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Multi-Stage Optimal Component Analysis

Yiming Wu, Xiuwen Liu, Washington Mio

Abstract- Optimal component analysis (OCA) uses a
stochastic gradient optimization process to find optimal rep-
resentations for general criteria and shows good performance
in object recognition applications. However, OCA often re-
quires extensive computation for gradient estimation and linear
representation updating. To significantly reduce the required
computation, in this paper, a multi-stage learning process is
proposed which decomposes the original optimization problem
into several levels. As the learning process at each level starts
with a good initial point obtained from next level, the multi-
stage OCA algorithm can speed up the original algorithm signif-
icantly and make OCA learning feasible for many applications.
We illustrate the effectiveness of the proposed method on the
application of face classification.

I. INTRODUCTION

Over the last ten years or so, 2-D image object recognition
using statistical methods has become a popular area of
research and one of the most successful applications of
image analysis and understanding. However, as images are,
in general, rather high dimension, the statistical method is
difficult and often infeasible to apply and analyze with high
dimensional data. On the other hand, it is well-known that
images are generated by imaging processes with typically
a small number of physical parameters such as lighting,
orientation, camera distance, etc. This motivates a search for
methods that can reduce image dimensions without severe
loss in information. A commonly used method is to project
images into a low dimensional subspace and use this projec-
tion for processing. For instance, let I be an image reshaped
into n x 1 vector and let U be an n x d orthogonal matrix
denoting a basis of an orthogonal d-subspace of R'(n >» d),
the vector a(I) = UTI C Rd, also called the image
coefficients, provides a d-dimension subspace representation
of I.

In recent years, many approaches have been brought
to bear on linear representation problem. We will briefly
review some of them, including Principle Component
Analysis (PCA)[ 1] [2], Independent Component Analysis
(ICA)[3], Canonical Correlation Analysis (CCA)[4], and
Linear Discriminative Analysis (LDA)[5], etc. PCA finds a
set of the most representative projection vectors by eigen-
decomposition of the data's covariance matrix. It is an opti-
mal linear technique for data dimension reduction and data
reconstruction. However, when applied to the classification
problem, PCA is not optimal as it can not utilize the class

Yiming Wu and Xiuwen Liu are with the Department of Com-
puter Science, Florida State University, Tallahassee, FL 32306, E-mail:
{ywu,liux} @cs.fsu.edu. Washington Mio is with the Department of
Mathematics, Florida State University, Tallahassee, FL 32306, E-mail:
mio@math.fsu.edu.

information for class projection. ICA is a more general
method than PCA which captures both second and higher-
order statistics and projects the input data onto the basis vec-
tors that are as statistically independent as possible. However,
ICA suffers from computational expensiveness, which limits
its application to high-dimension data classification. CCA
is a way of measuring the linear relationship between two
multidimensional variables. It finds two bases, one for each
variable, that are optimal with respect to correlations and, at
the same time, it finds the corresponding correlations. The
LDA uses the class information and finds an optimal basis
that maximize the between-class scatter while minimizing
the within-class scatter. The optimal basis is readily com-
puted by solving a generalized eigen-decomposition to the
scatter matrices. A limitation of LDA lies in the fact that
it assumes the conditional distribution is Gaussian with the
same variance. Furthermore, the objective function of LDA
requires that one of the scatter matrices be non-singular.
However, in many real applications, such as face recognition
and text classification, all scatter matrices in question can be
singular since the dimension of data, in general, exceeds the
number of data points. Thus, although these methods have
been widely used and satisfy certain optimality criteria, they
may not necessarily be optimal for a specific application at
hand [6][7].

Unlike these methods, Optimal Component Analysis
(OCA) [8] [9] is a recently proposed stochastic method which
gives a general optimality criterion for applications. The
search for optimal linear representation, or an optimal sub-
space, is based on a stochastic optimization process which
maximizes a pre-specified performance function over all
subspaces of a particular dimension. [8][9] shows its good
performance on object recognition.

