
Shot Boundary Detection in Videos Using Robust Three-Dimensional Tracking

Arturo Donate and Xiuwen Liu
Florida State University

Department of Computer Science
Tallahassee, FL 32306

{donate,liux}@cs.fsu.edu

Abstract

The use of three dimensional information from video is
rare in the video analysis literature due to the inherent diffi-
culties of extracting accurate 3D measurements from a sin-
gle view of a scene. Several methods have been published
in recent years, however, that attempt to solve such a prob-
lem. They all use the same underlying meaning of exploiting
camera motion in order to measure the parallax of visible
objects in the scene.

In this paper, we employ the use of such algorithms to-
wards solving the problem of automatic shot boundary de-
tection. The idea is to extract salient features from a video
sequence and track them over time in order to estimate shot
boundaries within the video. We apply many ideas from
previously published SLAM techniques in order to model
the inherent three dimensional structure of a scene, and ac-
curately track various salient features across frames. We
detect shot boundaries in videos by observing the system’s
ability to successfully track features across frames.

1. Introduction

With the rapid increase of video databases nowadays, the
need for video analysis methods grows every day. One of
the most fundamental problems in video analysis is creating
hierarchical representations of videos. Such representations
start with the actual video at the highest level. The video
may be broken down into scenes, each containing some se-
mantic meaning. Scenes can be broken down further into
shots, which may or may not contain semantic meaning.
These shots can then be broken down even further into the
individual video frames that make up the video. In this pa-
per, we concentrate on the specific problem of automatically
detecting shot boundaries in videos.

Several works have attempted to solve this problem us-
ing various low-level image measurements. In [4], the au-
thors present a method for shot boundary detection which

relies on pixel intensities, color histograms in HSV space,
as well as edge histograms. These measurements are vector-
ized and used to train a support vector machine (SVM). The
SVM is used to classify the frames into several classes, cor-
responding to one of four transitions. These transitions may
include smooth changes between frames, or abrupt ones. A
detection algorithm is finally used on the resulting classifi-
cations to locate shot boundaries.

In [2], the authors measure the similarity between frames
in order to detect shot boundaries. The authors define a sim-
ilarity measurement between frames by first de-correlating
RGB color information by transforming the image into the
Ohta color space. Afterwards, the discrete cosine transform
of each channel is computed and aggregated into a feature
vector that represents the given frame. Frames are com-
pared using the cosine distance measure. The authors state
that shot boundaries will have high self similarities between
local frames, and low similarities between frames further
away.

In [5], the authors propose an approach for shot bound-
ary detection that models temporal statistics. The method
relies of eigenspace models of frames in order to find shot
boundaries. An eigenspace model is first trained using his-
tograms of the previousN frames. When a new frame is ob-
served, the histogram of the current frame is first computed,
then projected against the existing eigenspace to determine
their similarity. If their distance is greater than some thresh-
old, the frame is considered as being part of a new shot.

In this paper, we propose a method of detecting shot
boundaries that relies on a robust tracking of salient fea-
tures in the scene. By using existing simultaneous localiza-
tion and mapping (SLAM), we are able to track objects in a
scene by modeling the relative 3D positions of the features
as well as the camera. In doing so, we rely on the notion
that certain aspects of an image may change within a shot,
but if we are unable to find any features to track between
two frames, we must be observing a new shot boundary.

The rest of the paper is organized as follows. Section 2
defines the shot boundary problem, and identifies certain

64978-1-4244-7030-3/10/$26.00 ©2010 IEEE

inherent difficulties that must be solved in order to accu-
rately solve this problem. Section 3 provides a background
to selected SLAM algorithms, and describes our proposed
SLAM-based approach for detecting shot boundaries. Sev-
eral of our results are presented in Section 4 to show the
feasibility of our proposed approach. We conclude the pa-
per in Section 5 and provide a summary of our work as well
as future research directions.

2. Shot Boundaries
Most videos can be decomposed according to a hierar-

chical structure. This structure begins at the highest level
with the actual video. The video can then be decomposed
into different scenes in a way such that each scene contains
semantically related content. According to Xiong et al. [10],
scenes typically convey some high level concept and are di-
vided using semantic boundaries. Each scene can then be
broken down into video shots, and each shot can be decom-
posed into image frames.

