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ABSTRACT

We construct a multi-scale model of shape of surfaces in 3D

space based on the heat kernel associated with the Laplace-

Beltrami operator. The model is applied to the analysis of

longitudinal neuroimaging data collected by the Alzheimer’s

Disease Neuroimaging Initiative. We use measures of shape

deformation energy to quantify, compare and create maps of

regional changes in hippocampal shape in normal aging, pro-

gression of Alzheimer’s disease and mild cognitive impair-

ment over a one-year period.

Index Terms— Shape space, heat kernel, hippocampal

atrophy, Alzheimer’s disease, ADNI.

1. INTRODUCTION

We introduce a 1-parameter family of shape metrics derived

from a multi-scale representation of parametric surfaces in

3D space based on the heat kernel. The metrics and the as-

sociated deformation energies are applied to the analysis and

comparison of relative changes in hippocampal shape and size

over a 1-year period in normal (NL) aging, progression of

Alzheimer’s disease (AD), and subjects diagnosed with mild

cognitive impairment (MCI). MCI is regarded as a transitional

stage to AD. The analysis relies on longitudinal data collected

by the Alzheimer’s Disease Neuroimaging Initiative (ADNI),

a large multi-site study of 800 elderly subjects [1]. This pa-

per is based on magnetic resonance (MR) scans of the brain

acquired at two time points, one year apart, of a subset of 425

subjects classified according to the baseline diagnoses as fol-

lows: 134 NL, 211 MCI, and 80 AD. We use the proposed

shape metrics to quantify regional shape dissimilarity and to

create statistical maps that identify specific areas of the con-

tour surface of the hippocampus (HC) where differences in

anatomical characteristics of the aforementioned dynamical

processes are most salient according to the model. Changes

in hippocampal shape and volume due to neurodegeneration

in AD are well documented in the literature and have been

approached with a variety of methods such as measures of

This research was supported in part by NSF grants DMS-0713012

and CCF-0514743, and NIH Roadmap for Medical Research grant U54

RR021813.

radial compression and tensor-based morphometry; cf. [2, 3]

and references therein.

The proposed approach to shape may be viewed as a con-

tinuous extension to surfaces of the classical Procrustes anal-

ysis of shape [4]. As in [5], the model is based on a first-order

parametric representation, not just on the positions of points

in 3D space. First-order metrics are of interest because they

are more sensitive to non-linear deformations such as those

associated with tissue loss in the hippocampus. However, un-

like [5], the model is sensitive to size and the first-order term

in the metric is smoothed out with the Riemannian heat kernel

allowing us to suppress noise and focus on robust first-order

differences at the most relevant scales. The shape metric is

also employed in the construction of anatomical atlases as

sample mean shapes. We use a hippocampal atlas as a refer-

ence anatomy for the parametric model, as well as a common

domain for the analysis and comparison of measures of 1-year

shape variation in different subjects and groups.

The hippocampi of all subjects were segmented from MR

volumes with the techniques of [2]. A triangle mesh was con-

structed to represent the contour surface of each segmented

hippocampus. Following a standard practice, we chose the

baseline scan of one of the normal subjects as a reference

and registered all other meshes with the reference mesh M
using the direct mapping method of [6]. All surfaces were

re-meshed by transferring the mesh structure of the reference

shape via the correspondences, so that they are all equipped

with compatible triangulations and parametrized over M .

The continuous shape model is developed in Section 2 and

the discretization in Section 3. The construction of atlases is

discussed in Section 4, which is followed by applications to

ADNI data in Section 5, a summary and discussion.

2. A MULTI-SCALE MODEL OF SHAPE

Let M be a closed, connected surface with a fixed Rieman-

nian metric; that is, a surface whose tangent space TpM at

each point p is equipped with an inner product 〈 , 〉p that varies

smoothly with p. A parametric 3D shape modeled on M is

represented by a mapping α : M → R
3, where R

3 denotes

3D Euclidean space. As in conventional Procrustes analy-

sis, we center α by translating it so that
∫

M
α(p) dσ(p) = 0,
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where dσ is the area element of M .

Let ΔM be the Laplace-Beltrami operator on M and

K(p, q, t) the associated heat kernel, p, q ∈ M and t > 0. If

0 = λ0 < λ1 � λ2 � . . . are the eigenvalues of −ΔM with

orthonormal eigenfunctions φi : M → R, i ≥ 0, then

K(p, q, t) =
∞∑

i=0

e−λitφi(p)φi(q) , (1)

cf. [7]. Given α : M → R
3, let

α(p, t) =
∫

M

K(p, q, t)α(q) dσ(q) . (2)

α(·, t), t > 0, gives as a scale-space representation of the

shape α. As t increases, the representation smoothes out

the shape by dampening the high frequency terms exponen-

tially. The derivative of α(p, t) with respect to the variable p
is a linear mapping dα(p,t) : TpM → R