However, as OCA search is a stochastic process, the
searching time for optimal basis is high, which becomes
a main obscure to apply OCA to real applications. In our
previous work, a two-stage strategy is proposed to deal with
this problem [11]. In this method, the input data is first
reduced to a lower dimension using dimension reduction
methods like PCA, LDA, etc., then OCA search is performed
in the reduced space. As the searching space is reduced,
the OCA will be significantly sped up. This method shows
its good performance in certain applications. But when we
reduce the data dimension to very low, the performance of
this method is not guaranteed.

Based on the two-stage OCA method, in this paper, a
multi-stage strategy is proposed to solve these problems.
In this method, the data dimension is first hierarchically
reduced to several lower levels through several shrinkage
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matrices. The shrinkage matrices can be obtained using
dimensional reduction methods such as PCA. Then the OCA
search is performed in the lowest level with an initial basis
obtained using common dimension reduction methods, such
as PCA, LDA, etc. We denote the level with the original
data dimension by level 0 and the lowest level by level
L. Then the following idea is applied recursively in each
level 1 < L: (i) optimize the recognition performance in the
reduced space by performing OCA searching with an initial
basis obtained from the next lower level, and (ii) expand
the optimal subspace to the bigger space in a pre-specified
way. By applying this decomposition procedure recursively,
a hierarchy of layers is formed. We show the optimal
performance obtained in the reduced space is maintained
after the expansion. Thus, the learning process of each level
starts with a good initial point obtained from the next level.
Also, this speeds up the original algorithm significantly since
the learning is performed mainly in reduced spaces, which
makes OCA learning feasible for many applications.
The rest of the paper is organized as follows: Section II

gives a overall review of OCA method and the proposed
multi-stage OCA method is presented at Section III; The
exprimental results on face data sets are presented in section
IV; Section V concludes the paper with a brief discussion.

II. OPTIMAL COMPONENT ANALYSIS

The image classification problem can be formalized as
following: given images belong to several classes, we want to
find an optimal basis which clusters the images belongs to the
same class while at the same time, separates image with those
of other classes as far as possible. OCA is proposed based on
this motivation [8]. Let U C X d be an orthonormal basis
of a d-dimensional subspace of R', where n is the size of
an image and d is the required dimension of the optimal
subspace (generally n>d). For an image I, considered as
a column vector of size n, the vector of coefficients is
given by o(I, U) = UTI C Rd. Let there be C classes
to be recognized from the images; each class has ktrain
training images (denoted by 'ci,, Ic,ktri) and kcross
cross validation images (denoted by I'J,... . ,I' ). A
quantity p is defined as follows:

pI:U) =minj d(IC',i ; U) + e

where

d(Ii, 12; U) a(I, U)- a(12, U) (2)

e > 0 is a small number to avoid division by zero. Here
p measures how well the nearest-neighbor classifier applied
to the data projected onto U identifies the elements Ic,i as
belonging to class c.

For easy handling, we scale the quality p using the
performance function F. F is defined in the following way:

I 1Ckcross
F(U) 1Sk, h(p(I',iU) -1). (3)

Ckcross C=l i=l

where h(.) is a monotonically increasing bounded function
is used to control bias with respect to particular classes
in measurements of performance. In our implementation,
h(x) = 1/(1 + exp(-2(x)) where Q controls the degree of
smoothness of F(U). As stated in [8], when we let Q >o- ,

F is precisely the recognition performance of the nearest
neighbor classifier after projection to the subspace U.
Under this formulation, F(U) = F(UH) for any d x

d orthogonal matrix H as the distance d(Il, '2; U) =

d(Il,12;UH); the choice of 2-norm in d(Il,12,U) allows
for this equality. In other words, F depends on the subspace
spanned by U but not on the specific basis chosen to
represent that subspace. Therefore, our search for optimal
representation(s) is on the space of d-dimensional subspace
rather than on their bases. Let Qn,d be the set of all d-
dimensional subspaces of Rn; it is called a Grassmann
manifold. It is a compact, connected manifold of dimension
d(n -d). An element of this manifold, i.e., a subspace, can
be represented by a basis. Let U be an orthonormal basis
in ,Xxd such that span(U) is the set of all the orthonormal
bases of span(U), i.e., [U] {UH H C Rdxd,HTH =

