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Abstract

Optimal Component Analysis (OCA) is a linear method
for feature extraction and dimension reduction. It has been
widely used in many applications such as face and object
recognitions. The optimal basis of OCA is obtained through
solving an optimization problem on a Grassmann manifold.
However, one limitation of OCA is the computational cost
becoming heavy when the number of training data is large,
which prevents OCA from efficiently applying in many real
applications. In this paper, a scalable OCA (S-OCA) that
uses a two-stage strategy is developed to bridge this gap.
In the first stage, we cluster the training data using K-
means algorithm and the dimension of data is reduced into
a low dimensional space. In the second stage, OCA search
is performed in the reduced space and the gradient is up-
dated using an numerical approximation. In the process
of OCA gradient updating, instead of choosing the entire
training data, S-OCA randomly chooses a small subset of
the training images in each class to update the gradient.
This achieves stochastic gradient updating and at the same
time reduces the searching time of OCA in orders of magni-
tude. Experimental results on face and object datasets show
efficiency of the S-OCA method, in term of both classifica-
tion accuracy and computational complexity.

1. Introduction

In the past decades, scalable algorithm have been widely
used on the applications such as speech recognition [1],
video processing [2]. To our knowledge, there are two
streamline in dealing with the large data problem. One is
using hardware accelerators, such as FPGA [3], supercom-
puter [4]. The other is based on software development, such
as Hidden Markov Model (HMM) [5], parallel algorithms
[6] and wavelet transform [7]. Recently, several novel scal-
able algorithms based on linear representation are proposed.
Based on the discovery that natural images exhibit structure
in a low-dimensional subspace, Chennubhotla etc. devel-

oped a sparse Principal Component Analysis (S-PCA) al-
gorithm which achieves the recognition of larger number
of data [8]. Yan etc. proposed a novel scalable algorithm
for supervised subspace learning method called as super-
vised kampong measure (SKM) [9]. It assigns data points
as close as possible to their corresponding class mean, si-
multaneously assign data points to be as far as possible from
other class mean in the transformed lower dimensional sub-
space, thus theoretically shows the algorithm is not limited
by the number of classes or the singularity problem faced
by LDA. Ye etc. proposed a two-stage Linear Discriminant
Analysis (LDA) method named LDA/QR [10]. The first
stage of this method applies QR decomposition on a small
matrix involving class centroid. The second step applies
LDA to the “reduced” scatter matrices resulting from the
first stage. which shows good scalability in terms of both
the number of original data dimensions and the number of
training data points. However, an implicit assumption in
the first stage of this method is the data in the same class is
with a single Gaussian distribution. Although we can take
the assumption in most cases, it is not a accurate represen-
tation for some datasets where large variance between data
in the same class exits.

Optimal Component Analysis (OCA) [11] is a linear pre-
sentation algorithm that addresses problem of learning an
optimal linear representation for a particular classification
task. The search for an optimal basis subspace is based on
a stochastic gradient process that seeks to maximize a spec-
ified performance function over all subspaces of a Grass-
mann manifold. A solution is obtained by conducting a
search over the Grassmannian with a stochastic searching
algorithm. OCA provides a computational framework for
finding optimal linear representations for particular appli-
cations and its effectiveness has been demonstrated in many
real applications.

Although OCA shows good recognition performance on
many datasets, it suffers from the fact that the computational
cost is heavy when the number of training data is large,
which prevents OCA from efficiently applying in many real
datasets. In this paper, a scalable version OCA algorithm,
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named S-OCA, is proposed to bridge this gap. We treat
the recognition process in two stages. In the first stage, we
cluster the training images in same class using K-means al-
gorithm. Then, by using the transformation matrix which is
obtained by applying Singular Value Decomposition (SVD)
on the centroid of each cluster, we reduce data into low di-
mension space. In the second step, we run the OCA search
in the low dimensional Grassmann manifold. The gradient
is updated using a numerical approximation. However, in-
stead of using all of the training data in each class in the
original OCA, we update the gradient by using a small sub-
set of training data which are random chose from the en-
tire training data. This achieves stochastic gradient updat-
ing and at the same time the optimal basis searching time is
reduced dramatically.

