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ABSTRACT

Recent genome wide experiments indicate that DNA se-
quences themselves strongly influence nucleosome position-
ing as an intrinsic cell regulatory mechanism. While some
sequence features are known to be nucleosome forming or nu-
cleosome inhibiting, there is no systematic study on identi-
fying optimal sequence features for quantitatively modeling
of DNA binding affinity. In this paper, we propose a compu-
tationally efficient method of identifying a (small) number
of sequence features for intrinsic nucleosome positioning. By
using a modified version of AdaBoost, the proposed method
is able to identify features to be used with a strong classifier
to categorize nucleosome forming and nucleosome inhibit-
ing local DNA sequences. Experimental results on extensive
datasets show that the resulting classifiers give typically bet-
ter prediction performance than the existing discrimination
models on all the tested datasets with a much smaller num-
ber of features.

Categories and Subject Descriptors

J.3 [Biology and Genetics|: Computational Biology; I.5.1
[Models]: Statistical Modeling; 1.5.2 [Design Methodol-
ogy]: Classifier—AdaBoost

General Terms

Nucleosome positioning

1. INTRODUCTION

DNA of eukaryotic cells is organized into repeating nu-
cleosomes that are connected by linker DNA of variable
length [6, 7]. As DNA located on a nucleosome tightly
warps around the associated histone octamer, the accessibil-
ity of the coded sequence is significantly limited compared
to the state when the DNA is open [6, 7, 11]. Therefore,
the positions of nucleosomes play a fundamental role in reg-
ulation of genes and other functional activities in a cell [7].
While nucleosome positions are determined by a number of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi or commercial advantage and that copies
bear this notice and the full citation on the fir t page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi
permission and/or a fee.

ACM-BCB 2010, Niagara Falls, NY, USA.

Copyright 2010 ACM ISBN 978-1-4503-0438-2 ...$10.00.

386

Jonathan H. Dennis
Department of Biological Science
Florida State University
Tallahassee, FL 32306, U.S.A.

dennis@bio.fsu.edu

factors (including ATP dependent chromatin remodellers,
site-specific DNA-binding proteins (see, e.g. [11])), recent
genome wide studies [7, 4] have demonstrated that DNA se-
quences themselves also play an important role by enhancing
or reducing their binding affinity to nucleosomes, thus en-
coding their intrinsic preferences of nucleosome positions;
similar nucleosome position preferences have been observed
in vitro [10] as well as in vivo [11].

These experiments have led to several computational mod-
els [5, 10, 9, 4, 13] that try to model the relationship between
the nucleosome positions and the DNA sequences quanti-
tatively based on the sequences and measured nucleosome
positions. These models, based on either aligned DNA se-
quences, or just nucleosome forming and inhibiting local re-
gions, differ in prediction accuracy (e.g. [13]), where sup-
port vector machine based on models appear to be most
accurate. However none of them addresses explicitly lo-
cal DNA sequence features for nucleosome forming and in-
hibiting. While there are known nucleosome forming and
inhibiting sequences due to their physical properties (e.g.,
bendability), there is no systematic method to identify the
sequence features using the available genome wide datasets
of nucleosome forming and nucleosome inhibiting sequences.

In this paper, we propose a computational model that can
be used to integrate different promoting and suppressing fac-
tors of nucleosome positioning in particular regions of DNA
sequences. Computational experiments on several nucleo-
some positioning datasets show that the proposed model
gives better prediction performance on all of them than a
support vector machine based model [4]. In addition, our
model suggests that a small number of chosen features often
provide a better performance than using all the features.

The rest of the paper is organized as follows. In Section
2 we briefly introduce the nucleosome positioning model.
Section 3 presents the AdaBoost algorithm for feature selec-
tion and classifier construction and a method for identifying
common features. Section 4 shows the experimental results
on several datasets and compares the results with other ex-
isting methods. Section 5 concludes the paper with a brief
summary.