Id} C Qn,d. The problem of finding optimal linear subspace
for recognition becomes an optimal problem:

Uarg max F(U)
gUG9.,d()

In [8], a stochastic gradient-based algorithm is used to find
an optimal subspace U. Since Grassmann manifold Q(n, d)
is a curved space (i.e., let u1 C g(n, d), u2 C Q(n, d), but
u1 + u2 , Q(n, d)) , as opposed to being a (flat) vector-
space, the gradient process has to account for its intrinsic
geometry. The performance function F can be viewed as a
scalar-field on Q(n, d). A necessary condition for U to be a
maximum is that, for any tangent vector at U, the directional
derivative of F in the direction of that vector should be
zero. Based on this, in this algorithm, we first initialize a
random basis U, then at each iteration, the gradient vector
of F with respect to U, which is a skew-symmetric matrix,
is computed. By following the gradient, a new solution is
generated, which is used as a proposal and is accepted with
a probability that depends on the performance improvement.
If the performance of the new solution is better than the
current solution, it is always accepted. Otherwise, the worse
the new solution's performance, the lower the probability the
solution is being accepted.

However, a brute force implementation of OCA is typically
computational expensive and may prevent its wide use in
certain applications. The computational complexity Cn of
each iteration of this algorithm is

C= O(d x (n- d) x ktest x ktraining x n x d)
Cn is obtained by the following computation. d x (n -d) is

the dimension of the gradient vector. For each dimension and
for each test image, the closest images in all the classes need
to be found to compute the ratio p in Eq.(l) and performance
function in Eq.(3), this gives the product ktest x ktraining.
The term n x d comes from Eq.(2). Therefore, we obtained



the complexity for one iteration as the expression. The overall
computational complexity is Cn2 x T where T is the number
of iterations.
From the above analysis, we see that the computation at

each iteration depends on several factors and the complexity
is 0(n2). For typical applications, n, which is the number of
pixels in an image, is relatively large. Also when n is large,
the dimensional of the search space will also be large. (In
the Grassmann manifold, it is (n -d) x d, is large). Thus
the algorithm can be time consuming.

III. MULTI-STAGE OCA

In our previous work, similar with the two-stage LDA
methods presented in [10], a two-stage OCA method is
proposed to deal with the heavy computational cost problem
[11]. In the first stage of this method, the dimension of the
input data is reduced using certain well-known dimensional
reduction methods, such as PCA, ICA, LDA, RCA, QR,
etc. In the second stage, OCA search is performed in the
lower dimensional space. Obviously, as the data dimension
is reduced, the search space will also be smaller and the OCA
search time will be reduced accordingly. However, a hidden
problem is when we reduce the dimension to very low, the
good performance is not guaranteed. In this paper, we extend
the two-stage OCA method and proposed a method called
multi-stage OCA.

A. Multi-Stage Learning

The learning process of multi-stage OCA is illustrated in
Figure 1. We pre-define the number of levels L, Level 0 is
called the highest level and level L is the lowest level. Then
we recursively shrink data II (0 < I < L) to get dimension
reduced data 11+1 by multiplying it with shrinkage matrix
Al at each level. We denote the shrinkage factor as ml, then
the size of data at level I is n,t no _, and the size ofMl 117i= 1
shrinkage matrix Al is ni x nl+±, where n, is the data size
at level 1.

