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Optimal Dimension Reduction for Image Retrieval with Correlation
Metrics

Yuhua Zhu, Washington Mio and Xiuwen Liu

Abstract— We investigate content-based image retrieval em-
ploying a representation of images based on the statistics of their
spectral components and a new linear dimension reduction tech-
nique. This linear dimension reduction technique is designed
to optimize class separation with respect to metrics derived
from cross-correlation of spectral histograms. Our approach
to retrieval involves a preliminary classification step to index
images in a database followed by a class-by-class retrieval step.
We carry out several experiments with the Corel database and
compare the outcome with several results previously reported
in the literature.

I. INTRODUCTION

The theme of this paper is content-based image retrieval
based on: (i) image representations obtained from the statis-
tics of spectral components; (ii) a metric derived from cross-
correlation of spectral features; (iii) a dimension reduction
technique to optimize class separation with respect to the
cross-correlation metric. We demonstrate that the proposed
representation and metric have enough discriminative power
to allow us to completely bypass any form of explicit image
segmentation and yet obtain higher retrieval performance
than many previously proposed systems. We take a two-step
approach to image retrieval. First, we employ a new learning
technique to classify and index all images in a database.
Subsequently, given a query image, we use the classification
tool to rank the classes according to their compatibility with
the query image, and then retrieve images from one class
at a time according to this ranking. One of the challenges
in developing general image retrieval methods is that the
breadth of the semantic categories can vary a great deal. Clas-
sification problems may range from discerning landscapes
and indoor scenes to categorizing specific objects such as
cars or books. Thus, an important component in the proposed
approach is an effective technique to simultaneously learn
representations that optimize class separation with respect
to the cross-correlation metrics and reduce the dimension of
the spectral-feature space for robustness and computational
efficiency.

Zhu et al. studied the statistics of spectral components
for texture analysis and synthesis [12]. In particular, they
demonstrated that marginal distributions of spectral com-
ponents characterize homogeneous textures; other studies
include [6] and [10]. In [4], an Euclidean representation
of histograms of spectral components was used for image
classification and retrieval in combination with a dimension
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reduction technique called Optimal Factor Analysis (OFA).
The technical details and application of OFA are revised in
[5]. In this paper, we develop a variant of OFA for metrics
based on cross-correlation and use it for both classification
and retrieval. Our viewpoint is that one can enhance the
retrieval performance by adopting a metric based on correla-
tion of histograms of spectral components and optimizing the
dimension reduction strategies. To corroborate this view, we
carry out several experiments on the same data sets used in
[9], [5], as this allow us to compare the results objectively.
Image retrieval strategies employing a variety of methods
have been investigated in [9], [1], [7], [8], [11], [2]; further
references can be found in these papers. Some of these
proposals also employ a relevance feedback mechanism in an
attempt to progressively improve the retrieval performance.

The paper is structured, as follows. In Section II, we
describe the features and metrics used in classification and
retrieval. Section III describes the dimension reduction tech-
niques and Section IV is devoted to a discussion of the
numerical aspects of dimension reduction which is based on
stochastic optimization. In Sections V and VI we employ
the methods developed to image categorization and retrieval,
discuss the results of several experiments and compare them
with results previously reported in the literature.

II. IMAGE REPRESENTATION AND METRICS

Let I be a monochrome image and F' a convolution filter.
The spectral component of I associated with F' is the image
I obtained by applying F' to the image I. If I is a color
image, we apply the filter to its R,G,B channels to obtain 3
filtered images. For a given set of bins, which is assumed
fixed, we let h(I, F') denote the corresponding histogram of
Ir. Werefer to h(I, F) as the spectral histogram (SH) feature
of I associated with F. If the number of bins is b, then
h(I, F) can be viewed as a vector in R?. Figure 1 illustrates
the process of obtaining SH-features from an image. Frames
(a) and (b) show a color image and its green channel response
to a Gabor filter, respectively. The last panel shows an 11-bin
histogram of the filtered image.