We apply the proposed algorithm on ORL face dataset
and COIL object dataset. Experiment shows that S-OCA
achieves good performance in term of both recognition ac-
curacy and computational complexity.

2 Optimal Component Analysis

2.1 Optimization for recognition

Optimal Component Analysis is a dimension reduction
technique that finds an optimal subspace (of a prescribed
dimension) of feature space that optimizes the ability of the
nearest neighbor classifie to index and classify images or
more general data. The measurement of optimality is based
on training data and the algorithm yields an orthonormal
basis of the estimated optimal subspace.

More specifically, let U ∈ <n×d be a matrix whose
columns form an orthonormal basis of a d-dimensional sub-
space of <n, where n is the size of the input image and d is
the dimension of the desired subspace (generally n À d).
For an image I , considered as a column vector of size n,
the vector of coefficients is given by α(I, U) = UT I ∈ <d

and represents the orthogonal projection of I onto the sub-
space SU spanned by the columns of U . Suppose the train-
ing data consists of representatives of C classes of images,
with each class represented by ktrain training images (de-
noted by Ic,1, . . . , Ic,ktrain

) and kcross cross validation im-
ages (denoted by I ′c,1, . . . , I

′
c,kcross

). Let

ρ(I ′c,i, U) =
minc′ 6=c,j D(I ′c,i, Ic′,j ; U)
minj D(I ′c,i, Ic,j ; U) + ε

. (1)

The numerator is the distance from I ′c,i to the closest train-
ing image not in its class and the denominator is the distance
from I ′c,i to the closest training image in the same class.
Here, D denotes Euclidean distance; that is,

D(I1, I2; U) = ‖α(I1, U)− α(I2, U)‖,

where ‖ · ‖ is the usual 2-norm. In Eq. (1), ε > 0 is a small
number introduced to avoid division by zero. Note that large
values of ρ are desirable, since this means that I ′c,i will be
closer to its class than to other classes in the subspace SU .
A performance function F is defined to essentially measure
the average value of ρ over all cross-validation images, as
follows:

F (U) =
1

Ckcross

C∑
c=1

kcross∑

i=1

h(ρ(I ′c,i, U)− 1) , (2)

where h(·) is a monotonically increasing bounded function
used to control bias with respect to particular classes in
measurements of performance. In our implementation, we
use h(x) = 1/(1 + exp(−2βx)), where β is a parameter
that controls the degree of smoothness of F (U). Thus, F is
a quantifier of the ability of the nearest neighbor classifier to
discern the C classes after projection onto SU . Moreover, as
β → ∞ and ε → 0, F gives precisely the recognition per-
formance of the nearest neighbor classifier after projection
to the subspace given by U [11].

Under this formulation, F (U) = F (UH) for any d × d
orthogonal matrix H . This is the case because F de-
pends only on distances in SU and right multiplication by
H changes the orthonormal basis, but not the subspace
SU . Therefore, our search for optimal representation can
be viewed as an optimization problem on the space of d-
dimensional subspaces rather than the space of orthonormal
frames. The Grassmann manifold, G(n, d), is the set of all
d-dimensional subspaces of <n. It is a compact, connected
manifold of dimension d(n− d), which can be represented
either by a basis (non-uniquely) or by a projection matrix
(uniquely). Choosing the former, let U be an n × d matrix
whose columns are an orthonormal basis for the given sub-
space of <n and let [U ] denote the set of all the orthonormal
bases of SU , i.e., [U ] = {UH|H ∈ <d×d,HT H = Id} ∈
G(n, d). The remarks above imply that F is a function of
[U ], not just U . Unlike the actual recognition performance,
F ([U ]) is smooth and thus allows us to use a gradient-type
algorithm to solve the optimization problem. An optimal d-
dimensional subspace for the given classification problem
from the viewpoint of the available data is given by

[Û ] = argmax
[U ]∈Gn,d

F ([U ]) (3)

2.2 Optimal basis search

In [11], an optimization algorithm utilizing the geomet-
ric properties of the manifold is presented. A Monte Carlo
version of a stochastic gradient-based algorithm with simu-
lated annealing is used to find an optimal subspace Û . Since
the gradient search is conducted over a Grassmann mani-
fold, the process has to account for its intrinsic geometry.
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We now review the MCMC-type simulated annealing pro-
cess presented in [11].