Note that our goal is to find an optimal basis Uo of size
no x d at level 0. To fulfill this task, we hierarchically
search the optimal basis at each level. The search begins
from level L on 9nL,d with images size nL. The search
can be effective since the learning space 9Ln,d is relatively
small and the computational complexity of each iteration is
low. After getting an optimal basis UL at level L, we obtain
basis UL 1 of level L -1 by expanding UL. Then we use
UL- 1 as an initial point to perform the search at level L -1
on gn_L ,d with images of size nL-1, As we will discuss
later, the performance based on basis UL- 1 will be consistent
with that of UL. Thus, the search can be performed relatively
effectively as it begins with a good initial point. The search
result of this level will be used to obtain a basis UL-2 Of
level L -2, which is used as an initial point for further
search at level L -2. This process is repeated until we have
reached level 0. In summary, the search is performed from the
lowest level L to the highest level 0. The lower the level, the
more efficient the search. The search result of the lower level

Algorithm 1:Multi-Stage OCA Algorithm

Input: Training data matrix 'train C XKt-i-'o, shrinkage factors
ml, --,mL

Output: optimal basis Uo of level 0
1) Choose the dimension shrinkage matrices Al of size nr x nl_r, for

I = 1, ., L. Then shrink the data hierarchically by left-multiplying
Al with image in level 1.

2) Learn starting from level L for the optimal basis UL at level L on
QnL,d with data size nL.

3) For each I = L -1,. , O,
BEGIN

a) let U ATU1±+,
b) using U1 as the initial point, search for the optimal basis U1

at level I on gnl,d with data size nl.
END

provides a good initial point for the next upper level. The
recognition performance keeps on increasing at each level.

Level Image Basis

0

L

Fig. 1. Multi-stage search process.

B. Constraints on Shrinkage Matrix

Now let us have a look what is the constraint the shrinkage
matrix A should have. Recall that the optimal basis U
searched in OCA should have

UT d
Ul Ul = -Idxd (4)

where U1 C Rn, x d is the optimal basis obtained at level 1.
When we up-sample the optimal basis to level I1 using
shrinkage matrix A, the optimal basis at level I1 should
also have

dx d UIT lU-1
(AU1)T(AU1 )
UTATAU1

(5)

Combining Eq.(4) and Eq.(5), we have,

ATA = 'Inlxnl

That mean, the shrinkage matrix should be orthogonal.
Based on this constraints, PCA is a good choice to shrink
data dimension as the transform matrix of PCA satisfies this
constraints.



C. Recognition Performance Analysis

Now let us have a deep explore of the affect of perfor-
mance when we expand basis from lower level to next higher
level. Recall Eq.(3) and Eq.(2), the performance function
F depends only on the distance between the representation
of images d(.,; ). We assume Ul C Rdx1, and Ul-, C
Rdxnl-l are the optimal basis at level I and initial optimal
basis at I1 respectively, and It, It is two image data at
level 1, I- 1, j1- are the image data at level I- 1, then we
have

d(IT, I2; U1) aV(1.(,Ui) a(12,Ui(1)
U1T(I1T U1T-( (IT-12 U

IU1T AI1 U1T AI2l
|lUT1I~ 1 1UT1|

llo(ll l Ul1) - ( I2- ~Ul-l)~
d(1 I-2 ; Ui_l).

Therefore, F (Ui) = F (U_ ), which means the performance
is kept when we expand basis.

D. Computational Analysis

Now let us have a look of how much we gain in term of
computational cost by using the multi-stage OCA algorithm.
For each iteration, the computational complexity with images
of size no is CO = O(dx (nO- d) x ktest x ktrainingx no x d).
While the computational complexity with images of size nr
is

Cnf O(d x (nl- d) x ktest x ktraining x nr x d)
(n,-d)xnl C
(nO-d)xnoXn 0

and the total search time for the multi-stage OCA will be

Ctotal = /1=1=Cn
EL (n,-d)xnl C1 l(no-d)xrno nO (6)
EL (nO-Hf=1 mid) C

1 1 (nO-d)(f(1 m )2 O

Usually we select 2 < L < 5, 10 < d < 100 for many
applications and mi > 1, Eq.(6) will lead to Ctotal < Cno,
thus it is much more efficient to learn using the multi-stage
OCA than the original OCA.

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of the multi-stage OCA
algorithm on face classification applications. The face data
sets used for our experiments are presented in subsection A;
In subsection B, two experiments are performed to illustrate
the performance of multi- stage OCA algorithm. In the first
experiment, we study its performance in term of classification
accuracy and efficiency. In the second experiment, we com-
pare the performance of multi-stage OCA with other classifi-
cation methods, which includes PCA, PCA+LDA, LDA/QR,
original OCA, two-stage OCA etc. In these experiments, K-
Nearest Neighbor(KNN) algorithm is used as the classifier.
The C program is running on a workstation with a Intel
3.00GHz CPU, 8.OG RAM.