3. We adopt the in-

ner product of linear mappings P,Q : TpM → R
3 given by

〈P, Q〉p = trace (Q∗P ), where, Q∗ is the adjoint of Q. For

each t > 0, we consider the Sobolev-type inner product

〈α, β〉t = a

∫
M

α(p) · β(p) dσ(p)

+ b

∫
M

〈
dα(p,t), dβ(p,t)

〉
p
dσ(p),

(3)

where a, b > 0. Note that the heat kernel is only used on the

second term. As in Kendall’s formulation [4] and the Sobolev

model of [5], we could also normalize size with respect to the

proposed metric. However, as one of our goals is to use the

metric to detect change in shape and size due to hippocampal

atrophy, we do not normalize size. As usual, we account for

shape invariance under change of orientation via the action of

the group O(3) of 3×3 orthogonal matrices. If sα, sβ are the

shapes represented by α and β, the t-distance is defined as

dt(sα, sβ) = min
U∈O(3)

‖α − U ◦ β‖t , (4)

where ‖ · ‖t is the norm associated with (3) and ◦ denotes

composition of mappings. One can calculate explicitly the

orthogonal mapping Û that realizes the shape distance. Write

the components of α as (α1, α2, α3) and similarly for β. Let

A be the 3 × 3 matrix whose (i, j)-entry is

aij = a

∫
M

αi(p)βj(p, t) dσ(p)

+ b

∫
M

〈∇Mαi(p, t),∇Mβj(p, t)〉p dσ(p),
(5)

where ∇M denotes the Riemannian gradient. If A = V1ΣV T
2

is a singular value decomposition (SVD) of A, then Û =
V1V

T
2 . Letting β̂ = Û ◦ β, (3) and (4) imply that

d2
t (sα, sβ) = a

∫
M

‖α(p) − β̂(p)‖2 dσ(p)

+ b

∫
M

‖dα(p,t) − dβ̂(p,t)‖2
p dσ(p) .

(6)

If we view d2
t (sα, sβ) as a deformation energy, then (6) ex-

presses the energy as the integral of local contributions. Thus,

we define the energy function Et
α,β : M → R by

Et
α,β(p) = a‖α(p) − β̂(p)‖2 + b‖dα(p,t) − dβ̂(p,t)‖2

p . (7)

The local energy Et
α,β(p) quantifies how much the shapes of

α and β differ at p from the standpoint of the metric dt.

3. THE DISCRETE MODEL

In the discrete model, the reference surface M becomes a

triangle mesh whose vertex and edge sets are denoted V =
{v0, v1, v2, · · · , vn} and E = {e1, e2, · · · , em}, respectively.

The discrete analogue of a Riemannian structure on M is a

prescription of edge lengths. We let �j be the length of the

edge ej . Once the edge lengths are known, other metric quan-

tities such as areas are also prescribed. A parametric shape α
is represented by a piecewise linear map M → R

3. There-

fore α is determined by the values it takes on the vertices of

M . Thus, we write α as the n × 3 matrix whose ith row is

α(vi). To define the discrete derivative, we fix an orienta-

tion for each edge ej . The derivative of α is defined on E
by dα(ej) =

[
α(e+

j ) − α(e−j )
]
/�j , where e+

j and e−j are the

terminal and initial vertices of ej , respectively. The Laplace-

Beltrami operator is discretized as in [8, 9] and its eigenvalues

0 = λ0 < λ1 � . . . � λn and corresponding eigenvectors

φ0, φ1, . . . , φn are calculated with the method of [9]. The

heat kernel is defined as in (1), except that the sum is finite.

The discrete form of (2) is

α(vi, t) =
n∑

�=0

n∑
j=1

e−λ�tφ�(vi)φ�(vj)α(vj)Aj , (8)

where Aj is the area of the star neighborhood of vj in the

first barycentric subdivision of M . To further smooth out

the shape, we often truncate this sum at the rth eigenvalue,

r small, so that the index � only ranges from 0 to r. We can

now discretize the inner product (3) as

〈α, β〉t = a
n∑

i=0

α(vi) · β(vi) Ai

+ b
m∑

j=1

dα(ej , t) · dβ(ej , t) Bj ,

(9)

where Bj is the local area around ej , that is, the sum of the

areas of the two triangles determined by the edge ej and the

barycenters of the triangles adjacent to ej . Lastly, a calcula-

tion shows that the natural discretization of the local energy

Eα,β in (7) as a function defined on the vertex set V is

Et
α,β(vi) = a‖α(vi) − β̂(vi)‖2

+
b

2Ai

∑
j

‖dα(ej , t) − dβ̂(ej , t)‖2Bj ,
(10)

where j varies over the indexes of the edges incident with vi.
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4. HIPPOCAMPAL ATLAS

