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Abstract

Representation learning is a fundamental challenge for
feature selection and plays an important role in applica-
tions such as dimension reduction, data mining and ob-
ject recognition. Traditional linear representation methods,
such as principal component analysis (PCA), independent
component analysis (ICA) and linear discriminate analy-
sis (LDA), have good performance on certain applications
based on corresponding criteria. However, these linear rep-
resentation methods are not optimal in general. Sphere fac-
tor analysis (SFA) is a recently proposed method which pro-
vides a general framework for optimization problems. In
term of object recognition, SFA seeks to optimize the dis-
criminant ability of the nearest neighbor classifier for data
classification and labeling. Based on the geometry struc-
ture of the search space, a gradient search algorithms have
been applied to obtain an optimal basis. A detail presen-
tation of these algorithm is given in this paper. Further-
more, to speed up the search procedure of SFA, a two-stage
strategy is proposed, which we called two-stage SFA. We il-
lustrate the effectiveness of the original SFA and two-stage
SFA methods on UCI data sets and two face data sets.

1. Introduction

Linear representation methods, such as Principle Com-

ponent Analysis (PCA)[5], Independent Component Anal-

ysis (ICA) [1], and Linear Discriminant Analysis (LDA)

[3], are attractive due to their relative simplicity. However,

drawbacks exist when these methods are applied to the clas-

sification problem. For example, PCA is not optimal as it

does not utilize the class information. ICA suffers from

computational expensiveness, which limits its application

to high-dimension data classification. The LDA algorithm

is optimal if all class distribution are Gaussian with a single

shared covariance which is rarely held in real data.

In the recent years, several novel linear representa-

tion methods based on K-nearest-neighbor (KNN) clas-

sifier have been proposed, which include Neighborhood

Component Analysis(NCA) [4], Optimal component anal-

ysis(OCA) [7], etc. NCA considers the probability of each

point to select another point as its neighborhood as inher-

its its labels. The optimal basis is solved using a gradient

search method. OCA finds the optimal basis by separating

each point far away from points in different class but close

to points in the same class so that KNN can achieve good

performance. The optimal basis is solved using a gradient

search method on a Grassmann manifold. Sphere Factor

Analysis (SFA) is another recently proposed KNN based

method for simultaneous dimension reduction and optimal

feature selection [6]. Given a input data I ∈ �n and pro-

jected subspace d � n, the goal of SFA is to find a linear

transformation A : �n → �d that optimizes the discrimi-

native ability of the KNN classifier on the data transformed

by A. The idea is that the optimal mapping A will reduce

dimension and reconstruct the data so that it becomes more

amenable to classification.

The performance function F used to measure “optimal-

ity” in sphere factor analysis is similar to that adopted in

OCA, but the optimization is carried out over all linear

mapping A : �n → �d, not just orthogonal projections

onto subspaces. F (A) quantifies how well suited a linear

mapping A is for the classification task at hand. F has the

property that it is (nearly) scale invariant reflecting the fact

that scaling a data set does not change decisions based on

KNN classifier. Thus it suffices to consider linear mapping

of unit norm; that is, to optimize F over the unit sphere S
in �n×d. Moreover, the search space of SFA is on a sphere,

a much more simple geometry than the Grassmann mani-

fold of OCA. Thus, significant computational gains in the

learning process can be achieved.

To further reduce the computational cost of SFA, a two-

stage SFA algorithm is proposed in this paper. In the first

stage, we project the data dimension into a lower subspace

using some traditional dimension reduction methods, such

as PCA, LDA or ICA. In the second stage, the SFA is per-
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formed in the second stage. As the search process is on a

much smaller space, the computational cost will be greatly

reduced.

The rest of the paper is organized as follows: Section 2

gives a detail discussion of SFA method and the gradient

search algorithms are presented in Section 3. In Section 4,

a two-stage SFA method is proposed to reduce the compu-

tational cost of SFA. A comprehensive study of the perfor-

mance of SFA and two-stage SFA algorithm is presented in

Section 5. The paper is summarized in Section 6.