Shot boundary detection is the problem of automatically
detecting the point in a video where one shot ends and the
next begins. Several types of shot boundaries exist. In
this work, we deal with abrupt transitions (the boundary be-
tween two shots is sudden and immediate) as well as fading
transitions (one shot fades into the other, sometimes transi-
tioning regions of the image plane before others).

As previously mentioned, this problem is traditionally
solved using various 2D image measurements. Such mea-
surements do not capture the inherent three dimensional
structure of the scene, and thus are somewhat limited (al-
though still very useful). Our approach is to detect bound-
aries by robustly tracking certain objects present in the
scene. In order to achieve better results, our tracking ap-
proach models the relative 3D structure of the scene by us-
ing SLAM techniques.

More specifically, we employ the use of the MonoSLAM
framework originally proposed by Davison et al. [3]. With
minor changes to the MonoSLAM method, we are able to
accurately detect shot boundaries of several types with very
few false positives.

3. Boundary Detection Using SLAM
In recent years, many methods have been published to

extract 3D information from a scene as observed from a
single camera. Such techniques include various approaches
using SLAM, structure from motion, and 3D stereo tech-
niques. Among these, MonoSLAM [3] has been recognized
as a very powerful tool to perform localization and mapping
from a single camera.

With some modifications to the original method, we
use the MonoSLAM method to perform robust tracking of
scene elements in a previously unseen video, in order to de-

tect shot boundaries. The remainder of this section will pro-
vide an overview of the originally proposed MonoSLAM
algorithm, as well as a discussion of our proposed modifi-
cations.

3.1. MonoSLAM

One of the most popular techniques proposed recently
for localization using a single camera is the MonoSLAM [3]
framework. The method presents an efficient approach ca-
pable of localizing a single monocular camera and simul-
taneously estimating the relative 3D structure of the en-
vironment seen by the camera, all with real time perfor-
mance. The authors model the world using a probabilistic
3D map which includes the current state of the camera, the
features being tracked, as well as the uncertainty of the es-
timates. After initial startup, the map is updated using the
Extended Kalman Filter (EKF) [8]. We give an overview
of the MonoSLAM framework in this section, but refer the
reader to [3, 1] for more specific details on this method.

The map itself is composed of a state vector x̂ and a co-
variance matrix P . The state vector x̂ provides an estimate
of the camera and visual features being tracked in the world.
This vector is composed of the camera vector x̂v and a fea-
ture vector ŷi for each feature inserted into the map. The
covariance matrix P is a square matrix that can be divided
into individual sub-matrix elements, allowing the probabil-
ity distribution to be approximated by a single multivariate
Gaussian distribution. This state vector and covariance ma-
trix can be written as

x̂ =


x̂v

ŷ1
ŷ2
...

 , P =


Pxx Pxy1 Pxy2 . . .
Py1x Py1y1 Py1y2 . . .
Py2x Py2y1 Py2y2 . . .

...
...

...
. . .

 . (1)

Note from Equation 1 that the covariance matrix P is a full
covariance matrix that models the relationship between fea-
tures in the probabilistic map. This allows MonoSLAM to
accurately localize the camera and compute the 3D loca-
tions of each feature relative to each other very accurately.

As mentioned above, the state vector is composed of the
camera and feature vectors, which keep track of the main
elements in the scene. The camera vector x̂v keeps track
of the extrinsic camera parameters , while each feature vec-
tor ŷi stores the 3D location and orientation of each feature
being tracked. These vectors can be written as:

x̂v =


rWC

qWC

vW

ωW

 , yi =


xi

yi

zi

θi

φi

ρi

 . (2)

65

Here, the rWC parameters stores the 3D location of the
camera, qWC stores the relative orientation of the camera,
while the vW and ωW store the camera’s velocity and angu-
lar velocity respectively. For each feature vector ŷi, the first
three terms (xi, yi, zi) define the 3D location of the cam-
era’s optical center at the time the feature was first observed,
(θi, φi) is the azimuth and elevation for the ray m(θi, φi)
from the camera to the observed feature, and ρi is the in-
verse depth (1

di
) of the feature along this ray. These param-

eters keep track of a 3D point located at: xi

yi

zi

 +
1
ρi

m (θi, φi) . (3)