If¥ ={F,...,F.} is a bank of filters, we often combine
the SH-features h(I, F;), 1 < i < r, into a single m-vector

h(It‘{;):(h(LFl)""’h(I’Fr))a (1

where m = rb. For a color image, m = 3rb. In [5],
this representation of images was used in conjunction with
linear dimension reduction techniques for content-based im-
age classification and retrieval based on the usual Euclidean
metric. One of our goals is to demonstrate that, in addition to
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Fig. 1. (a) A color image; (b) Its green channel response to a Gabor filter;
(c) 11-bin histogram of the filtered image.

the representation used, the choice of metric is very important
in the classification of image content. In this section, we
offer preliminary evidence of this fact, by showing that a
significant improvement already can be achieved by simply
replacing the Euclidean metric with a (pseudo) metric derived
from correlation of SH-features.

A. Cross-Correlation Metrics

Given x = (z1,...,2p) and y = (y1,. .., Ys), denote their
mean values by £ = > z;/n and § = > y;/n and let T =
x —Z and § = y — ¢ be the corresponding centered vectors.
If Z and § are nonzero, the correlation coefficient (Z/||Z|) -
(5/]|7||) can be viewed geometrically as the cosine of the
angle between T and g, which can be turned into a (pseudo)
metric d by defining

z y
d(z,y) = arccos (T : T) . @

( ENF
Given a bank of filters F and images I; and I, the quantity
O5(In, Ip) = d(h(I1,3), h(I2, F)) ®3)

defines a pseudo-metric on image space based on cross-
correlation of the full SH-feature associated with F.

III. OPTIMAL DIMENSION REDUCTION

In [5], a dimension reduction technique called Optimal
Factor Analysis (OFA) was developed by Mio et al., which
seeks to find a linear mapping that reduces the dimension
of feature space and optimizes the discriminative ability
of the K-nearest neighbor (KNN) classifier with respect
to the Euclidean metric, as measured by the performance
on training data. We propose a variant of this dimension
reduction technique modified for the cross-relation metrics
of Section II-A. Since we no longer will have a family of
histograms once we map the feature vector (1) to a lower
dimensional space, instead of d5, we use the more general
metric d defined in (2).

Suppose that the training data consists of a collection
of labeled m-dimensional feature vectors representing K

different classes of objects. For each class ¢, 1 < ¢ < K,
we let zf,...,xz{ be the training vectors in class c. If
A: R™ — RF is a linear mapping, the quantity

C

insp,; d2(Axg, Az®
pla A) = ety ST 20

- 4
min;z; d?(Az§, Az) + € @

measures how well the nearest-neighbor (NN) classifier
applied to the transformed data, with respect to the cross-
correlation metric (2), identifies the element x§ as a member
of its class (¢ > 0 is a small number, generally irrelevant
in applications, used to disallow vanishing denominators). A
large value of p(z¢; A) indicates that, after the transformation
A is applied, z{ lies much closer to a training sample in
its own class than to samples in other classes. A value of
p(x§; A) near 1 indicates a transitional behavior between cor-
rect and incorrect decisions by the NN classifier. Expression
(4) can be easily modified to quantify the performance of the
KNN classifier. Note that if A maps any of the feature vectors
in the training set to zero, then p(z$;A) is not defined.
However, in practice, we can easily circumvent the problem
by perturbing A slightly.

The goal is to choose a transformation A that maximizes
the average value of p(z§; A) over the training set. In other
words, to maximize the performance function

1 K 1 te .
F(A)= 2> (? > ol A)) : ®)
c=1 ¢i=1

Scaling a matrix A does not affect decisions made by the NN
classifier in the reduced feature space and this is reflected
in the (near) scale invariance of F, as F(A) ~ F(aA),
for ¢ > 0. Equality does not hold because of €, but in
applications € is negligible. Thus, if we identify a linear
map A: R™ — R* with a k x m matrix, we can treat F
as a function defined on R¥*™ and scale-invariance implies
that it suffices to maximize F' over matrices of unit norm.
Letting

S={AecRF™: ||4? =tr (44T) =1} (6)

be the unit sphere in R¥X™, the goal is to find
A = argmax F(A). )
A€eS

IV. NUMERICAL OPTIMIZATION

We take a stochastic gradient approach with simulated
annealing to the numerical estimation of A. The optimization
strategy is similar to that used in the OCA search of [3], but
the implementation is simpler because the domain is a sphere
instead of a Grassmann manifold.

