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Abstract

A Bayesian approach to identify faces from their IR facial images amounts to testing of discrete hypotheses in presence of nuisance

variables such as pose, facial expression, and thermal state. We propose an efficient, low-level technique for hypothesis pruning, i.e.

shortlisting high probability subjects from given observed image(s). (This subset can be further tested using some high-level model for

eventual identification.) Hypothesis pruning is accomplished using wavelet decompositions (of the observed images) followed by analysis of

lower-order statistics of the coefficients. Specifically, we filter infrared (IR) images using bandpass filters and model the marginal densities of

the outputs via a parametric family that was introduced by Grenader and Srivastava [IEEE Trans. Pattern Anal. Mach. Intell. 23 (2001) 424].

IR images are compared using an L2-metric between the Marginals computed directly from the parameters. Results from experiments on IR

face identification and statistical pruning are presented.
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1. Introduction

Automated identification of people from their facial

images has become an active area of research in recent

years. In particular, infrared (IR) face identification is an

area of great potential with applications in both civilian and

military domains. Past research in IR image analysis has

severely been restricted due to limited public availability of

large datasets. But recent access to cheap, hand-held IR

cameras has addressed this issue, and has made IR image

analysis an area of growing activity (see Ref. [24] for a

discussion). While face identification using visible spectrum

images is very well discussed in the literature (see for

example Refs. [3,13,23] and references therein), the use of

IR in face identification has seen only limited research with

a few exceptions [6,25]. In addition to identification, IR

imaging has recently been utilized for learning the

emotional state of a person [22].

An important issue is: What probability models effi-

ciently and sufficiently describe facial images for use in face

identification? Similar to the visible spectrum image

analysis, statistical inferences are central to IR image

analysis and understanding. Keep in mind that images are

elements of a very high-dimensional space, and they have to

be projected down (either linearly or non-linearly) to

smaller dimensions before any statistical model can be

imposed. There are two broad categories of models

proposed in the literature: in each case images are

considered as realizations of a spatial process on some

domain in R2:

1. Low-level models directly analyze the image pixels to

extract features of interest and impose probabilities on the

features. If the image domain is a finite, uniform grid in R2;

then the image space is a finite-dimensional vector space

and can be projected linearly to a low-dimensional vector

space. Choices of linear projections have included

principal components (PCA) [17], independent components

(ICA) [2,4], linear discriminant (LDA) [1], sparse coding

[21], etc. and they provide bases of analyzing images

through their coefficients. Instead, if the images are

considered as functions on a continuous, rectangular

domain in R2; then harmonic analysis provides several

bases for dimension reduction. Fourier [8], wavelets [20],

ridgelets [7], filtering operators, etc. are some examples. In

view of the locality of objects in images, wavelet bases

have become important in image analysis. In particular, it

is common to use Gabor wavelets to decompose observed

images simultaneously in space and frequency. Since these

representations are non-physical, they retain only limited

knowledge of object shapes, geometries, placements, etc.
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However, their advantage lies in the efficiency of their

implementation.

2. High-level models compare observed images with the

images synthesized from 3D templates of known objects, to

find the best match and to impose probabilities on (template)

transformations. These models use physical principles to

capture the image variations. Even though these represen-

tations capture object shapes, and are robust enough for

object recognition, their applications have been rather

limited. Given tremendous variability associated with the

imaged scenes, high-level models may not be feasible in

modeling all possible objects present in a scene.

In IR face identification, the goal is to identify facial

shape or some geometrical features, a task that can be

accomplished by using high-level models. But to obtain

computational efficiency, one aims to utilize a combination

of low-level and high-level techniques to achieve a desired

performance level. In this paper, we present a low-level

technique to analyze given IR facial images and to generate

a set of high-probability subjects. The selected subjects can

then be tested under a high-level system for face

identification although that step is not explored here in

this paper. To start with, we motivate and explain the goals

of this paper.

1.1. Why infrared face recognition?

Most frequently used sensors for performing face

identification are the visible spectrum cameras that

collect static or video sequences of scenes containing

people. Although visible spectrum images, in general,

provide sufficient resolution, sensitivity and discrimi-

nation to identify people, their application in designing

automated face identification systems has seen only

limited success. One major difficulty lies in the camera

sensitivity towards nuisance variables such as the nature

of illumination shining on the imaged face. Visible

spectrum images change drastically depending upon the

location, color, and other properties of the incident light.

On the other hand, IR cameras provide a measure of

thermal emissivity from the facial surface and are

relatively stable to the illumination variability. IR

cameras operate in the wavelengths ranging from 0.78

to 24 mm, and provide images for identification even in

dark environments. Continuing advances in IR camera

technology has resulted in cheap, hand-held IR cameras,

both cooled and uncooled, that can provide robust, high-

resolution pictures in all regions of IR spectrum.

We qualitatively illustrate the stability of IR face images,

by studying some images of a subject in widely different

thermal states: in outdoor breezy conditions, indoor in a

warm room, after a workout, etc. To generate large

variability, we even forced some artificial thermal states

by wiping the face with a wet cloth or having long exposure

to a full sun. Shown in Fig. 1 is a sample of these pictures

that demonstrate the ability of IR imaging to provide

sufficient resolution and discrimination, and yet be robust to

change in thermal states. Top panels show some pictures

taken under different conditions, while bottom panels

display some artificial thermal states forced to generate a

larger variability. Qualitatively, it follows that the varia-

bility in these pictures is much less than the variability in

visible spectrum images caused by illumination differences.