This basic scene geometry is illustrated in Figure 1.
Image features are initially found in the image by search-

ing for salient image regions using the Shi and Tomasi op-
erator [9]. A window of 11× 11 pixels is used to extract an
image patch at the given location. The patch is assumed to
be planar and the surface normal is initially set to be equal
to the optical axis of the camera (to be updated later). This
image patch is projected as an image and saved as a tem-
plate for matching. When a new view of this feature occurs
during the main execution loop, the new visible image is
warped according to the camera position, then compared to
this template.

Figure 1. Basic geometry of the scene, for details see [6].

When a feature is first initialized, it is immediately in-
serted into the map with a large possible depth range of
[1,∞], coded as a Gaussian [6]. As the feature is re-
observed over time, the EKF re-estimates the depth of each
feature until it converges to a more accurate depth value.
For this to occur, there must be enough parallax observed
by the camera; otherwise, the system assumes the features
are at infinity.

In order to model the movement of the camera, the au-
thors propose a “constant velocity, constant angular velocity
model” [3] which assumes the camera motion accelerations
occur with a Gaussian profile. The camera vector is updated
at each iteration via the EKF according to this model.

3.2. Shot boundary detection via SLAM

As described in the previous section, MonoSLAM uses
as input a video stream from a single monocular camera.
This data is no different from the data available in a single
video of an observed scene, and thus the MonoSLAM al-
gorithm can technically be applied to videos as well. The
main idea of our approach is to use this framework to track
objects in the scene. If at any point the algorithm fails to
track all of the previously-observed objects in the scene, we
assume that a shot boundary has been detected.

The primary reason for choosing MonoSLAM for this
problem is its ability to successfully localize a monocular
camera in a three dimensional environment. Although we
are not interested in camera localization for this applica-
tion, the reason for choosing this method is its ability to
accurately track a static scene accurately and robustly. It is
important to note that MonoSLAM as originally proposed
by Davison et al. [3] cannot be directly applied to this prob-
lem successfully.

Our approach begins by finding 16 individual salient im-
age regions and initializing them into the probabilistic map.
In order to achieve real time SLAM performance, the au-
thors in [3] limit the number of tracked features to 8. Addi-
tionally, they limit the size of each feature to 11×11 pixels.
In our proposed approach, we relax the real time criteria in
order to improve tracking performance. In this work, we
increase the number of tracked regions to 16, as well as in-
creasing the individual region size to 17 × 17 pixels for a
video with 640× 480 resolution.

The search for features is limited to the inner rectangle
of the image plane. On a 640× 480 video, for example, we
only search for features within the inner 620 × 400 pixels.
The reason for this is to attempt and evade common loca-
tions for logos and text present in videos that sometimes
span across shot boundaries. If we take the entire image
plane into consideration, the feature detector will attempt to
locate and track the text located on the screen. Examples
of such a video can be seen in the screen capture illustrated
in Figure 2. Note that the upper left corner of the screen
contains a logo which is present across several shot bound-
aries. If our method was to successfully track features at
this location, it would fail to detect shot boundaries.

At each iteration, the system updates the camera parame-
ters as well as the feature vectors for all successfully tracked
features. If the system fails to successfully track a given
feature at any point in time, that feature is marked as one
to be possibly deleted. If the same feature is unsuccessfully

66

tracked for 15 consecutive frames, it is removed from the
map and deleted from the system. If at any point the algo-
rithm marks all of the visible features to be possibly deleted,
then we assume a shot boundary has occurred.

This process for feature deletion is vital to the perfor-
mance of our proposed method for several reasons. First
and foremost, it drives the detection of the shot bound-
aries. The underlying assumption is that if the scene has not
changed, we should be able to at least track a single object
across frames. If we are not able to track a single feature
across frames, it is likely that we are observing a new shot.