To estimate the deterministic spherical gradient VsF(A),
we first calculate Vgexm F'(A), the gradient of F as a
function on R¥*™. Since F is nearly scale invariant,
Viexm F'(A) = VsF(A), as the component normal to the
sphere is almost negligible. In practice, we do subtract the
normal component to minimize errors. The calculation of the
gradient is based on estimations of the partial derivatives. For
1<i<k, 1<j<m,let Ey be the £ x m matrix whose
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(i,7) entry is 1 and all others vanish. The partial derivative
of F in the direction E;; is estimated as
F(A+0E;;) — F(A)

6 )
with § > 0 small. Since only one entry of A is changed by
adding 0E;;, the estimation of VgF through Vgixm F' is a
manageable calculation.

Our next goal is to add a stochastic component to the deter-
ministic gradient field VsF on S. This can be accomplished
by adding a component obtained from a stochastic process
on the sphere. To simplify the model, we employ a stochastic
component on R*¥X™ projected onto the tangent space of the
sphere. Let IT 4 : R™** — T4 S be the orthogonal projection
onto the tangent space of the sphere at A. We proceed, as
follows:

0i;F(A) ~

1) Choose A € S, a cooling factor v < 1, an initial
temperature 1y > 0, a step size § > 0, and a positive
integer N to control the number of iterations.

2) Set t = 0 and initialize the search with A, = A € S.

3) Calculate VsF'(A;) as described above.

4) Generate samples w;;(t) € R, 1 <i<m, 1<j <k,
from the standard normal distribution and construct the
tangent vector

fo = 6 VsF(A) + /26T, HAt > wii () Ejs
(2]

where [] 4, 1s orthogonal projection onto the tangent
space of the sphere at A; and >, . wi;(t)Ej; is the
stochastic component.

5) Generate a candidate B € S by moving a small step
on the great circle of unit sphere according to

B = Aycos(|fl) + 2 sin(| £l

1£ell
where || f¢|| is approximate the length of arc.
6) Calculate F(B), F(A;), and the increment AF =
F(B) — F(A).
7) Accept B with probability min{e2¥/7¢ 1}. If B is
accepted, set A;11 = B. Else, A;11 = As.
8) Ift < N,set Ty,1 =~T; andt =t+ 1, and go to
Step 3. Else, let A = A, and stop.
Remark. In our experiments, we usually initialize A with
an orthogonal projection onto a subspace obtained from PCA
or linear discriminant analysis.

V. IMAGE CLASSIFICATION

Targeting applications to image retrieval, we first report the
results of several image categorization experiments with the
same subset of the Corel database used in [9], [5]. The data
consists of 10 semantic categories with 100 images each; we
refer to this data set as Corel-1000. The specific categories
are: (1) African people and villages; (2) beach scenes; (3)
buildings; (4) buses; (5) dinosaurs; (6) elephants; (7) flowers;
(8) horses; (9) mountains and glaciers; (10) food. Sample
images from some categories are shown in Figure 2 to

illustrate the within-class variations observed in the data. In
each experiment, we placed an equal number of images from
each class in the training set and used the remaining ones as
query images to be indexed by the nearest neighbor classifier
(based on the cross-correlation metric (2)) applied to a
reduced feature learned with dimension reduction algorithm
of Section III. For a fair comparison with [5], an image is
represented by an SH-feature vector h(I,F) of dimension
165 obtained from the 11-bin histograms associated with
5 filters (including intensity, Gabor, Laplacian, Gradxx and
Gradyy) applied to the R, G, and B channels and the dimen-
sion was reduced from m = 165 to k = 12. Figure 3 shows a
plot of the categorization performance against the number 7’
of training images. Categorization performance refers to the
fraction of images indexed correctly using all 1,000 — T’
images outside the training set as queries. Compared to
the categorization performance listed in table I [5] , the
categorization performance is considerably improved.

TABLE I
RESULTS OF CATEGORIZATION EXPERIMENTS WITH OFA VIA
EUCLIDEAN METRICS. T IS THE NUMBER OF TRAINING IMAGES.

T Categorization Performance
200 71.7%
400 84.5%
600 85.5%
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Fig. 3. Classification performance X size of training set.

VI. IMAGE RETRIEVAL

We now use the low-dimensionl representation learned for
optimal image categorization to retrieve images from the
database. We first remark that the classifier was optimized
to categorize images, but not necessarily to rank matches
to a query image correctly. Thus, instead of simply ranking
retrievals using distance in reduced feature space, we exploit
the strengths of the image categorization strategy in a more
essential way.