2. ANINTRINSIC MODEL

As nucleosome positions in eukaryotic cells are determined
by a number of factors, Segal and Widom [11] propose an
equilibrium model for nucleosome positioning that integrates
different factors in a unified framework. Motivated by the
study, we propose the following computational model for the
intrinsic affinity of nucleosome positioning of a local DNA



sequence,

I
Aint(®) =Y i B(fi(E), bi, 54), (1)
i=1
where 7 is a local DNA sequence under consideration, f;(%)
is a feature derived from sequence Z, «; is the weight co-
efficient for feature f;; when «; > 0, the presence of a;
enhances the affinity of nucleosome positioning while when
a; < 0, the presence of a; suppresses the affinity of nucleo-
some positioning, and I is the total number of features used.
Here h(z,b,s) is the hyperbolic tangent function, given by

h(z,b,s) = ;;2725:3, where b specifies a center for the
feature, and s controls the steepness of the function. In
particular, if s — oo, it becomes a step function. Note
that the actual positioning of nucleosome in vivo depends
on Aini(Z) as well as other extrinsic factors. In this model,
both promoters and suppressors are specified explicitly. In
contrast, a commonly used support vector machine model
uses f(Z) Zle a; g(@3, ©), where g(z;, %) is a kernel func-
tion that measures the similarity/distance between ¥ and
given training example &; here «; is positive if & is a pos-
itive training example and «; is negative if &; is a negative
training example; the a;’s are given when a support vector
machine is trained. Note that training samples that are non
support vectors will have 0 as their «; and thus are excluded
from the model. It is clear that in a support vector machine
model, the prediction is based on a linear combination of
positive and negative examples and the sequence features
are not identified explicitly.

3. OPTIMAL FEATURE IDENTIFICATION

The key question is how to identify optimal features and
the associated parameters given a genome wide dataset. Note
that the model in Equation (1) is continuous and in gen-
eral can be used to fit continuously nucleosome positioning
measurements. Here, following most other computational
studies on nucleosome positioning, we convert the general
nucleosome positioning problem into a binary classification
one. That is, based on the measurements, a set of DNA po-
sitions with strongest affinity is identified as positive exam-
ples and another set of DNA positions with weakest affinity
is identified as negative examples. The problem is to predict
whether a particular DNA sequence is positive (nucleosome
forming) or negative (nucleosome inhibiting).

In this classification problem, as the parameter s of the
hyperbolic tangent function is not essential, and it becomes
a step function as we set s to co. Under this setting, the
nucleosome positioning problem can be formulated as fol-
lows: given a set of positive examples and a set of negative
examples of local DNA sequences (such 50 base pairs), iden-
tify the most effective factors and estimate their coefficients
among the given features in predicting DNA sequence labels.

The given problem can be solved by a forward stagewise
additive model; if we choose an exponential loss function
for optimization, this leads to the AdaBoost algorithm [3];
a similar problem has been studied for face detection [12].
Following the algorithm used in face detection, the key prob-
lem is how to find the optimal feature for i-th component,
which, as shown in [12], can be solved efficiently through one
pass of the training examples.

To proceed, let f1(Z), ..., fx(Z) be all the sequence fea-
tures to be considered. As in [9, 4], we use all k-mer features
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with 1 < k < 6 and K = 2772. Given a set of local DNA
sequences with labels, (s1,41),..., (Sn,Yn), where y; = +1
if s; is a nucleosome forming sequence and y;, = —1 if s;
is a nucleosome inhibiting sequence. The key advantage of
AdaBoost feature selection is its computational efficiency of
learning features [12]. This is achieved by using a greedy
procedure to select features one by one. The influence of
features that have chosen so far is encoded implicitly in the
weights given to each training sample. When a training
sample is misclassified, its weight becomes higher; on the
other hand, when a training sample is classified correctly
by the current classifier, its weight becomes smaller. Thus
more difficult training samples will have more influence on
the features to be chosen. The final prediction is given by
Equation (1), where the features are given by the optimal
features selected sequentially and the a;’s are also computed
accordingly.

3.1 Common Sequence Features

Factors due to intrinsic nucleosome positioning of different
cells of the same organism should be identical as their DNA
sequences are the same. However, the computational models
derived from different datasets are different typically. To
overcome this inherent problem, we propose an additional
common sequence feature identification procedure from the
available cell types of a given organism, e.g. humans in our
case.

