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ABSTRACT

Linear representations are widely used to reduce dimension
in applications involving high dimensional data. While spe-
cialized procedures exist for certain optimality criteria, such
as principle component analysis (PCA) and Fisher discrim-
inant analysis (FDA), they can not be generalized for more
general criteria. To overcome this fundamental limitation,
optimal component analysis (OCA) uses a stochastic gradi-
ent optimization procedure intrinsic to the manifold giving by
the constraints of applications and therefore gives a proce-
dure for finding optimal representations for general criteria.
However, due to its generality nature, OCA often requires ex-
tensive computation for gradient estimation and updating. To
significantly reduce the required computation, in this paper,
we propose a two-stage method by first reducing the dimen-
sion of input to a smaller one (but larger than the final re-
sulting dimension) using a computationally efficient method
and then performing OCA in the reduced space. This reduces
the computation time from days to minutes on widely used
databases, making OCA learning feasible for many applica-
tions. Additionally, since the reduced space is much smaller,
the stochastic gradient optimization tends to be more efficient.
We illustrate the effectiveness of the proposed method on face
classification.

Index Terms- Machine Vision, Face Recognition, Im-
age Analysis, Optimal Method, Stochastic Process

1. INTRODUCTION

Recognition of objects using statistical methods from the 2D
images is commonly adopted. However, as images are, in
general, rather high dimension, the recognition tasks become
computationally expensive and often infeasible as statistical
methods are often limited to low dimensional data. On the
other hand, it is well-known that images are generated by
imaging processes with typically a small number of physical
parameters such as lighting, orientation, etc. Thus, one way
to overcome this problem is fo reduce the input dimension
while, at the same time, preserving most image information.
A commonly used method is to project images linearly into a
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low dimensional subspace and use this projection for process-
ing.

In recent years, several methods have been used on such
dimension reduction problems, including Principle Compo-
nent Analysis (PCA)[1] Fisher Discriminative Analysis (FDA)
[2] and Independent Component Analysis (ICA) [3], etc. PCA
is a linear unsupervised method which retains the maximum
amount of variance within the projected feature space. How-
ever, when applied to the classification problem, the main
drawback of PCA lies in the fact that class information is
not utilized for class projection because PCA choose axes
only based on the variance of data. ICA is a more general
method than PCA which finds the independent components
by maximizing the statistical independence of the estimated
components. The classical FDA aims to find an optimal basis
by minimizing the within-class distances and maximizing the
between-class distance simultaneously, thus achieving maxi-
mum discrimination. An infrinsic limitation of FDA is that
the formulation is based on the assumption that the underly-
ing probability distribution for each object is Gaussian with
the same variance; however, it has been shown that distribu-
tions of images are highly non-gaussian and thus the opti-
mality of FDA in general for recognition is not guaranteed.
Another limitation of classical FDA is that its objective func-
tion requires that one of the scatter matrices be nonsingular.
However, in many real applications, such as face recognition
and text classification, the scatter matrix in question can be
singular since the dimension of data, in general, exceeds the
number of data points. This is known as singularity problem.
Several methods which extends FDA have been proposed re-
cently to deal with this problem. PCA+LDA [4] applies PCA
on the original data to obtain a more compact representa-
tion so that the scatter matrix becomes nonsingular. LDA/QR
method [5] solves this problem by first applying QR decom-
position to a small matrix involving the class centroid, and
then LDA method is used in the reduced space.

Unlike these methods, Optimal Component Analysis (OCA)
[6] [7] is a recently proposed stochastic method which can be
applied to dimensional reduction and pattern recognition. The
search for optimal linear representation is based on a stochas-
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tic optimization process which maximizes a pre-specified per-
formance function over all subspaces of a particular dimen-
sion. Its effectiveness has been demonstrated on a number of
applications. However, a major limitation of OCA that pre-
vents its wide use is its computation cost. In this paper, we
propose a two-stage OCA (2-OCA) method to overcome this
limitation. Our goal is to reduce the computation cost while
at the same time to maximize the performance. The first stage
of our proposed method is to obtain a more compact represen-
tation of the input images by dimensional reduction, then, in
the second stage, OCA searching is conducted in this reduced
space. As the search space is much lower compared with the
original search space, the searching time is reduced dramati-
cally and the performance in typical applications is kept at the
same time.

The rest of the paper is organized as follows: Section 2
gives a review of OCA method; then the proposed two-stage
OCA method is presented at Section 3; A comparative study
of the performance of the 2-OCA method is given in Section
4; Section 5 concludes the paper with a brief summary.