A. Data Sets

We have three face data sets for our performance evalua-
tion:

* ORL face data set [12]. It contains 400 face images
of 40 individuals. The image size is 92 x 112. We use
the whole image as an instance, i.e.,the dimension of an
instance is 92 x 112 = 10,304.

* PIE face data set [13]. It contains 66 person with 21
images each. The image size is 100 x 100 = 10,000.

* AR face data set[ 14]. It is a large face image data set.
We use a subset of AR containing 1,638 face images
of 126 individuals. Its image size is 768 x 576. We
first crop the image from the row 100 to 500 and the
column 200 to 550, and then sub-sample the cropped
images with sample step 4 x 4. The dimension of each
instance is reduced to 101 x 88 = 8,888.

TABLE I

STATISTICS FOR OUR REAL TEST DATA SETS

Data set of class
# of data # of training # of test

Data set # of class per class per set per set

ORL 40 10 5 5
PIE 66 21 10 11
AR 126 13 6 7

B. Experimental Results
This part includes two experiments. In the first experiment,

we evaluate the performance of multi-stage OCA algorithm
in terms of recognition accuracy and efficiency. Table I
summarizes the data setting used in the experiment. Here
PCA is used to compute the shrinkage matrix and the
shrinkage level is 3. OCA search is performed in each level
except level 0 for 500 iterations1. The dimension of subspace
d is set to 10. After we get the final optimal basis in
level 0, we perform the classification using K-NN method.
Table II gives the classification accuracy of the multi-stage
OCA algorithm. From the Table, we can have the following
important observations:

* KNN with K = 1 usually performs the best by all
algorithms on these face data sets. These is a clear tread
of decrease in accuracy for each data set as K increases.

* We can see the multi-stage OCA can give good perfor-
mance in terms of classification accuracy. Specially, it
can achieve 100% on ORL and PIE data sets. This is
mainly due to the relatively small within-class variations
in these data.

* For the AR data set, as the data sets are relatively
difficult to classify, the classification accuracy is a little
worse, but is still has better or comparable performance
when compared with other methods[15][16][17].

Now let us have a look of the computational efficiency
gained by the multi-stage OCA algorithm. The running time
and classification accuracy of multi-stage OCA original OCA

'Although we can also search on level 0, we do not do so as the
recognition accuracy already very high till now.



TABLE II
RECOGNITION ACCURACY(%) OF MULTI-STAGE OCA ON SEVERAL

FACE DATA SETS

KNN ORL PIE AR
1 100 100 97.95
3 98.50 99.17 95.24
4 98.00 98.35 94.90
5 95.50 94.36 92.97

TABLE III

TIME COST (S) AND RECOGNITION ACCURACY (%) OF MULTI-STAGE

OCA AND ORIGINAL OCA

are shown on Table III. For each data set, the first row

shows the data dimensions in each level, the second row is
the searching time used in each iteration, and the third row

is corresponding recognition accuracies. The total searching
time is the sum of searching time in the 3 levels. From this
Table, we can see

. The total searching time is greatly reduced compared
with the original OCA algorithm. Take ORL for an

example, when we perform search on the original space,

the running time is about 3 minutes for one iteration,
while it only takes 6.56 seconds with multi-stage OCA;

. The running time of a higher level is larger for those
in lower levels. This is easy to see, as we the level
becomes higher, the searching space becomes larger,
which increases the searching time.

More convincing illustration of performance of multi-stage
OCA is shown in Figure 2. This figure shows the evolution of
recognition accuracy and performance function F of multi-
stage OCA algorithm of 3 levels on these data sets. Here
OCA search runs for 500 iterations. The left figures in each
row show the evolution of recognition accuracy of testing
data. We can see in each level the recognition accuracy is
increased and the recognition accuracy of final iteration in
the previous level is consistent with the initial point of next
level. Take the ORL data set for an example, the performance
reaches 100% in level 2. In this case, we do not need to do the
further search. However, we still list the search performance
in all 3 levels in order to easily compare. The right figures of
each row show the evolution of performance function F. This
proves the good performance of multi-stage OCA method.