2 Sphere Factor Analysis (SFA)

Sphere factor analysis (SFA) is a linear feature selec-

tion technique whose goal is to find linear transformation

that can reduce the data dimension while optimizing per-

formance of classification on given data. (A preliminary

short introduction of SFA appeared in our previous paper

[6].) More specifically, let A ∈ �n×d be a matrix whose

columns form an orthonormal basis of a d-dimensional sub-

space of �n, where n is the size of the input image and d is

the dimension of the desired subspace (generally n � d).

For an image I , considered as a column vector of size n,

the vector of coefficients is given by α(I,A) = AT I ∈ �d

and represents the orthogonal projection of I onto the sub-

space SA spanned by the columns of A. Suppose the train-

ing data consists of representatives of C classes of images,

with each class represented by ktrain training images (de-

noted by Ic,1, . . . , Ic,ktrain ) and kcross cross validation im-

ages (denoted by I ′c,1, . . . , I
′
c,kcross

), the performance func-

tion F is defined as follows:

F (A) =
1

Ckcross

C∑
c=1

kcross∑
i=1

h(ρ(I ′c,i, A) − 1) , (1)

where,

ρ(I ′c,i, A) =
minc′ �=c,j Dp(I ′c,i, Ic′,j ;A)
minj Dp(I ′c,i, Ic,j ;A) + ε

. (2)

Here p > 0 is an exponent that can be adjusted to regularize

p in different ways. The function ρ was used in the develop-

ment of OCA with p=1. A large value ρ(I ′c,i, A) indicates

that the transformation A places Ic,i lies much closer to a

training sample of the class it belongs than to those of other

classes; ρ(I ′c,i, A) ≈ 1 indicates a transition between cor-

rect and incorrect decisions by the nearest neighbor classi-

fier.

Scaling an entire ensemble does not change decisions

based on KNN classifier. This is reflected in the fact that

F is nearly scale invariant, that is F (A) ≈ F (αA), for any

α >0. The function F only fails to be scale invariant due

to the presence of ε in the denominator of Eq.(2), which is

negligible in practice. Thus, one may restrict F to transfor-

mations of fixed norms (say, ‖A‖ = 1) without incurring

any significant losses. Let

S = {A ∈ �d×n : ‖A‖ = tr(AAT ) = 1}
be the unit sphere in �d×n. The goal of SFA is to maximize

the performance function F over S. In other words, to find

Â = arg max
A∈S

F (A) (3)

The linear mapping A: �n → �d is to be viewed as de-

fined features of dimension ≤ d, which are optimal from

the standpoint of decisions made by the nearest neighbor

classifier applied to the training set. Note that the existence

of F is assumed by the simple facts that the sphere S is

a compact space and F is continuous. This is in contrast

with neighborhood component analysis, where no such the-

oretical assurance can be offered since the corresponding

performance function is sensitive to scale.

3 Gradient Search Methods

For the OCA algorithm, the computational approach for

estimation Â is based on simulated annealing and the opti-

mization process is carried out over a Grassmann manifold.

This leads to heavy computational load as its sophicated

geometry. However, in SFA, the optimization process is

carried out over a sphere whose geometry is much simpler,

thus it has significant computational advantage over OCA.

