segmentation
work based on similar features [1], [9], [13].

A. Fast Implementation

By definition, segmentation is to compute homogeneous re-
gions and thus requires evaluations of local spectral histograms
of different windows when they are used (see Section III for
details). To characterize textures, should be relatively large
and therefore fast computation is needed. As shown in (1), cal-
culating the histogram of local window of a particular filter
requires summation over all the pixels in . Let be given
by and be the filtered image of
image using filter . By rewriting (1) in terms of , we
have

(4)

Fig. 3. Illustration that any rectangularW can be written asW = W +

W �W �W . In each image, the corresponding region is marked as
hatched.

Here, specifies the top-left corner of the image. If we let
be the rectangular window given by ,
by , by

, and by , we have
, as illustrated in Fig. 3. This

gives the following:

(5)

according to (4). Now we define an integral histogram image
for the bin, where the value at pixel is

and is the rectangular window given by
. In other words, we define

as

(6)

Through the integral histogram image, as shown in (5), we can
compute using additions and subtractions, where

is the number of the bins in the histogram. To compute the
integral histogram image, we use (7), shown at the bottom of the
page. By defining

, we have

if

otherwise
(8)

when . When , we have

if
otherwise.

(9)

Now, integral histogram image can be computed

quickly by first computing using (9) and (8)

and then using (7). This has been shown in [22]

but for computing special filter responses. Note that only

if

if
(7)



LIU AND WANG: IMAGE AND TEXTURE SEGMENTATION 3069

needs to be computed once and field programmable gate array
(FPGA) devices can be used for fast implementation [23].

The computation for computing local spectral histograms can
be further reduced when the size of the image is known. For
example, for a 256 256 image, the number in any bin can be
at most , which means that we
only need 16 bits to represent any bin in the integral histogram
image. By using 128-bit words,2 we can encode 8 bins in one
word; this reduces the number of operations to compute the local
histogram feature of a filter to . For , as is
the case in all the experiments shown here, we only need three
arithmetic operations to compute and 24 to compute
(for eight filters) for any window size.

III. SEGMENTATION ALGORITHM

As discussed in Section I, the goal of segmentation is to par-
tition an input image into regions so that each one is as homo-
geneous as possible and neighboring ones are as different as
possible. To be able to model both texture and nontexture re-
gions, we use local spectral histograms as local features and
measure homogeneity of a region using distance among spec-
tral histograms given by (3). The problem now becomes an op-
timization one and could be solved using algorithms developed
for the Mumford and Shah model (e.g., [5] and [7]). However,
due to the large integration scale for texture regions, these al-
gorithms would give inaccurate region boundaries as windows
crossing multiple regions do not give accurate features. To over-
come this problem, here, we develop an approximation algo-
rithm that couples the feature extraction and segmentation iter-
atively, implemented in three stages.

To be more specific, let be a grid defined on a planar domain
and , , be a disjoint subset of . We assume
that a feature is associated with each region , and the
feature can be given manually or selected automatically (see
Section V); each feature vector is extracted from window

centered at a given or detected pixel location. Here,
is the integration scale for segmentation, which is assumed to
be given. We also define , which is called background [24],
as , consisting pixels that cannot be
segmented into one of the given regions. Under this formula-
tion, further assuming feature vectors s are sufficiently ac-
curate, homogeneous regions can be obtained by classification.
However, features computed using windows that are centered at
pixel locations are inaccurate at locations along region bound-
aries, because the windows of such locations straddle multiple
regions (see Fig. 6). Hence, we decompose the segmentation
into three stages. We first estimate probability models for each
region and obtain an initial segmentation by classification. Then
we iteratively update segmentation by coupling the feature ex-
traction and segmentation. The third stage performs an addi-
tional boundary localization stage to be described in Section IV.

To estimate probability models and parameters — homo-
geneity thresholds for regions—we compute the spectral his-
togram centered at a pixel location; to save computation, it is
done only at subsampled pixels. The -statistic distance may

2Available in SSE2 and SSE3 instructions on recent Intel processors.

Fig. 4. Gray-level image segmentation using spectral histograms. Integration
scale W for spectral histograms is a 15� 15 square window. (a) Synthetic
image with size 128� 128. The image is generated by adding zero-mean
Gaussian noise with different �’s at left and right regions. (b) Initial classifi-
cation result. Two features are given at (32, 64) and (96,64), where the first
element in each pair indicates the x or horizontal dimension. (c) Segmenta-
tion result. Each region is represented by a manually assigned gray value.
(d) Segmentation result shown by region boundary (white). Note that the
original image is dimmed to make the boundary more visible.