We denote by [α] the shape associated with a piecewise lin-

ear mapping α : M → R
3. Let [α1], . . . , [αr] be a family of

shapes, with each αi centered. The Fréchet mean shape [ᾱ]
of the family, with respect to the metric dt, is a shape that

minimizes the scatter function

Vt([α]) =
1
2

r∑
i=1

d2
t ([α], [αi]) =

1
2

r∑
i=1

‖α − Ui(α) ◦ αi‖2
t ,

where Ui(α) is the orthogonal transformation that optimally

aligns αi with α. A gradient calculation shows that, at a min-

imum of V , α must satisfy 1
r

∑r
i=1 Ui(α) ◦ αi = α. Thus,

we are interested in fixed points of the mapping T (α) =∑r
i=1 Ui(α) ◦ αi/r. In analogy with [10], we approach this

problem with an algorithm that is based on the assumption

that the fixed point of T is a local attractor and the sam-

ples form a compact cluster in shape space. We initialize the

search with one of the given shapes, say, α = α1. Then, we

update α according to αnew = T (α) until convergence. As

Left Right

Fig. 1. Atlases of the left and right hippocampi.

explained in the Introduction, all hippocampal surfaces are

parametrized over a reference mesh. Fig. 1 shows atlases of

the left and right hippocampi constructed as the mean shapes

of all 134 control samples. We used a representation with 300

eigenfunctions and t = 0.01, and a metric with a = 0.9 and

b = 0.1. By construction, all surfaces are also registered with

the atlas.

5. HIPPOCAMPAL ATROPHY

We describe our analysis of the shape of the left HC, but

the same procedure was applied to the right HC. We also

replace the domain M of all parametrizations with the at-

las constructed in Section 4. We index the subjects with i,
1 � i � 425, and separate them into 3 groups labeled NL,

MCI, and AD according to the baseline diagnoses. The sets

of indexes associated with the subjects in the NL, MCI, and

AD groups are denoted INL, IMCI, and IAD, respectively.

As we are interested in comparing relative shape change

over one year, we first scale the baseline surface of each indi-

vidual so that the first non-zero eigenvalue of −Δ is λ1 = 1
and apply the same scale factor to the follow-up surface. For

the subject labeled i, we compute the energy function of the

deformation from baseline to follow-up, as defined in (7),

which we denote simply by Ei : M → R. Recall that Ei(p)
quantifies the local contribution near p to the total deforma-

tion energy. Fig. 2 (a) shows plots of the mean energy func-

tions and variances for the left hippocampus of the NL, MCI,

and AD groups. Fig. 2 (b) shows analogous plots for the right

hippocampus. The views differ slightly to highlight the re-

gions where shape deformation over 1 year is most salient.

Note that shape change is not uniformly distributed, espe-

cially on the right hippocampus of the AD group. The color

NL MCI AD

Mean

Var.

(a) Left Hippocampus

NL MCI AD

Mean

Var.

(b) Right Hippocampus

Fig. 2. Plots of the mean energy functions and variances for

the left and right hippocampi of the NL, MCI, and AD groups.

scale shown in Figure 2 applies to the mean energy in all

cases, except for the right hippocampus of the AD group,

where the range of values is 0.00–0.13.

Now we compare the energy functions of the subjects in

the NL group with those in the MCI and AD groups, respec-

tively, in order to quantify and characterize regional differ-
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ences in normal aging over a 1-year period with morpholog-

ical changes in MCI and progression of AD. We discuss the

NL-AD comparison, but the same method was applied to NL-

MCI.

For each p ∈ M , we examine the distribution of the val-

ues Ei(p), i ∈ INL, of the energy functions for NL subjects

and compare it with the distribution of Ei(p), i ∈ IAD. Since

we are particularly interested in capturing neurodegeneration,

in which case the deformation energy is expected to be larger,

we apply a 1-tailed t-test to compare the two groups. Fig. 3

shows p-value maps that highlight the regions where differ-

ences on the hippocampus are significant.

NL v. AD NL v. MCI

Left

Right

Top Bottom Top Bottom

view view view view

Fig. 3. P-value maps of normal aging versus MCI and AD.

6. SUMMARY AND DISCUSSION

We developed a multi-scale model of shape of surfaces in

3D space based on a heat-kernel representation derived from

the Laplace-Beltrami operator. The model was applied to the

comparison of hippocampal shape changes in normal aging,

progression of Alzheimer’s disease, and mild cognitive im-

pairment over a 1-year period using longitudinal data col-

lected by the Alzheimer’s Disease Neuroimaging Initiative.

Shape deformation energies were used to quantify regional

morphological changes in the hippocampus under these three

dynamical processes and to create maps that identify regions

where significant group differences are detected by the model.

The measures of shape evolution employed are solely based

on the contour surface of the hippocampus. However, as the

characterization of volume loss due to neurodegeneration is

of primary interest in tracking the disease, in future work, we

will extend the model to the entire hippocampal volume to

produce a model that is more sensitive to tissue loss.
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