2. REVIEW OF OCA

For recognition applications based on 2-norm distances, OCA
provides a general subspace formulation on Grassmann man-
ifold and a stochastic optimization algorithm is applied to
computing the optimal basis. Comparing to PCA, ICA and
FDA, OCA has been shown to have advantages in solving
object recognition problems on some datasets. More specif-
ically, in [6], the performance function I is defined in the
following way. Let there be C' classes to be recognized from
the images; each class has k445 training images (denoted by

Lo, o 1o ks and kiest testimages (denoted by Igl, o,
¢ k..,) lo evaluate the recognition performance measure.
1 C kiest
PO) = Go— 2 2 Mol U) = 1) ()
€St e=1 4=1

where h(-)is a monotonically increasing and bounded func-

tion. In our implementation, h(x) = 1/(1 + exp(—20z))

where 3 controls the degree of smoothness of F(U) and
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Here
d(IhIQ; U) - Ha(lla U) - a(I% U)Ha (3)

and || - || denotes the 2-norm, a(I,U) = UTI, and ¢ > O isa
small number to avoid division by zero. As stated in [6], F'is
precisely the recognition performance of the nearest neighbor
classifier when we let 8 — oo. Since F(U) depends on the
distance between images, we restrict U to be an orthonormal
basis. In addition, F'(U) does not depend on the choice of

basis but on the subspace; in other words,
F(U) = F(UO),whereO € SO(r) 4

Here the underlying solution space is the Grassmann manifold
Gm,r. Now, learning the optimal linear subspaces becomes an
optimization problem,

U =arg max F'(U) (5)

CUm,r

In [6], an optimization algorithm utilizing the geomet-
ric properties of the manifold is presented. Specifically, a
Markov chain Monte Carlo (MCMC) type stochastic gradient-
based algorithm is used to find an optimal subspace Ul At
each iteration, the gradient vector of F' with respect to U,
which is a skew-symmetric matrix, is computed. By follow-
ing the gradient, a new solufion is generated, which is used
as a proposal and is accepted with a probability that depends
on the performance improvement. If the performance of the
new solution is better than the current solution, itis always ac-
cepted. Otherwise, the worse the new solution’s performance,
the lower the probability the solution is being accepted.

However, computational costis typically expensive which
may prevent OCA from being used in certain applications.
The computational complexity €', of each iteration of this
algorithm is C,, = O(d x (n—d) X ktest X ktraining X 1 X d).
(', is obtained by the following computation. d x (n — d) is
the dimension of the gradient vector. For each dimension and
for each test image, the closest images in all the classes need
to be found to compute the ratio in Eqn. 2 and to compute
the performance F'in Eqn. 1. This gives the product kiess X
Etraining. The term n X d comes from Eqn. 3. The overall
computational complexity is C,, x ¢ where ¢ is the number of
iterations.

3. TWO-STAGE OCA

From the above analysis, we see that the computation at each
iteration depends on several factors and the complexity is O(n?)
in terms of n, the size of data. For typical applications, n,
which is the number of pixels in the image, is relatively large.
Also when n is large, the dimension of the search space will
also be large.(In the Grassmann manifold, whose dimensional
is (n — d) x d.) Thus the algorithm can be time consuming.
As the other factors in the computational complexity can
not be avoided, we can reduce the dimension of data using
several methods. The idea is to reduce the dimension of the
input images first and do the stochastic OCA search on the
lower dimensional data space, as the search space is reduced
dramatically, the search time will be reduced greatly at each
iteration. Note that we require the dimension in the first step
to be larger than the final dimension to be used. After we ob-
tain the linear models in both stages, they are then combined

INote that the optimal solution may not be unique.
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to be a single matrix and thus this 2-OCA does not affect the
computation at the testing stage.

3.1. First stage: pre-dimension reduction

The first stage of the 2-OCA is to reduce the data dimension
so that the OCA searching can be performed in a lower di-
mension space. There are several methods that can achieve
this goal. The generally used methods are PCA, FDA, QR
decomposition, or even just Random Component Analysis
(RCA) [9]. Accordingly, our two-stage OCA method can be
named as PCA/OCA, FDA/OCA, QR/OCA and RCA/OCA;
collectively, it is named 2-OCA. As PCA, FDA and RCA are
commonly used, their details will not be given here. Here, we
review the QR decomposition method.

In [5], Ye and Li proposed a two-stage LDA/QR method
which applies QR decomposition to a small class centroid
mafrix in the first stage to gain the algorithm efficiency and
scalability. We borrow the idea from their method and use
the QR decomposition in the first stage of our QR/OCA al-
gorithm. The first stage of our QR/OCA method maximizes
the separation between different class via Q) R decomposition.
The distinct property of the QR is low time/space complexity.
Formally, it aims to compute the optimal transformation ma-
trix G that solves the following optimization problem:

G = arg min GrTnaX tmce(GTSbG) 6)

where
1 k
Sp=—Y N;(m; — s—m)t =mH, @
b \/W; (mi —m)(m; —m) vy, (D

Here m; is the centroid of the <th class, m is the global cen-
troid of the training data set, and Hj is given by

Hy = —=[/Ny(my—m),..., /Nl —m)], @)

VN
The solution to eq.(6) can be obtained through a rank reveal-
ing factorization of Hy which is related to S in such a way
that we can get G when ¢ is the rank of S5.

The pseudocode for QR computation is shown in Fig. 1,
which is also called pre-LLDA/QR algorithm in [5] as it does
not use the within-class information of data. Note that the
rank ¢ of the matrix H, is bounded from above by k — 1.
In practice, the k centroid in the data set are usually linearly
independent. In this case, the number of retained dimensions
ist=k— 1.