Fig. 5. Histograms and derived probability models of � -statistic for the given
region features in Fig. 4. Solid lines stand for left region and dashed lines stand
for right region. (a) Histogram of the � -statistic between the given feature and
the computed ones at a coarse grid. (b) Derived probability model for the left
and right regions.

not provide an accurate measure close to region boundaries due
to inhomogeneity between different regions. For example, in
the image shown in Fig. 4, the left region is homogeneous and
the variation allowed should be small. In the right region, the
variation allowed should be relatively large. To overcome this
problem and provide a more accurate model, we estimate a prob-
ability model of the -statistic for each given feature vector

. This is done by computing the histogram of the -statistic
between the computed spectral histograms at all the pixels of
the image and the given spectral histogram for the region.
Fig. 5(a) shows the two histograms of the -statistic for two
given features corresponding to the two regions of the image in
Fig. 4(a). Parameter for each region is determined to be the
first (smallest) local minimum position, which provides natural
separation to include pixel locations whose features are close to
the given one. This is done by detecting zero-crossings using
a one-dimensional (1-D) LoG filter [14]. We then assign zero
probability for histogram values larger than for the region and
obtain the probability model by normalizing the sum to 1. The
derived probability models for Fig. 4(a) are given in Fig. 5(b).
Then, the input image is classified using a maximum likelihood
classifier using the derived probability models; the pixels whose
minimum distance is larger than from all regions, are classi-
fied as background. The classification result is used as the ini-
tial segmentation. For the image in Fig. 4(a), the corresponding
initial segmentation result is shown in Fig. 4(b). Note that the
classification is done at subsampled pixels.
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Fig. 6. Effectiveness of derived probability models. In (b)–(d), solid lines stand
for the left region and dashed lines the right region. The true edge is located
between pixels 63 and 64. (a) The 64th row from Fig. 4(a). (b) Probability of
the two given regional features using asymmetric windows to compute spectral
histograms. (c) Similar to (b) but using windows centered at the pixel to compute
spectral histogram. Here, the edge point cannot be localized. (d) � -statistic
from the two given regional features using centered windows.

After we obtain the initial segmentation and probability
models, the segmentation is then iteratively updated based on
the following local updating rule at pixel :

(10)

For a given pixel to be updated, one can estimate the spec-
tral histogram using a window centered at the pixel. However,
as noted earlier, features estimated using centered, symmetric
windows can be noisy near region boundaries. To alleviate this
problem, we propose to use asymmetric windows for feature ex-
traction. Specifically, we use square windows of size where
the given pixel is a corner. Because there are four windows to
choose at pixel , for each , we use the window that has
the most number of labeled pixels in , and thus the window or
feature at pixel for different labels can be different. The
new label of is assigned the one that gives the maximum

. As in the initial segmentation stage, a pixel remains
in the background if the minimum distance to all regions ,

, is larger than the corresponding using asym-
metric windows. Fig. 4(c) shows the segmentation result for the
image in Fig. 4(a), and the resulting region boundary is shown
in Fig. 4(d). Here, all the pixels are segmented correctly.

To illustrate the effectiveness of the derived probability
models and asymmetric windows, Fig. 6(a) shows a row from
the image shown in Fig. 4(a). Fig. 6(b) shows the probability
of the two labels at each pixel using asymmetric windows.
We can see that the edge point is localized precisely at the
true location. Fig. 6(c) show the probability using symmetric
windows centered at pixels. There is an interval where labels
can not be decided because the spectral histogram computed in
the interval does not belong to either of the regions. For com-
parison, Fig. 6(d) shows the result using -statistic directly

Fig. 7. (a) Texture image with size 256� 256. (b) Segmentation result using
spectral histograms. (c) Wrongly segmented pixels of (b), represented in black
with respect to the ground truth. Segmentation error is 6.55%. (d), (e) Refined
segmentation result shown by region boundaries and by regions respectively.
(f) Wrongly segmented pixels of (e), represented in black as in (c). Segmentation
error is 0.95%.

for centered windows. Here, boundaries are systematically
shifted by several pixels because -statistic distance favors
homogeneous regions.