Secondly, this method takes into account indepen-
dently moving objects. One of the major drawbacks of
MonoSLAM is its inability to track objects moving inde-
pendently from the camera. Such objects are difficult to
track in the probabilistic map because MonoSLAM relies
on camera motion to exploit parallax and converge on a
depth estimate for a feature. But if the feature is moving,
the depth estimates related to camera motion become un-
reliable. If one of the features being tracked is not part of
the static scene, the algorithm will try to locate it for 15
frames and remove it afterwards, so that the feature in ques-
tion does not corrupt the camera location estimate, or the
tracking of the other features.

Figure 2. Tracking features in a video. Red features are success-
fully being tracked, blue features are marked for possible deletion,
and yellow features are being initialized.

Finally, this approach also accounts for features being
occluded for a short amount of time. Ideally we would like
to track static features in the scene. Due to the dynamics
of most videos, even static features may be occluded (by
either a change in camera angle, or other dynamic objects
located between the feature an the camera). If the object is
successfully observed and tracked after being occluded, it
is no longer considered as one to be possibly deleted until
the system fails to track it once again. Note that in order for
the system to handle such occlusions, the features must not
be occluded for longer than the threshold value for deleting
frames (15 frames).

Whenever a feature is completely removed from the
probabilistic map, a new feature is immediately initialized.
Its location depends on the results of the Shi and Tomasi
feature detector [9]. Whenever a successfully tracked fea-
ture goes out of the bounds of the frame, it is also imme-
diately deleted and a new one is initialized in order to keep
the current number of observed features at 16. This places
all emphasis on tracking the currently observed scene. Fig-
ure 2 illustrates this process. Here, the red squares denote
features being successfully tracked across frames. The yel-
low squares are features that were just inserted into the map
at that iteration. The blue squares are features that the sys-
tem has failed to track successfully, but have not yet been
deleted.

This threshold value of 15 frames was determined em-
pirically using our test data. We ran several experiments
on various videos, and determined that the threshold value
of 15 provided the best shot boundary results for videos
recorded at 30 frames per second. Videos of different
speeds may require a different threshold value. The other
values regarding the number of features and patch size were
also determined empirically. We chose the combination that
yielded the best results with the current dataset being tested.

As previously mentioned, the frames-per-second perfor-
mance of our proposed approach is slower than the orig-
inal MonoSLAM method proposed due to the increase in
data being considered. Namely, increasing patch size from
11× 11 to 17× 17 pixels, as well as increasing the number
of tracked features from 8 to 16. On an Intel Code 2 Duo
2.8 MHz CPU, our method runs at approximately 3 frames
per second, only using a single core of the processor.

4. Results
This section presents several of our current results on

various video clips obtained from the TRECVID 2005 [7]
database. This database contains several challenging videos
typically used to test the performance of shot boundary de-
tection algorithms. We illustrate our results on several dif-
ferent videos to illustrate the performance of our proposed
approach.

The first example illustrates a scene with a relatively
small amount of independent motions. In this scene, we see
two people sitting on a boat and talking. Most of the objects
in this scene are stationary and do not move independently.
The only moving objects are the background (the boat has
a small amount of movement from left to right), and the
people’s heads as they look side to side. The transition be-
tween one shot to the other is not an abrupt one. Instead, the
screen slowly fades from right to left to denote the change
in shots. Figure 3 illustrates four sample video frames from
this example.

Notice that in the first frame (top left image of Figure 3),
the system is successfully tracking several features in the

67

Figure 3. Four frames making up a diagonal wipe transition from
the lower right of the frame to the upper left. Video was obtained
from the TRECVID 2005 database [7].

image. As the transition between frames begins (top right
image), the features are no longer successfully tracked and
thus are marked for deletion. By the time the transition is
almost complete (bottom left image), only a few features
remain as successfully being tracked. By the time the tran-
sition is complete and the next shot has begun, all of the
features have been marked for deletion and thus the system
assumes a shot boundary has been found.

The next example (illustrated in Figure 4) shows two
people again, but this time one of them is moving around the
screen while waving his arms and torso around, making this
scene considerably more difficult to track. As before, the
transition between frames is a smooth diagonal fade from
the bottom right of the screen to the top left.