3.2. Second stage: OCA search in the low dimension space

The computational costs for OCA on two Grassmann mani-
folds G, 4 and G, g where n1 = ng/m and ng >> d are
easily compared. For each iteration, the computational com-
plexity with images of size ng is Cp, = O(d X (ng — d) x

Input: Data matrix A.
Output: Reduced data matrix A,

1. Construct the matrix Hy in (6).

2. Apply QR decomposition with column pivoting to Hj, as
Hy = QRT], where Q € R™*! R € RI¥FT] € REXE ¢ =
rank(Hy);

3. G — Q. /loptimal transformation

4. AL — GT A. //reduced representation.

Fig. 1. Pre-LDA/QR Algorithm.

Ktest X Ktraining X 1o X d). While the computational com-
plexity with images of size ny = no/m is
Cn, = O(dx (22 —d) X ktest X Ktraining X 22 X d)

no—md
m2(ng—d) CNI
1

FCTLO )
©)
considering the fact ng >> d. Obviously it is much more
efficient to learn on G, 4 than on G, q for the dimension of
search space is reduced from d X (ng — d) to d x (nq — d).
Therefore, we get the basis U of size ny x d with performing
the time saving learning process in a smaller space.

4. EXPERIMENTAL RESULTS

We evaluate the effectiveness of the two-stage OCA algo-
rithm on two well-known face datasets: ORL face dataset
(40 individual, each 10 images, each with size 92 x 112)
and PIE face dataset (66 person, 21 images each, each with
size 100 x 100). First, we illustrate the accuracy and ef-
ficiency of this algorithm by using different method in the
first stage of the algorithm, such as PCA/OCA, FDA/OCA,
RP/OCA, QR/OCA, etc. Second, we compare the perfor-
mance of this algorithm with other well-known classification
algorithm, such as PCA, FDA, QR/FDA, etc. We use the K-
Nearest Neighbor(KNN) algorithm as the classifier. The C
program is running in a PC with 1.80GHz CPU, 1G RAM.

4.1. Different dimensional methods on the first stage

In order to evaluate the influence of the initial dimensional re-
duction method on the performance of the proposed method,
the PCA/OCA, RCA/OCA, LDA/OCA and QR/OCA forms
of 2-OCA were evaluated. Table 1 shows the performance
of different methods on ORL and PIE datasets. For ORL face
data set, we select 5 images for training and other 5 for testing.
For PIE face data, we select 10 images for training and other
11 for testing. We can see our proposed method achieves high
accuracy with all of the initial dimension reduction strategies.

Zhttp://www.uk.research.att.com/facedatabase. html
Shttp://www.ri.cmu.edu/projects
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Table 1. Classification accuracy (%) of proposed methods
on the ORL and PIF data sets with different dimensional
reduction in the first stage.

Data || KNN | pcasoca | RCA/oca | LDA/oca | QR/OCA
1 100 97.5 100 100
3 100 95.0 100 100

ORL || 4 100 90.0 100 100
5 100 90.0 100 100
10 100 87.5 100 100
1 99.86 98.62 100 100
3 100 93.66 100 100

PIE 4 100 92.28 100 100
5 98.21 90.91 100 100
10 100 92.70 100 100

Table 2. Classification accuracy (%) of different methods on

ORL data set.
KNN || pca PCA+LDA | QR/LDA | OCA | PCA/OCA
1 97.25 | 95.00 98.25 100 | 100
3 94.50 | 94.75 98.00 100 | 100
5 92.25 | 95.50 98.25 100 | 100
10 81.25 | 93.75 96.75 100 | 100

4.2. Comparison with other methods

In the second experiment, we compare our proposed two-
stage OCA method with the other well-known classification
methods, such as PCA, LDA, PCA+LDA etc. The classifi-
cation accuracy is estimated using 10-fold cross-validation.
Table 2 shows the performance of these methods. For this
experiment, we use the PCA/OCA version of the proposed
two-stage OCA algorithm. As the table shows, our method
gives the best performance, which is the same as the orignal
OCA but with significantly less time as shown below.

4.3. Efficiency

In this experiment, we study the computational efficiency gain
of the proposed two-stage OCA algorithm by comparing its
running time with that of the original OCA algorithm. Here
we use the ORL data set as an example, when we do the
search on the original space, the running time is about 2 days
(1000 iteration), while it only takes 989 seconds when we
use the PCA/OCA method (In the first stage, we reduce the
dimension from 10304 to 100) with the recognition perfor-
mance remains the same. We have observed similar gain in
computation time on PIE and other datasets. These experi-
mental results show clearly that the two-stage OCA algorithm
speeds up the original OCA algorithm dramatically.

5. CONCLUSION

Optimal component analysis (OCA) provides a general for-
mulation and gives an optimal solution for data classification

applications. A practical limitation of OCA is that the running
time of OCA algorithm is large as it uses stochastic optimiza-
tion. In this paper, we have proposed a two-stage OCA al-
gorithm which first decreases the dimension and then applied
OCA on the reduced dimensional space. Experimental results
demonstrate that the proposed algorithm reduces the compu-
tation time very significantly, typically by two orders of mag-
nitude while maintaining high recognition performance.
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