IV. LOCALIZATION OF REGION BOUNDARIES

Because textures need to be characterized by spatial rela-
tionships among pixels, relatively large integration windows
are needed in order to extract meaningful features. A large
integration scale however results in large errors along texture
boundaries due to the uncertainty introduced by large windows
[4]. By using asymmetric windows for feature extraction, the
uncertainty effect is reduced. However, for arbitrary texture
boundaries, the errors along boundaries can be large even when
the overall segmentation performance is good. For example,
Fig. 7(b) shows a segmentation result on the image shown in
Fig. 7(a) using spectral histograms. While the segmentation
error is only 6.55%, the segmentation result is visually intoler-
able due to large errors along texture boundaries, as shown in
Fig. 7(c).

In order to accurately localize texture boundaries, we build
a refined probability model using given pixels from each re-
gion. To capture the spatial relationship, we choose for each tex-
ture region a window as a template; the template is the same
window from which the region feature is extracted. For se-
lected pixels, we define their distance to a texture region as
the minimum mean square distance between those pixels and the
template. Using these distances of segmented regions, we build
a refined probability model for each texture region as in the first
step. Then we iteratively update the segmentation again using
(10) but using the refined probability models. Intuitively, if the

pixels belong to a texture region, it should match the spatial
relationship among pixels when they are aligned with the texture
structure. These probability models are sensitive to alignments
and thus should produce more accurate region boundaries than
those based on the spectral histograms.



LIU AND WANG: IMAGE AND TEXTURE SEGMENTATION 3071

Fig. 8. (a) Synthetic image with size 128� 128. (b) Segmentation result.
(c), (d) Refined segmentation result shown as regions and as the region
boundary respectively.

Fig. 9. Windows for automated seed selection. Here, the solid window isW ,
dashed is the central W and the dotted are four corner ones. For clarity, the
top-left corner window is shown hatched.

Fig. 7(e) shows the refined segmentation result with
pixels and Fig. 7(d) shows the corresponding region bound-
aries. The segmentation error is reduced to 0.95%, and visu-
ally, the segmentation result is improved significantly. Fig. 7(f)
shows the wrongly segmented pixels of the refined segmenta-
tion. Similar images were used by Hofmann et al. [9]. Com-
pared to their results, ours is comparable to their best without
expensive optimization. Fig. 8(a) shows an intensity image with
a curvy boundary between two regions with the same mean
but different variance. Fig. 8(b) shows the segmentation result,
Fig. 8(c) shows the refined result, and Fig. 8(d) shows the region
boundary. It is clear that the boundary between two regions is
improved significantly, especially at the top and bottom borders
of the image.

V. AUTOMATED SEED SELECTION

In the segmentation algorithm presented above, we assume
that representative pixels or seeds located near centers of dis-
tinct regions are given. This assumption can limit the use of
the proposed method in autonomous systems. Here, we present
an algorithm for identifying homogeneous texture regions in a
given image. Within a homogeneous texture region relative to
an integration scale, spectral histograms calculated at different
windows should be similar. Based on this observation, we try to
identify homogeneous texture regions based on distance mea-
sures with respect to two integration scales. Let be an inte-
gration scale 1.5 times larger than (in terms of number of
pixels; see Fig. 9), the integration scale for segmentation. We
define two distance measures at pixel with respect to
and , and , given by

(11)

Fig. 10. Texture image segmentation with representative pixels identified au-
tomatically withW = 29� 29 andm = 11. (a) Input texture image. (b) Ini-
tial classification result. Here, the representative pixels (marked as white ‘+’)
are detected automatically. (c), (d) Segmentation result and the resulting region
boundary.

and

(12)

Here, measures the difference between the spectral his-
tograms of and . Within a homogeneous texture re-
gion, should be small because and
should be similar. Similarly, measures the maximum varia-
tion among different windows of scale within ; it should
be also small within a homogeneous region. To save computa-
tion, is approximated in implementation using four corner
windows within as illustrated in Fig. 9. Additionally, we
want to choose features that are as different as possible from
those already chosen. Suppose we have chosen features al-
ready, where, , for , we define

(13)

which gives a distance measure between the candidate feature
at and all other chosen ones. Combining these together,
we have the following saliency measure:

(14)

Here, and are parameters to determine the relative contri-
bution of each term, and we set and for all
the experiments, determined empirically over a set of images.
Intuitively, should be small in a homogeneous region
that has not been represented. Therefore, we select seed win-
dows according to until it becomes large.