A necessary condition for Â is that, for any tangent vector

at A, the direction derivative of F in the direction of the

vector should be zero. Given A ∈ S, to estimate the gradi-

ent vector field ∇SF on S associated with the performance

function F , we first calculate ∇�d×nF (A), the gradient of

F viewed as a function on �d×n. Since F is nearly scale

invariant,

∇�d×nF (A) ≈ ∇SF (A) (4)

as the component of ∇�d×nF (A) normal to the sphere is al-

most negligible. The numerical estimation of the left-hand

side of (4) only involves standard procedures. Let Eij be an

d × n matrix such that, for 1 ≤ i ≤ d, 1 ≤ j ≤ n,

Eij(k, l) =
{

1 if k = i, l = j,
0 otherwise ,

The partial derivative of F in the direction Eij is estimated

as

∂ijF (A) ≈ F (A + δEij) − F (A)
δ

(5)

with δ > 0 is small. Then, the gradient can be approximated

by

∇�d×nF (A) =
∑
ij

∂ijF (A)Eij (6)
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Figure 1. Estimation of ∇SF (A). Here B =
∇�d×nF (A) and C = ∇SF (A).

The gradient vector ∇�d×nF (A) is nearly tangential to S at

A; we enforce full tangentiality and obtain a more accurate

estimation of ∇SF (A) by subtracting components normal

to the sphere S, as follows. For any A ∈ S, a unit normal

to S at A in �d×n is given by A itself viewed as a vector in

�d×n. Thus, we adopt the estimate

∇SF (A) ≈ ∇�d×nF (A) − 〈∇�d×nF (A), A〉A (7)

The estimation of ∇SF (A) is illustrated in Fig.1. We label

∇�d×nF (A) as B in the figure. Obviously, the components

normal to the sphere S can be computed as < B, A > A,

where < B,A > gives the vector length and A gives the di-

rection of the normal. The gradient vector ∇SF (A), which

labeled by C in the figure can be computed as C = B− <
B, A > A, thus comes to Eq.(7).

Once we computed ∇SF (A), it is easy to get the update

function for A. As shown in Fig.2, given a small move δ
on the sphere, the angle between the old A and new A is

θ = δ‖∇SF (A)‖, the update function for A is expressed

as:

A = A cos(θ) + D sin(θ)

where D = ∇SF (A)
‖∇SF (A)‖ , thus,

A = A cos(δ‖∇SF (A)‖) +
∇SF (A)

‖∇SF (A)‖ sin(δ‖∇SF (A)‖)
(8)

The deterministic gradient search algorithm is shown in

Algorithm 1. Here are some remarks about Algorithm 1:

• The geodesic update of A described in step 4 of Algo-

rithm 1 has the effect of displacing A by δ‖∇SF (A)‖
units of length along the great circle of S through A in

the direction ∇SF (A).

• After centering the data, we often initialize the search

with the coordinate map A : �n → �d associated

C

A

Dtheta

A

Figure 2. Geodesic updating of A. Here C =
∇SF (A) and D = ∇SF (A)

‖∇SF (A)‖ .

Algorithm 1: Deterministic Gradient Search

1. Choose a threshold value ε > 0 for the norm of the

gradient and a step size δ > 0.

2. Initialize the search with some A ∈ S

3. Calculate ∇SF (At) using Eq.(1) and Eq.(7).

4. If ‖∇SF (At)‖ < ε, set Â = A and stop. Else, update

A according to Eq.(8).

5. Go to step 3.

with the first d principal components of the training set.

More precisely, let v1, . . . , vd be an orthonormal set of

eigenvectors associated with the d dominant principal

components of the covariance matrix of the training

set, then, the search is initialized with the linear map

A(x) = (x · v1, . . . , x · vd)T , where T denotes trans-

position.

To deal with the case when A converges to a local max-

imum of F (A), we add a stochastic component to A to

achieve a global maximum solution. We call this as stochas-

tic gradient search algorithm where a stochastic component

is added to the deterministic gradient field ∇SF on S. We

skip the detail of the stochastic method in the paper, inter-

ested reader can refers to [6].

4 Two-stage SFA

Compared with OCA, which search the optimal basis on

a Grassmann manifold, the computational cost of SFA is
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much less as the search is on a sphere, a geometry much

simpler than Grassmann manifold. However, the heavy

search time is still a burden to its widely use in real appli-

cations. A significant reduction of the computational com-

plexity can be achieved by restricting the SFA search to d
dimensional subspaces of the span of the training images.