The first two rows of Figure 4 illustrate the tracking re-
sults at four different points in time. The bottom left frame
shows the scene after the diagonal fade transition has begun.
The bottom right frame illustrates the beginning of the new
shot. As in the previous example, our method is successful
in accurately detecting the boundary between the two shots.

5. Conclusion
Most videos can be decomposed into a hierarchical

structure based on their content. At the highest level is
the actual video, which can be broken down into scenes
that convey some relatively high level concept [10]. These
scenes are divided using semantic boundaries. It is possible
to further break down each scene into video shots. Shots
may be viewed as small independent video clips which may
or may not contain a semantic meaning. Each shot is com-
posed of individual image frames.

Many video analysis tasks require the automatic detec-
tion of shot boundaries within a video. In this paper, we
present a novel approach towards performing accurate shot

Figure 4. Six frames illustrating the tracking performance on dy-
namic scenes. Video was obtained from the TRECVID 2005
database [7].

boundary detection. We model the problem as one of track-
ing individual scene objects. While at least one part of the
video can be matched to previous frames, we assume that
the corresponding frames belong to the same shot. If at any
point the system is unable to track any features between two
consecutive frames, we assume that a shot boundary is be-
ing observed.

While the literature is saturated with various methods to
perform object and feature tracking, we show that SLAM
algorithms provide a powerful solution to object tracking.
More specifically, we employ the use of the MonoSLAM
algorithm. By modeling the scene with a probabilistic 3D
map, we are able to track objects in the scene while estimat-
ing their relative 3D position. By using the inherent three
dimensional structure of the observed scene, we can track
different objects in the scene accurately.

Although our experiments show the feasibility of our
proposed approach, there is some future work to be done
in order to overcome some of the limitations of the sys-
tem. The main limitation currently is the system’s inability
to track independently moving objects. If the system only
chooses to track features on moving objects, these features
will eventually fail tracking and be deleted from the system.
If all the features fail at times relatively close to each other,
the system may falsely detect a shot boundary. The second
limitation is the relatively inefficient performance of such
a system. By increasing the size of each feature and the
number of features tracked by the algorithm (from those of

68

the original MonoSLAM method), our proposed approach
is slowed down considerably. More research is needed in
order to speed the computations up.

Acknowledgements

This work is partially funded by NSF grants CCF-
0514743 and DMS-0713012, and the National Institutes
of Health through the NIH Roadmap for Medical Re-
search, Grant U54 RR021813. Information on the National
Centers for Biomedical Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics.

References
[1] J. Civera, A. J. Davison, and J. Montiel. Inverse depth to

depth conversion for monocular slam. In IEEE International
Conference on Robotics and Automation, April 2007.

[2] M. Cooper, J. Foote, J. Adcock, and S. Casi. Shot bound-
ary detection via similarity analysis. In Proceedings of the
TRECVID 2003 Workshop, pages 79–84, 2003.

[3] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
26(6):1052–1067, 2007.

[4] X. Ling, L. Chao, L. Huan, and X. Zhang. A general method
for shot boundary detection. In nternational Conference
on Multimedia and Ubiquitous Engineering, pages 394–397,
2008.

[5] X. Liu and T. Chen. Shot boundary detection using tem-
poral statistics modeling. In IEEE International Conference
on Acoustics, Speech, and Signal Processing, pages 13–17,
2002.

[6] J. M. M. Montiel, J. Civera, and A. Davison. Unified inverse
depth parametrization for monocular slam. In Proceedings
of Robotics: Science and Systems, August 2006.

[7] P. Over, T. Ianeva, W. Kraaij, and A. F. Smeaton. Trecvid
2005 - an overview. In TREC Video Retrieval Evaluation
Online Proceedings, 2006.

[8] M. I. Ribeiro. Kalman and extended kalman filters: Concept,
derivation and properties, February 2004.

[9] J. Shi and C. Tomasi. Good features to track. In Interna-
tional Conference on Computer Vision and Pattern Recogni-
tion, pages 593–600. Springer, 1994.

[10] Z. Xiong, R. Radharkishnan, A. Divakaran, Y. Rui, and T. S.
Huang. A Unified Framework for Video Summarization,
Browsing and Retrieval. Elsevier, 2006.

69