Fig. 10 shows a seed selection example, where an image with
two texture regions is shown in Fig. 10(a). Fig. 10(b) shows the
initial classification result using automatically detected feature
vectors. Fig. 10(c) shows the segmentation result. The texture
boundary is localized well even though the two textures are sim-
ilar in local intensity values.

VI. EXPERIMENTAL RESULTS AND COMPARISONS

A. Segmentation Results

Figs. 11 and 12 show the segmentation results for a set of tex-
ture images. For each image, first the feature vectors are iden-
tified automatically and an initial result is then obtained using
a maximum likelihood classifier with the found region features.
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Fig. 11. Texture image segmentation examples withW = 29� 29. In each
panel, the left is the input image, the middle the final segmentation result, and
the right the final region boundaries. All representative pixels are detected au-
tomatically. (a)m = 11. (b)m = 15.

Fig. 12. Texture image segmentation examples with W = 29 � 29 and
m = 11. In each column, the top is the input image, the middle the segmen-
tation result and the bottom the region boundaries. All representative pixels are
detected automatically.

Fig. 13. Classification error (%) of 100 methods used in [17]. In each plot, the
dashed line is the corresponding segmentation error of our results. (a) For image
in Fig. 12(a). (b) For image in Fig. 12(b). (c) Average performance on the two
images.

The segmentation is then updated iteratively and the final re-
sult is obtained by applying the boundary localization algorithm.
As shown in these examples, the texture boundaries are local-
ized well and all the homogeneous texture regions are identified
by the seed selection algorithm. The inaccuracy of the bound-
aries is mostly due to the similarity of the textures along the
boundaries as well as large texture structures and variations in
these examples. Two examples shown in Fig. 12 are also used
by Randen and Husoy [17] in their comparative study of 100
texture-classification methods. Their experiments were set up as
supervised classification, where training features were provided
first. Thus, the segmentation problem studied here is essentially

Fig. 14. Natural image segmentation examples withW = 29�29 andm =

25. In each panel, the left is the input image, the middle segmentation result
before boundary localization, and the right the result after boundary localization.
(a) Cat image with size 305� 450. (b) Fish image with size 438� 321.

Fig. 15. More natural image segmentation examples withW = 29� 29 and
m = 25. See Fig. 14 for figure legend. (a) Cheetah image with size 795� 343.
(b) Another cheetah image with size 486� 324.

more difficult.3 Fig. 13(a) and (b) show the classification error
of the 100 texture classification methods for Fig. 12(a) and (b)
respectively. In both cases, the segmentation error of our re-
sults is 1.0%. For Fig. 12(a), only four methods perform slightly
better (one 0.9% and three 0.7%) than ours. However, these four
methods along with others perform significantly worse than our
method on Fig. 12(b). To show this, Fig. 13(c) shows the average
performance on both images and clearly our method gives the
lowest error rate. This significant improvement in performance
is due to the desirable properties of the spectral histogram rep-
resentation and the derived probability models.

Natural images in general consist of regions that are not ho-
mogeneous and we are often interested in some meaningful re-
gions only. This can be achieved in our system by identifying
only a few region features. As mentioned before, no assumption
is made in our algorithm regarding the distributions and proper-
ties of background regions, and thus we avoid building models
for them. We apply the same algorithm but with one region iden-
tified and Figs. 14 and 15 show some examples. The left column
shows the input images and the middle shows the segmentation
result before boundary localization. The final boundary-local-
ized result is shown in the right column. To show the accuracy
of segmented boundaries, they are embedded in the original

3For texture classification comparisons, see [13].
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Fig. 16. Comparison between normalized cut and proposed method on a gray-
level image. (a) Input image, as shown in Fig. 8(a). (b), (c) Segmentation result
from normalized cut and our method. In each panel, the left is the segmentation
result and the rest are the components. Here, a gray color is used to indicate
pixels not in the current component.

image. As these examples show, our algorithm gives accurate
region boundaries. Some parts of the boundaries are not local-
ized well due to the similarity between the region of interest and
the background. If we had models for recognition, the cheetah
in Fig. 15(a) and (b) could be recognized due to its distinctive
skin pattern and then the segmentation result could be further
improved using top-down information. Given that our system is
generic and there is no image specific training, our results are
comparable with best available results.