Let J be the n× d matrix given by the first d columns of
the n×n identity matrix. Complete the orthonormal set U to
an orthonormal basis of <n and let Q be the corresponding
n × n orthogonal matrix. Then, the gradient of F at [U ] is
given by A([U ])J , where

A([U ]) = Q

d∑

i=1

n∑

j=d+1

αij(U)Eij ∈ <n×n, (4)

where

αij(U) = lim
ε→0

F (QeεEij J)− F (U)
ε

(5)

is the directional derivatives of F in the directions given by
Eij . Here Eij is an n× n skew-symmetric matrix

Eij(k, l) =





1√
2

if k = i, l = j,

− 1√
2

if k = j, l = i,

0 otherwise ,

1 ≤ i ≤ d and d < j ≤ n. The matrices EijJ represent
an orthonormal basis of the vector space tangent to G(n, d)
at [J ]. The deterministic gradient flow is a solution of the
equation

dUt

dt
= A(Ut)J , (6)

where Ut is the solution at time t. Computationally, we dis-
cretely update Ut according Eq. (6) and at each iteration, the
gradient vector of F with respect to Ut is computed. This
gives rise to a deterministic gradient optimization algorithm
that is intrinsic to the Grassmann manifold, i.e., every new
solution is guaranteed to be on the manifold given that U0

is. This algorithm shares the limitations of all deterministic
gradient algorithms and it will not be able to escape a local
maximum. To overcome this problem, in [11] stochastic op-
timization is used by first perturbing the gradient randomly
and then using a Markov chain Monte Carlo process. A pro-
posed subspace is accepted with a probability that depends
on the performance improvement and an annealing param-
eter. If the performance on the new subspace is better than
that of the current solution, it is always accepted; otherwise,
the worse the performance, the lower the probability of the
subspace being accepted. This guarantees that a global op-
timal solution1 can be reached given that the Markov chain
is sufficiently long. For details, see [11].

3 Scalable OCA

OCA shows good performance on many datasets, how-
ever, when the number of training data is large, the compu-
tational complexity is heavy and it becomes an obscure for

1Note that the solution of Eq.(3) can be a set rather than a unique sub-
space.

its efficient applications on these data sets. This motivates
the idea of S-OCA algorithm where a two-stage strategy is
used. In the first stage, we cluster the training data into sev-
eral clusters using K-means algorithm. Then, we reduce the
data dimension into low dimension space, by using trans-
form matrix obtained through applied SVD on the centroid
of each cluster. In the second stage, the OCA searching
is performed in the low dimensional Grassmann manifold.
However, in the process of gradient updating, instead of us-
ing all the training images in each class, only a small subset
of training image in each class is randomly chosen to update
the gradient. It automatically brings stochastic property to
the gradient updating process of OCA searching. Further-
more, compared with the original OCA algorithm, S-OCA
speeds up the search process dramatically, which enables
OCA applying on large datasets.

3.1 First stage: K-means clustering and dimen-
sional reduction

In [10], a two-stage LDA method proposed to overcome
the singularity problem of LDA. The first stage of this
method maximizes the separation between different classes
via QR decomposition on a small between-class scatter ma-
trix involving the class centroid. This method gains effi-
ciency in both time and space costing.

Similarly, in the first stage of S-OCA algorithm, we first
cluster images in each class using K-means clustering algo-
rithm. Without loss of generality, we represent each class by
K clusters instead of one cluster which is used in LDA/QR,
as many datasets do not satisfy the assumption that the data
in same class is with one single Gaussian distribution. Ob-
ject in COIL data sets is an example, where there are 72
images for each object which were take at pose intervals of
5 degree. Obviously, it is not accurate to use the centroid of
each class to represent all the data in each class. However,
by using K-means algorithm, we cluster the data in the one
class into several clusters, and the centroid of each cluster
gives a more accurate representation of the data in one class.

After we cluster data in each class, we reduce dimension
of training and test data from original high dimension space
into a low dimensional space. We define the the between-
cluster scatter matrix as follows:

Sb =
1
N

Σk
i=1Ni(mi −m)(mi −m)T = HbH

T
b

And the precursor Hb of the between-cluster scatter ma-
trices is computed as follows:

Hb =
1√
N

[
√

N1(m1 −m), · · · ,
√

NK(mK −m)] (7)

here N is the number of clusters in the total training set, mi

is the centroid of the ith cluster, m is the global centroid of
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the training data set and K is the number of clusters. Then,
the general linear dimensional reduction methods, such as
Singular Value Decomposition (SVD) is applied in Hb.