We first index all images in the database using an optimal
low-dimensional representation learned with the dimension
reduction algorithm and the NN classifier based on the cross-
correlation metric. Given a query image I and a positive
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Fig. 2. Samples from 4 of ten classes of the Corel-1000 data set.

integer ¢, the goal is to retrieve a ranked list of £ images
from the database. Let T., 1 < ¢ < K, denote the set of
training images in class c. Calculate the distances d(I;T,)
from I to T, in reduced feature space and rank the classes
according to these distances. We retrieve images as follows:
(i) select as many images as possible from the top ranked
class; (ii) once that class is exhausted, we proceed similarly
with the class ranked second and iterate the procedure until ¢
images are obtained. Within each class, the images are ranked
using the distance d, defined in (2), applied to the reduced
SH-features of the images. With this retrieval strategy, even
if the within-class variation is large, we are likely to first
retrieve more images from the correct class provided that
the image classification step is accurate.

We use the same performance metrics adopted in [9] to
compare the retrieval results objectively. The precision for
the top £ returns is defined as ng/¢, where n, is the number
of correct matches. The weighted precision for a query image
Iis

1 loo -
o =157 ®)
£=1
For each image I, rank order all 1,000 images in the database,
as described above. The average rank r(I) is the mean value
of the ranks of all images that belong to the same class as
1. The average values

1 1
pi= 155 2 ) and =15 > r(D) )
IeC; IeC;

of the weighted precision and average rank within each class
C;, 1 <1 < 10 will be used to quantify retrieval accuracy. A
high performance retrieval system yields high mean precision
and low mean rank.

A. Experimental Results

We report the results of retrieval experiments with the
Corel-1000 dataset and a spectral representation based on
11-bin histograms associated with 5 filters applied to the
R,G,B channels, as described in Section V. Since each
class contains 100 images, the maximum possible number
of matches to a query image is 100. We compare our results
with those obtained with the retrieval system SIMPLIcity
[9], color histograms with the earth mover’s distance (EMD)
investigated in [7], and OFA-400 [5] with OFA via Euclidean
metrics. The results for SIMPLIcity and color histograms

have been reported in [9]. We use the notation CC-400 to
indicate our method based on cross-correlation metrics with
400 training images. For an objective comparison, we only
use query images that are part of the database and we place
40 images from each class in the training set and reduce
the dimension from 165 to 12. We calculated the average
values p; and 7; of the weighted precision and average rank,
as defined in (9). The plots shown in Figure 4 show a
moderate improvement in retrieval performance. The cross
correlation metrics and Euclidean metrics are related. The
cross correlation metric between two feature vectors is the
radian 6 while the Euclidean metric between the two feature
vectors is 2 sin(g). When 6 is small, cross correlation metrics
and Euclidean metrics are very close. The performance
function defined in equation 5 via cross correlation metrics
can be very different from that via Euclidean metrics when
transformed feature vectors are far away seperated. To show
the consistency of the results reported in Figure 4 for retrieval
based on dimension reduction with cross-correlation metrics,
we carried out 10 experiments with 400 randomly selected
training images and the mean values of the average weighted
precision and average rank within each class are shown in
Figures 5 and 6. The performance is stable and consistent
compared with the results shown in Figure 4. To illustrate
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Fig. 5. Average precision over the entire data set X size of training set.
the dependence of the retrieval performance on the size of
training set, Figures 7 and 8 show the mean values of the
weighted precision and average rank over the entire data set
as a function of the number of training images.
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Fig. 6. Average rank over the entire data set X size of training set.

We further quantify retrieval performance with a precision-
recall curve. For an image I and a positive integer ¢, let my
be the number of matching images among the top £ returns.
Define

mye(I) me(I)
which are the precision and recall rates for £ returns for
image I. The average precision and average recall for the
top £ returns are defined as
> pe(d)
Pe= 000 ™ Te= 00 0 WD
respectively. Here, the sum is taken over all 1,000 images
in the database. For a perfect retrieval system, py = 1, for
1 < £ <100, and gradually decays to p1ggo = 0.1. Similarly
rg = 1, for £ > 100, decaying to r; = 0.01.

The average-precision-recall plots for a 12-dimensional
representation obtained with dimension reduction are shown
in Figure 9 for 100, 200, 300, 400 and 500 training images. It
is obvious that the curve is approaching to the ideal situation
as the number of training images increases.

and re(I) = (10)
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Fig. 7. Mean value of the average precision over the entire data set X size
of training set. Retrieval based on dimension reduction with cross-correlation
metrics.