To identify the common sequence features, we rank all
the features based on their average relative ranking. For
each cell type with a particular training set and validation
set division, we apply the above AdaBoost algorithm and it
selects features sequentially one by one. The importance of
a feature is given by its rank in the selected feature list. As a
feature may be selected more than once due to the nonlinear
nature of the model, the rank of its first appearance is used
as its rank. Also some of the features may not be chosen and
we give all these features the same and the largest rank. The
rankings of all the training-validation divisions from all the
available cell types are then averaged for each feature and
then all the features are sorted. The feature with the least
rank is the first common feature to be selected and more
features are selected based on the their average rankings.

After a given number of features are chosen, we then learn
strong AdaBoost classifiers using only the chosen features
for different cell types using 10-fold cross validation or other
procedures; if preferred, other classifiers such as a support
vector machine can also be used but with the chosen small
number of features. As shown by the experimental results
(see Section 4.3), for the given datasets of human cells, as
few as five common features give good prediction for all the
ten cell types. This suggests that intrinsic nucleosome posi-
tioning can be realized with only a small number of sequence
features, making it more biologically plausible.

4. EXPERIMENTAL RESULTS
4.1 Experimental Setup

We have applied the AdaBoost feature selection and the
AdaBoost learning algorithm on all the ten datasets used
in [4]. The Dennis dataset [1] consists of three microarrays;
each microarray contains about 120,000 probes, which cover
25 kb regions upstream of 42 genes, using 50-mer probes tiled
every 20 bases. In the dataset, there are six measurements



for each 50-mer, three times of the sequence itself and three
times of its reverse complement. Nine other datasets are
from [8], as they are used in [4]; among the nine datasets,
it appears that Ozsolak A375 has a different characteristic
than the other eight datasets (see the caption of Figure 3 of
the supplementary data for [8]).

In each of the datasets, the binding affinity of 50-mer
probes is measured and one thousand 50-mer sequences with
strongest nucleosome forming are selected and one thousand
50-mer sequences with weakest affinity are selected to be
nucleosome inhibiting. Following [9, 4], each 50-mer is rep-
resented by a 2772 vector. For each dataset, we use ten-fold
cross validation. That is, first the 1000 positive examples
and 1000 negative examples are divided into ten folds ran-
domly, each fold with 100 positive examples and 100 neg-
ative examples and we label the folds as Vi, V2, ..., Vio.
Then each fold is used as a validation set to evaluate a clas-
sifier learned using the other nine folds and this procedure
is repeated until all the folds are used once as a validation
set. The cross validation is the most common way to eval-
uate the generalization performance (i.e., the performance
on unknown test samples) of a classifier. Note this is es-
sential as there are procedures that may give high accuracy
on the training set itself but perform poorly on new test
samples; this is known as overfitting [2]. In the following ex-
periments, we use the ROC score for each ROC curve; ROC
score is defined simply as the area under the ROC curve.
For ten fold cross validation experiments, we have ten ROC
scores and use the median ROC score to measure the overall
effectiveness of the features and the classifiers, as in [4].

4.2 Resultson Using All Features

As discussed earlier, we use the AdaBoost procedure to
first select k-mer features sequentially and then construct a
strong classifier. We apply the AdaBoost procedure on each
dataset using 10 fold cross validation. For each fold, we con-
tinue to choose features as long as the ROC score increases
and we stop when the score does not increase significantly
or the number of the features reaches two hundred. Figure 1
shows the results. Clearly the cross validation performance
varies significantly from dataset to dataset, reflecting the
differences in data collection conditions and also the nature
of the datasets. Note that more features do not always corre-
spond to better validation performance, such as the Ozsolak
MCF7 dataset; this is because the error that is minimized
is the error on the training set while the error shown here
is the error on the validation set. Clearly the observation
made in [9] that none of the single k-mer gives a better per-
formance than using all the 2772 features does not justify
the use of all the features.