Hb = ASV T (8)

where A ∈ <n0∗n1 is the eigenvector matrix, n0 is the orig-
inal data dimension, n1 is the reduced data dimension in the
first stage, S is the diagonal matrix consisting of the set of
all eigenvalues of Hb’s covariance matrix C. V is the ma-
trix consisting of the set of all eigenvectors of C. After we
get the eigenvector matrix A, we reduce the original data
from original dimension n0 to low dimension n1.

3.2 Second stage: OCA search on the low dimen-
sional Grassmann manifold

In the second stage of S-OCA, OCA is applied on the low
dimensional Grassmann manifold. For global optimization,
in [11], a stochastic component is added to gradient updat-
ing in Eq.(6). In the S-OCA algorithm, the gradient of F is
numerically approximated using a finite differences:

αij =
F (Ũ)− F (U)

ε
, 1 ≤ i ≤ d, d < j ≤ n, (9)

for a small ε > 0. Here, the matrix Ũ = QT eεEij J is an
n × d matrix that differs form U in only the ith-column
which is now given by

Ũi = cos(ε)Ui + sin(ε)Vj , (10)

where Ui, Vj are the ith and jth columns of U and V ,
respectively, with V ∈ <n×(n−d) is any matrix such that
V V T = In−d and UT V = 0.

For a step size δ > 0, we will denote the search process
at discrete times U(tδ) by Ut. Then, a discrete approxima-
tion of the solution of Eq.(6) is given by,

Ut+1 = QT
t exp(δAt)J, (11)

where At =
∑d

i=1

∑n
j=d+1 αij(Ut)Eij and Qt+1 =

exp(−δA)Qt.
Note that in the original OCA, the performance function

F is computed as the average of function h on all the train-
ing images in all class. That mean, in order to update F , we
should compute h on all images in all the class. This is in-
efficient when the number of training data is in large scale.
In S-OCA, instead of update F on all the training images in
each class. We random choose a small subset image in each
class and update F accordingly. That is,

F (U) =
1

Cksubtrain

C∑
c=1

ksubtrain∑

i=1

h(ρ(I ′c,i, U)− 1) (12)

Algorithm 1: Scalable OCA Algorithm

Input: Data matrix I = Itrain + Ttest, where I ∈ <n0×N ; the
number of clusters in each class K; the reduced dimension in the
first stage n1; the OCA search iteration T ; OCA optimal subspace
d;
Output: Reduced data matrix IL

Stage I:

1. Apply K-Means clustering on Itrain.

2. Construct the matrix Hb as Eq.(7), where Hb ∈ <n0×K .

3. Apply SV D to Hb as Hb = ASV T and obtains A ∈
<n0×n1 .

4. Get low dimensional data I1 ← AT I , where I1 ∈ <n1×N .
Stage II:

5. Let U0 ∈ G(n1, d) be any initial basis.

6. for t = 1:T-1,

(a) Compute F (Ut) according to Eq.(1) and (12).

(b) Using the value of Ut, generate a candidate value Y
according to Eq.(11).

(c) Compute F(Y) according to Eq.(1) and (12).

(d) If F (Y )) > F (Ut), Ut+1 = Y , otherwise, Ut+1 =
Ut.

end for

7. ÛT ← Ut+1

8. IL ← ÛT IL

where ksubtrain is the number of training images chosen for
each class.

As the images in each class is randomly selected, it adds
stochastic gradient updating for F , which is important for
avoiding local maxima of OCA. Furthermore, the OCA
search will be sped up, as only a subset of training images
in each class is selected for gradient updating. The pseu-
docode for this algorithm is given in Algorithm 1.