B. Comparisons

To provide additional empirical justifications of our method,
we have compared our segmentation method with the normal-
ized cut algorithm proposed by Shi and Malik [20] and then
with a feature fusion method by Clausi and Deng [6], which
is mainly for texture segmentation. Normalized cut is a general
framework for image segmentation based on the graph theoretic
formulation of grouping. Each pixel in the image is viewed as a
vertex in a graph and the edges between pixels (vertices) are
constructed based on similarity measures between the corre-
sponding feature vectors. To deal with texture as well as non-
texture regions, Shi and Malik include features based on inten-
sity, color, and filter responses. After the edges are established,
the segmentation problem is posed as a graph cutting problem
of the constructed graph. Using a normalized cut criterion, Shi
and Malik proposed an efficient algorithm by converting the cut-
ting problem into an eigen one [20] based on the spectral graph
theory. The algorithm has been applied to segmenting gray-level
images and texture images.

Here, we used an implementation by Shi.4 For each case
shown below, we have tried different combinations of param-
eters to obtain the best performance we can. First, we applied
the normalized cut on the gray-level image shown in Fig. 8(a)
and Fig. 16(b) shows the segmentation result. Following Shi
and Malik, Fig. 16(b) also shows the segmented components
from normalized cut and Fig. 16(c) shows our corresponding
segmentation and components. In this case, the normalized cut
successfully segments two regions out. However, the region
boundary is not well localized because the normalized cut does
not exploit the spatial connectivity in segmented regions and

4Obtained from http://www.hid.ri.cmu.edu/Hid/software_ncutPublic.html.

Fig. 17. Comparison between normalized cut and the proposed method on the
cheetah image [Fig. 15(b)]. In (c) and (d), black is used to indicate pixels not in
the current component. (a) Input image. (b) Segmentation result from normal-
ized cut. (c) Cheetah segment from (b). (d) Cheetah segment from our method.

does not have a refined model for boundary localization. Even
without boundary localization [see Fig. 8(b)], our result still
gives more accurate region boundary.

Fig. 17 compares the normalized cut method and ours on
the cheetah image shown in Fig. 15(b). Here, we compare
the segment corresponding to the cheetah region. While both
methods are able to segment the cheetah out, our segment is
localized more accurately even without boundary localization
[see Fig. 15(b)]. Note that the normalized cut gives the cheetah
region as one of its segments and does not localize its boundary.

Fig. 18(b) shows the normalized cut segmentation and its
major components for the image shown in Fig. 7(a). For com-
parison, we have shown our segmentation result in the same
format in Fig. 18(c). As in the previous example, the major re-
gions are segmented out by their algorithm. While boundaries
between very different regions are localized well, boundaries
are not accurate when neighboring regions are similar. In sev-
eral cases, regions from different textures are mixed. On the
other hand, our segmentation gives accurate region boundaries;
note that without boundary localization [see Fig. 7(b)], ours still
gives more accurate boundaries. We attribute the difference to
the derived probability models and to the fact that the spectral
histogram is more reliable to characterize texture regions than
filter responses, which are used directly in the normalized cut
method.

Based on these examples, we can see that our results gener-
ally give more accurate region boundaries. On the other hand,
our method can be combined with the normalized cut method in
several ways. First instead of using the filter responses to char-
acterize textures, the normalized cut can use local spectral his-
tograms and distance between them to establish edges in the
underlying graph and can even use the probability models we
have. Second, our boundary localization algorithm can be used
to localize segments from normalized cut. Additionally, instead
of using the minimum-distance classification to obtain an initial
segmentation for our method, we may use the normalized cut to
generate an initial segmentation.
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Fig. 18. Normalized cut segmentation result and its major components for a texture image. (a) Input image as shown in Fig. 7(a). (b), (c) Segmentation result and
major segmented components of normalized cut and the proposed method respectively. Here, a distinctive gray color is used to indicate pixels not in the current
component.

While our method can be applied to segmentation of texture
as well as nontexture regions, we demonstrate here that this gen-
erality does not lead to less accurate segmentation for texture
images through an additional comparison for texture segmen-
tation [6]. To improve texture recognition and segmentation,
Clausi and Deng [6] fuse Gabor features and gray-level co-oc-
currence probability features so that lower, mid, and higher fre-
quency texture information is all captured. The fused features,
as well as Gabor and gray-level co-occurrence probability fea-
tures, are applied to segmentation using the standard K-means
clustering method. They provide quantitative results on three
texture images (shown in Fig. 19) and Table I shows the accu-
racy of best segmentation results from [6]. We apply our method
on the images and our segmentation results (without and with
boundary localization) are shown in the last two columns of
Fig. 19, the accuracy of which is summarized in Table I; here,
the segmentation accuracy is computed relative to the provided
ground truth segmentation. The same eight filters used earlier

are applied to Fig. 19(a) and (b), while only the intensity and
two gradient filters are applied to Fig. 19(c) due to the presence
of narrow-shaped parts in some texture regions. The compar-
ison shows that our boundary localization improves boundary
accuracy and our results with boundary localization are more
accurate in all the cases. We attribute the improvement to the
use of iterative feature extraction and segmentation, a key dif-
ference between clustering-based methods and ours.