Table 1 compares the results given by the support vector
machines as in [4] to our results. Our method gives better
performance in all the datasets and in some of them sig-
nificantly. For example, on the Ozsolak MCF7 dataset, the
ROC score of the prediction accuracy is improved from 0.706
to 0.767, a significant improvement in accuracy. The ROC
scores on Ozsolak PM, Ozsolak Raw, and Ozsolak T47D
also improve significantly. In addition, the number of k-mer
features needed to achieve the performance is much smaller,
compared to the 2772 features. In particular, it only re-
quires 39 features on the Ozsolak MCF7 dataset to obtain
the maximum improvement; fewer than one hundred fea-
tures are needed on Ozsolak A375, Ozsolak IMR90, Ozsolak
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Figure 1: Median ROC score vs. different number
of features on different datasets.

MALME, Ozsolak PM, and Ozsolak Raw datasets to achieve
the respective optimal performance. While there are com-
mon features among the datasets, with A/T and C/G being
the most prominent in most of the cases, different optimal
features are chosen for different datasets.

Table 1: Comparison of prediction accuracy (median
ROC score) of AdaBoost and SVM [4]

Dataset SVM AdaBoost
ROC score | # of Features | ROC score

Dennis 0.921 121 0.924
A375 0.878 69 0.880
Ozsolak 0.737 190 0.787
IMR90 0.799 65 0.813
MALME 0.811 97 0.813
MCF7 0.706 39 0.767
MEC 0.880 196 0.899
PM 0.783 51 0.824
Raw 0.739 60 0.798
T47D 0.706 164 0.744

4.3 Common Featuresfor Different Cdls

As the most effective features identified on different datasets
are different, an interesting question is whether there is a
small number of features that will be effective on all the
available datasets. As discussed earlier, for intrinsic nucle-
osome positioning, it would be biologically more relevant if
only a small number of features are needed for all the cell
types of the same organism (e.g., humans in this case).

To address this question, we identify common features
from the ten datasets. As described in Section 3.1, we
first apply the AdaBoost feature selection on each training-
validation division to select a number of features (200 in this
case). For each feature that is chosen, it is assigned a rank
to be the order that it is first chosen, where the first chosen
feature has rank 1, the second has rank 2, and so on; for
the features that are not chosen, we assign a rank of 201.
After we run the ten fold cross validation tests on all the
ten datasets, for each feature, we compute the average rank
using the 10 x 10 rankings from different cross validations
of all the datasets. Then all the features are ranked accord-



ing to their average ranking from low to high and we select
features from low to high accordingly.

With the identified common features, we apply AdaBoost
algorithm with only a specified number of common features
to test whether the small number of common features are
sufficient to predict accurately on all the datasets. We have
done experiments using 5, 10, 20, 50, and 100 common fea-
tures, and Fig. 2 shows the median ROC scores for 20 fea-
tures.
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Median ROC scores when twenty sequence
are used for all cell types.

Figure 3 compares the median ROC scores using all 2772
features, 5, 10, 20, 50, and 100 features on the ten datasets
using 10 fold cross validation. It shows clearly that on Den-
nis and Ozsolak A375 accurate prediction can be achieved
using as few as five features and all the choices give good
performance. On the other datasets, it appears that five
features are not sufficient and they require ten features (or
even more as on Ozsolak IMR90) to achieve performance
close to the one using all features. This appears to be di-
rectly related some of the systematic biases in these datasets,
as noticed in Figure 3 of supplementary data for [8]. In some
cases, using a small number of features gives even slightly
better performance; this is due to the greedy nature of the
AdaBoost feature selection and the randomness in dividing
the ten folds.

5. CONCLUSION

In this paper we propose an AdaBoost based method for
both feature selection and classifier learning for intrinsic nu-
cleosome positioning. A distinctive advantage of the pro-
posed method is that it identifies explicitly a small number
of features from a large set of candidates efficiently, in ad-
dition to that the resulting classifier generally gives more
accurate prediction. Using the ten datasets, we are able to
also identify a small number of features that give accurate
prediction on all of them. While the results are convincing,
additional evaluations need to be done, especially genome
wide prediction with known biological features.
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