If the dataset contains N images, I1, . . . , IN , we arrange

them as DN = [I1, I2, . . . , IN ] ∈ �n×N . If the rank of

DN is r, let D be an n × r matrix such DT D = Ir and

whose columns form a basis of the span of the training set.

Then, DT I ∈ �r gives a reduced representation of an im-

age I ∈ �n. In typical recognition problems based on im-

ages, r � n, so that the SFA search can be carried out

much more efficiently in this r-dimensional representation

as A ∈ �d×r space instead of �d×n. Note that, in this

type of preliminary dimension reduction, all the informa-

tion contained in the original training set is retained.

This gives rise to a two-stage SFA algorithm. Instead of

solving the SFA optimization in the original image space,

we limit the search to the span of the training images using

a lower dimensional representation. To achieve even higher

efficiency, in practice, we may want to further reduce the

dimension using a computationally efficient dimension re-

duction method first. We refer to this step as pre-dimension

reduction. An immediate question is how to choose pre-

dimension reduction technique. Note that the performance

is essentially determined by the distance between images in

the reduced space, therefore, any method that retains the ef-

fective discriminative subspace would be sufficient. Two

choices seem to be most relevant. First, we can choose

to minimize the average reconstruction error, which can be

achieved using PCA. An alternative is to choose the compo-

nents that are most discriminative assuming the underlying

distributions are Gaussian with fixed variance; this can be

achieved using LDA by solving a generalized eigenvalue

problem. However, as pointed out earlier, there is no theo-

retical basis for choosing PCA or LDA, in general.

To summarize, our two-stage SFA method is imple-

mented as follows: in the first stage, we reduce the input

data from the original high dimension to a lower dimen-

sion using a computationally efficient method; in the second

stage, an SFA search is performed in the reduced space. As

the search space is (much) smaller than the original one, the

computational cost is greatly reduced.

5 Experimental Results

We present a set of experiments to evaluate the recog-

nition accuracy and efficiency of SFA and two-stage SFA

algorithms. The classification accuracy is measured by a 1-

nearest neighbor(1NN) classifier. Program is run on a work-

station with an Intel Xeon 3.00GHz CPU and 8.0G RAM.

We first evaluate the performance of SFA on the bal-

ance, ionosphere, iris, wine and housing data in UCI Ma-

chine learning Repository [2]. We split each data set into

training (70%) and test (30%) subsets. Figure 3 shows the

comparative training and more importantly testing perfor-

mance of PCA, LDA, NCA and SFA on these data set. From

this figure, we can see that except the training performance

on ionosphere dataset, SFA is consistently better than other

methods.

We also have evaluated the performance of SFA on the

ORL [9] and AR face dataset. ORL face data set contains

400 face images of 40 individuals. The face images are per-

fectly centralized and the image size is 92×112 = 10, 304.

AR face data set [8] is a large face image data set and the

recognition is more difficult than ORL. The instance of

each face may contain significantly large areas of occlusion,

due to the presence of sun glasses and scarves. The ex-

istence of occlusion dramatically increase the within-class

variations of AR face image data. In this study, we use a

subset of AR containing 1,638 face images of 126 individ-

uals. Its image size is 768 × 576 = 8, 888.

As the dimension of the original face image is high, the

two-stage SFA instead of the original SFA is applied in the

face recognition experiments to speed up the optimal basis

search. For both of the dataset, PCA is used to reduced the

dimension of original data to 100 in the first stage. We run

the search for 1000 iteration and the subspace dimension d
is set to 10. The classification accuracy is measured by a

1-nearest neighbor(1NN) classifier using 10-fold cross val-

idation.