VII. CONCLUSION

We represented images using histograms of their spectral
components for content-based image categorization and re-
trieval. A learning technique was developed to reduce the
dimension of the representation and optimize the discrimina-
tive ability of the nearest-neighbor classifier based on metrics
derived from cross-correlation of histograms. Several exper-
iments were carried out and the results indicate a significant
improvement in retrieval performance over a number of ex-
isting retrieval systems and moderate improvement over OFA
via Euclidean metrics. In the future we will do experiments
on other image datasets of bigger variance to further explore
the potential of cross correlation OFA. Learning based on
local spectral features will also be investigated to mitigate the
negative effects of the background on retrieval performance.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the National Sci-
ence Foundation grant CCF-0514743 and by the National
Institutes of Health through the NIH Roadmap for Medical

3569



200 T T T

N [N - [N
N e D o]
o o o o

T T T T

’
4
1
1

Average retrieval rank
=)
o

'

7

@
o
T

200 300 400 500

Number of training images

100

Fig. 8. Mean value of the average rank over the entire data set X size of
training set. Retrieval based on dimension reduction with cross-correlation
metrics.
1
0.8 : 1
& 0.6 e : -
g o
(0] e
o Yo
041 Lo q
| Bt
vl
P
0.2t 0~ 1
1oas
e
KR
0 I 1 L 1 Bt
0.2 0.4 0.6 0.8 1
Precision

Fig. 9. Corel-1000: plots of average-precision X average-recall for 100(-.),
200(-), 300(..), 400(black solid line) and 500(red solid line) training images.

Research, Grant U54 RR021813. Information on the National
Centers for Biomedical Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics.

[1]

[2]

[3]

4

=

[5

=

[6

=

(7]

(8]

REFERENCES

C. Carson, M. Thomas, S. Belongie, J. Hellerstein, and J. Malik.
“Blobworld: a system for region-based image indexing and retrieval”,
In Proc. Visual Information Systems, pp. 509-516, 1999.

S. Hoi, W. Liu, M. Lyu, and W. Ma. “Learning distance metrics
with contextual constraints for image retrieval”, In Proceedings of
Computer Vision and Pattern Recognition, pp. 2072-2078, 2006.

X. Liu, A. Srivastava, and K. Gallivan. “Optimal linear representations
of images for object recognition”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, pp. 662-666, 2004.

W. Mio, Y. Zhu, and X. Liu. “A learning approach to content-based
image categorization and retrieval”, In 2nd International Conference
on Computer Vision Theory and Applications, vol. 2, pp. 36-43, 2007.
Y. Zhu, W. Mio and X. Liu. “Optimal Factor Analysis and Applications
to Content-Based Image Retrieval”, Communications in Computer and
Information Science, vol. 21, pp. 164-176, 2008.

J. Portilla and E. Simoncelli. “A parametric texture model based on
joint statistics of complex wavelet coeficients”, International Journal
of Computer Vision, vol. 40, pp. 49-70, 2000.

Y. Rubner, L. Guibas, and C. Tomasi. “The earth mover’s distance,

multi-dimensional scaling, and color-based image databases”, Pro-

ceedings of ARPA Image Understanding Workshop, pp. 661-668, 1997.

J. Smith and C. Li. “Image classification and querying using composite

region templates”, Computer Vision and Image Understanding, vol.

75, no. 9, pp. 165-174, 1999.

[9] J. Wang, J. Li, and G. Wiederhold. “SIMPLIcity: Semantics-sensitive

[10]

[11]

[12]

integrated matching for picture libraries”, IEEE transcations on
pattern analysis and machine intelligence, vol. 23, no. 9, pp. 947-963,
2001.

Y. Wu, S. Zhu, and X. Liu. “Equivalence of Julesz ensembles and
FRAME models”, International Journal of Computer Vision, vol. 38,
pp. 247-265, 2000.

P. Yin, B. Bhanu, K. Chang, and A. Dong. “Integrating relevance
feedback techniques for image retrieval using reinforcement learning”,
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 27,
no. 10, pp. 1536-1551, 2005.

S. Zhu, Y. Wu, and D. Mumford. “Filters, random fields and maximum
entropy (FRAME)”, International Journal of Computer Vision, vol.
27, pp. 1-20, 1998.

3570