Our second experiment is to compare the performance of
multi-stage OCA method with other classification methods,
including PCA, PCA+LDA, QR/LDA, original OCA and

TABLE IV

RECOGNITION ACCURACY(%) OF DIFFERENT CLASSIFICATION

METHODS ON ORL AND AR DATA SET

two-stage OCA. The data set used here are the ORL and
AR face data sets. For a fair comparison, we use the
same experiment setting and experimental results as in [10],
The relevant parameters are as follows: p = 100 principle
components in PCA and the PCA stages of PCA+LDA and
first stage of two-stage OCA algorithm. The classification
accuracies are estimated by 10-fold cross-validation. For
the proposed multi-stage OCA, we use 3 levels and the
dimension of each level is set the same as experiment one.

Table IV shows the recognition accuracy results of different
classification methods on ORL and AR data sets. We can

see that for different number of neighborhood methods,
the proposed multi-stage OCA method can overcome other
methods such as PCA, PCA+LDA, QR/LDA easily. For the
ORL data set, we can see the recognition accuracies of all
OCA type of algorithms (original OCA, two-stage OCA and
multi-stage OCA) can achieve 100%, while others methods
can not. For AR data set, as it is more difficult to classify,
thus the recognition performance is a little worse than ORL
data set. But we can see the OCA type of algorithm also
can overcome the other methods. We can see the recognition
accuracy of multi-stage OCA is very close to that original
OCA algorithm, but the searching time is greatly reduced.
Compared with two-stage OCA, Table IV shows multi-stage
OCA improves recognition accuracy.

V. DIsSCUSSION

Optimal component analysis (OCA) provides a general
subspace formulation and gives an optimal solution for
data classification. However, computational cost is a serious
problem which is a main obscure to apply OCA to real
applications. In order to deal with this problem, in this paper,

we proposed a multi-stage OCA algorithm which extend the
two-stage OCA algorithm by fist reducing the data to several
levels of lower dimension using corresponding shrinkage
matrices. Then OCA search is performed at the lowest level.
After we get the optimal basis at the lowest level, we expand
the basis to a higher level and use this expanded basis as

initial basis and perform OCA search in the higher level.
As each level provides a good initial basis for the searching
of the higher level, then the searching time will be reduced
greatly and the performance will be kept.
The optimal basis of OCA is set-valued rather than being

point-valued, which accounts for the improvement of multi-

Dat KNN PCA CLDA QR/LDA OCA 2 stage M stage
Set LDA_____ OCA OCA

1 97.25 95.00 98.25 100 100 100
ORL 3 94.50 94.75 98.00 100 100 100

5 92.25 95.50 98.25 100 100 100
1 65.30 92.45 92.24 100 99.21 100

AR 3 59.05 90.72 90.63 96.49 94.78 96.83
5 57.49 88.50 89.53 95.24 94.11 94.33

Measure Level Level Level
Data Set Quantity 3 2 1 Total Origina

d 50 100 199 10,304
ORL t 0.75 1.39 4.55 6.69 173

accuracy 98.00 100 100 100 100
d 20 100 600 10,000

PIE t 4.28 6.16 15.23 25.67 224
accuracy 99.86 100 100 100 100

d 200 1,000 2,000 8,888
AR t 0.78 5.40 40.22 46.40 421

accuracy 81.97 96.37 97.34 97.95 98.03



Fig. 2. Evolution of recognition accuracy and performance function F on OR
Right row: corresponding performance function F on these data sets.

stage OCA search in each level. While for other linear
dimension reduction methods, such as PCA and LDA, as
the optimal basis of these method is unique, they will not
lead to improvements when we use multi-stage strategy.
This also shows the advantage of OCA algorithm over other
algorithms.
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