Unlike other stochastic optimal basis searching method,

such as OCA, in which the optimal basis is obtained by

searching on a Grassmann manifold, SFA shows its effi-

ciency as the search process is performed on a sphere. In

order to illustrate the efficient of SFA search, we compared

the recognition performance and running time of SFA with

OCA. Table 1 shows the running time and classification ac-

curacy of SFA and OCA on ORL and AR data set, with

different dimension case. The OCA cost time and accuracy

are shown in the parenthesis. Note that when the dimen-

sion is in the original dimension space (10304 for ORL
and 8888 for AR), the original OCA and SFA algorithms is

used, while in the reduced dimension spaces, the two-stage

OCA and two-stage SFA is used. We can see that compared

with OCA, the searching time of SFA is largely reduced

while the classification accuracy is still comparable.

Fig.4 shows the evolution of performance ratio F and

recognition accuracy of the SFA algorithm on ORL and AR
data sets. The left figures in each row show the evolution of

performance ratio F , we can see for the training data, F
in generally increased while it is not the truth for test data

set. This is easy to understand, note that we are aim to op-

timize the performance ratio on the train data set, thus the

optimal basis we obtained in each iteration is subject to op-
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Figure 3. Evolution of recognition accuracy on UCI data sets.

Table 1. computational complexity (measured in seconds per iteration) and classification accuracy
(%) comparison of SFA and OCA

dimension 10304 199 100 50 20

ORL Time 48.3(173) 1.23(10.00) 0.62(2.10) 0.32(0.97) 0.13(0.67)

Accuracy 100(100) 100(100) 100(100) 100(100) 100(100)

dimension 8888 500 300 50 20

AR Time 235(421) 6.97(15.20) 4.23(8.43) 0.87(1.07) 0.38(0.54)

Accuracy 96.03(92.12) 96.29(97.01) 96.03(93.66) 94.11(93.66) 92.86(93.02)

timize the training set images classification. Take note that

in Fig.4 (c), there are some decrease of the ratio F in for AR
training set, especially after iteration of 700. This is caused

by the accept-reject criterion of the Metropolis-Hastinig al-

gorithm. The right figures in each row show corresponding

recognition accuracy for these two data sets. We can see the

recognition accuracy in generally increased for both train-

ing and test data sets. Furthermore, the better performance

ratio does not necessary generate the better recognition ac-

curacy. Take the training set of (c) and (d) for an example,

when the performance ratio is sometimes decreased after

iteration 700, the corresponding classification accuracy is

still increase. The reason is we define the optimal function

not directly related to the classification accuracy. However,

as the figure shows, an improvement of F will gradually

lead to the improvement of recognition accuracy.

6 Summary

In this paper, we have provide a detail discussion of one

linear representation method called SFA. SFA is developed

for simultaneous dimension reduction and optimal feature

selection for data parcellation and labeling problem based

on the KNN classifier. The goal of SFA is to find a linear

transformation A : �n → �d that optimizes the discrimi-

native ability of the KNN classifier on the data. One seeks

a linear mapping A that transforms each class into a cluster

that is as compact as possible relative to the separation of

the various clusters. The optimal basis A is obtained by a

gradient search method over a unit sphere to obtained the

optimal basis that can maximum of performance function

F .

Although the search process of SFA is much simpler than

OCA, by the nature of the stochastic optimization, the com-

putational cost of SFA is still heavy. Based on this, we pro-

pose a two stage SFA method which can further reduce the

its computational cost. In the first stage, we project the orig-

inal data into a lower dimension subspace using some tradi-

tional dimension reduction methods, such as PCA and LDA.

The stochastic search of SFA is on the second stage. As the

search space is much simpler than the original sphere, the

computational cost will be reduced greatly. We have tested

the recognition performance of SFA and two stage SFA on

several data sets and shows good performance on these data

sets.
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Figure 4. Evolution of performance ratio and classification accuracy on ORL and ARL data sets. (a):
performance ratio of ORL; (b): classification accuracy of ORL. (c): performance ratio of AR; (d):
classification accuracy of AR
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