C. Further Evaluations

As texture is a board perceptual concept, a given texture
segmentation method likely works well on some textures but
not well on others, depending the features and the parameters
used. Important aspects of a segmentation method include
whether it is applicable to different kinds of images and how
sensitive it is to particular choices of parameter values. To
answer these questions, we have performed further quantitative
analysis with respect to two important aspects of our method:
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Fig. 19. Results on texture images used in [6]. In each row, the left image shows the original texture image, the middle-left shows the ground truth segmentation,
and the right two images show our segmentation results without and with boundary localization respectively. (a) Image used in [3], consisting of seven textures and
16 regions. Note that the boundaries are not straight lines in the ground truth. (b) Image with six regions of different sizes. (c) Image with irregular-shaped regions.

TABLE I
SEGMENTATION ACCURACY (%) FOR THE FEATURE

FUSION [6] AND THE PROPOSED METHODS

the integration scale and the filters chosen. The integration
scale corresponds to the window size used to compute local
spectral histogram features. In general, the larger the window,
the larger the uncertainty along region boundaries. The use of
an asymmetric window in our method reduces the uncertainty
by limiting the influence of pixels from other texture regions
(see Fig. 6). On the other hand, when the window size is too
small, the variation within the same texture type becomes
large, leading to inaccurate segmentation. To show this, we
apply our method on the image in Fig. 7(a) by using different
integration scales. Table II summarizes the results, which show
an “optimal” integration scale for the image without boundary
localization. Our boundary localization algorithm, however,
largely eliminates this sensitivity by using spatial patterns. This

TABLE II
SEGMENTATION ACCURACY (%) FOR THE PROPOSED METHOD

IN FIG. 7(a) USING DIFFERENT INTEGRATION SCALES

shows that our method is not sensitive to particular choices of
integration scale.

Regarding the filters used in computing local spectral his-
tograms, they are clearly important for segmentation results but



3076 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 10, OCTOBER 2006

Fig. 20. Segmentation results using different filters on the image shown in Fig. 7(a). In each panel, the result without and with boundary localization is shown on
the left and right, respectively. (a) Intensity filter. (b) Two gradient filters. (c) Two LoG filters. (d) Three Gabor filters.

TABLE III
SEGMENTATION ACCURACY (%) FOR THE PROPOSED METHOD IN

FIG. 7(a) USING DIFFERENT COMBINATIONS OF THE EIGHT FILTERS

a specific choice of filters is not critical because of the integra-
tion in the spectral histogram computation and the boundary lo-
calization. To demonstrate this, again we apply our method on
the image shown in Fig. 7(a) with integration scale of 35 35
but with different filters. Table III summarizes the results and
selected segmentation results are shown in Fig. 20. As the re-
sults show, there is an “optimal” set of filters for this image
without boundary localization. With boundary localization, the
difference in performance by using different sets of filters is sig-
nificantly reduced. Similar to the situation with the integration
scale, our method allows us to achieve accurate segmentation
result with different sets of filters. This shows that the choice of
filters is not critical in our method.

VII. CONCLUSION

In this paper, we have presented a new segmentation method
for images consisting of texture, as well as nontexture regions
using local spectral histograms. By decomposing the algorithm
into three stages, we derive probability models and couple fea-
ture extraction with segmentation through iterative updating.
These lead to more accurate region boundaries, which are
further localized through a localization stage. Comparisons
with other methods show that our method gives more accurate
segmentation.

Here, we assume filters and the integration scale for segmen-
tation are given. While a fixed setting works sufficiently well for
different kinds of images used in this paper and our method ap-
pears not very sensitive to particular choices of integration scale
and filters, adaptive filters and integration scales for different
regions could further improve segmentation results. Future re-
search needs to address the issue of automatically choosing fil-
ters and integration scales to achieve optimal segmentation of
given images.
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