3.3 Time complexity analysis

Now we have a look of the computational complexity of
OCA and S-OCA. For S-OCA, we only consider the time
consuming in the second step as the time consuming in the
first stage is ignorable when compared with that of the sec-
ond stage. The computational complexity of each iteration
of the algorithm is Cn = O(d×(n−d)×ktest×ktraining×
n × d). Cn is obtained by the following observations. The
dimension of the gradient vector is d× (n− d), which can
be seen from Eq. (6) (as there are d × (n − d) Eij’s). For
each Eij , in order to compute αij(U), we need to com-
pute F (eεEij U), which requires to compute the ratio (Eq.
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Figure 1. Evolution of performance F (Ut) and recognition accuracy versus t on (a) ORL dataset; (b)
COIL dataset

(1)) for each test image, which again requires a search of
the closest training image in the same class and the clos-
est in other classes. Therefore estimating the gradient re-
quires the given computational complexity. By exploiting
the structure of A(U), an O(n) updating algorithm can be
achieved and thus it can be ignored. The overall compu-
tational complexity is therefore Cn × T , where T is the
number of iterations.

Note that the OCA algorithm requires solving an opti-
mization problem with dimension of d× (n−d); for recog-
nition applications based on images, n is typically on the
order of 10, 000. In [11], OCA has been implemented and
demonstrated on recognition problems with n of 10, 000.
However, due to its computational complexity, OCA has not
been used widely for recognition applications.

The search space for the S-OCA, however, is reduced to
the low Grassmann manifold with dimension of d×(n1−d),
and we use a subset of training image instead of all the train-
ing images in each class to update F , thus, the computa-
tional complexity for each iteration of the scalable OCA is
C1 = O(d×(n1−d)×ktest×ksubtrain×n1×d). Compared
with original OCA, we can expect a factor of n0×ktrain

n1×ksubtrain

improvement in terms of computational complexity.

4 Experimental results

We have applied the scalable OCA algorithm to the
search for optimal linear basis successfully on a variety
of datasets. Due to the limited space, we restrict to two
datasets: the ORL face recognition data set 2 and one object

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facesataglance.html

Dataset n0 n1 C N K d
ORL 10,304 40 40 400 5 10
COIL 1,024 20 100 7200 6 10

Table 1. Statistics for our Real Test Data Sets

dataset: the COIL dataset 3. Table 1 shows the experiment
setting of these two data sets. For both datasets, we use half
images from each class for training and half for testing.

Figure 1 shows the evolution of performance function
F (Ut) and the recognition rate. As the space is limited, in
this paper, we only show the case when ksubtrain=1 for both
datasets. We can see the F can achieve near 1 through 500
iterations running and the classification accuracy reaches
100% in both datasets. Compared to the recognition per-
formance of original OCA, we can see the recognition per-
formance is not decreased with a smaller number of training
set is used. Figure 2 shows the time cost of each iteration
running of the S-OCA algorithm with respect to the num-
ber of the subset of training data being randomly chosen.
We can observe that the running time is nearly linear with
the number of training images. These results confirm the
theoretical complexity analysis in section 3.3. When com-
pared with the original OCA, the running time of S-OCA is
reduced in the order of magnitude. Take the experimental
result on ORL data sets for example, it takes original OCA
about 173 seconds for one iteration, while for the S-OCA,
it only takes 0.1 second for one iteration, with the same ex-
perimental setting.

3http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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Figure 2. Scalability of scalable OCA with re-
spect to the number of subset of training im-
ages on (a) ORL dataset; (b) COIL dataset

5 Conclusion

OCA obtains the optimal basis through a stochastic
search process on a Grassmann manifold and shows good
recognition performance on the many applications. How-
ever, the computational complexity is heavy when OCA is
applied to the datasets with large number of training data. In
this paper, a scalable OCA method using a two stage strat-
egy is proposed. In the first stage, the data in each class is
clustered into several clusters by using K-means algorithm
and the dimension of training and test data is reduced into
a low dimension space. In the second stage, OCA search
is performed in the low dimension space where a numerical
approximation method is used for gradient updating. In the
process of optimal basis searching, instead of using all the
training images in each class, a small subset of image from
the training set of each class is randomly chosen to update
the gradient of performance function F . When compared
with the original OCA, the computational cost is reduced in
magnitude order while the recognition performance is kept.

The experimental results on ORL and COIL datasets
show promising performance of the S-OCA algorithm, in
term of both of the recognition accuracy and running time.
More experiments on complex datasets will be conducted in
the future.
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