For a formal quantitative analysis of invariance of IR

images to incident illumination, refer to Ref. [29].

Limitations of IR cameras, such as their inability to

capture visible spectrum (colors) or having resolutions less

than visible spectrum cameras, should also be acknowl-

edged. Perhaps a more comprehensive system should

include both visible and IR spectrum cameras to avoid

individual pitfalls and to perform identification as joint

statistical inference on multi-sensor data.

Fig. 1. IR pictures of a subject’s face under widely varying thermal conditions. Bottom panels show artificial thermal states generated to study large variability.
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1.2. What is statistical hypothesis pruning?

A comprehensive way to characterize face images is to

develop 3D models of the faces, including the facial meshes

and thermal emissivities, and search over these physical

representations given the observed images [15]. As shown

in Fig. 2, a facial surface can be represented by a dense

polygonal mesh (left panel) and the thermal state can be

denoted by texture mapping a thermal field (middle panel)

on this mesh (right panel) [28]. In this setup, face

identification is performed using detailed models on

physical geometries, thermal emissivities, relative pose

and motion [5,18]. The main idea is to find transformations

of 3D templates such that their synthesized images best

match the observed images. The transformations form a set

of nuisance variables for hypothesis selection.

Let A be the discrete index set of all possible subjects

that can be present in an image. Given an image I; or a

collection of images, our goal is to detect and identify

subject(s) present in that image. Bayesian identification

corresponds to selecting a subject with the largest posterior

probability, i.e. the recognized identity is given by â ¼

argmaxa[A PðalIÞ; where PðalIÞ is the posterior prob-

ability: PðalIÞ ¼ PðIlaÞPðaÞ=PðIÞ; for a [ A and I is an

image. Here PðIlaÞ is the likelihood function of a for a fixed

image I and is obtained as an integral over the set S of all

nuisance variables (such as pose, thermal variation, motion,

etc. as described in Refs. [5,12]) according to: PðIlaÞ ¼Ð
S PðIla; sÞPðslaÞgðdsÞ; where gðdsÞ is a reference measure

on S: This setup is motivated by Grenander’s deformable

template theory [9] and has been applied to the analysis of

IR images of military targets in Refs. [5,18]. In general, the

product space S £A is huge and it is computationally

expensive to implement a strategy that integrates over all of

S £A to find â: Instead, it is useful to prune the set A to

only a small subset A0 of high probability subjects, using an

efficient low-level technique, and apply the high-level

estimation only to the set S £A0: We term the process of

selecting the subset A0; for a given observation I; as

statistical hypothesis pruning. It is accomplished by

defining a new probability ~PðalIÞ that is faster to compute

and satisfies the condition that high probability a’s under
~PðalIÞ also have high probabilities under PðalIÞ: In other

words, choose a distribution ~P; and constants g1; g2 such

that for all images I; we have:

{a [ AlPðalIÞ $ g1} # {a [ Al ~PðalIÞ $ g2}:

In this paper we do not study the use of A0 as an input to a

deformable template method for face identification. We

refer to the existing literature [5,10,18] for such studies.

1.3. Strategies for hypothesis pruning

How to find a probability ~PðalIÞ that can be used for

statistical hypothesis pruning? Requirement of efficiency

dictates the use of a low-level technique. There are a number

of techniques that extract low-level features from images

and image analysis then becomes a statistical analysis of

these extracted features.

Motivated by a growing understanding of early human

vision, a popular strategy has been to decompose images

into their wavelet coefficients using a family of Gabor

wavelets. Once the images are decomposed the image

statistics can be studied via the statistics of the coefficients.

So the next question is: what probability models sufficiently

characterize the behavior of wavelet coefficients of images?

Zhu et al. [30] have shown that the (univariate) histograms

of the wavelet coefficients, obtained using a collection of

wavelets at different scales and orientations, capture

sufficient local features to characterize homogeneous

textures. The choice of histograms as sufficient statistics

implies that only the frequencies of the coefficients are

relevant and their location information is discarded [14]. To

gain efficiency, the histograms have been successfully

replaced by a family of parametric densities, as described in

Refs. [11,27]. The three parameters of the density

completely characterize the marginal density of wavelet

coefficients, denoting a significant reduction in the rep-

resentation, and are shown to depend only on mean,

variance and kurtosis of the coefficients, thereby implying

a simple estimation procedure. ~P will be defined using a

metric on the space of these parametric densities, and the

parametric nature of these representations will make the

computation of ~P efficient.

The experiments described later are based on the

following databases. FSU face dataset consists of images

taken by a Raytheon PalmIR PRO thermal camera that

operates in 7–14 mm spectral range and generates images of

size 320 £ 240 in 8-bit BMP format at a (typical) sensitivity

level of 100 mK. Shown in Fig. 9 are some examples; this

database consists of 20 frontal IR images of each of the nine

subjects, at varying angles and facial expressions. In

addition, we have also used the Equinox database of IR

face images, and IR images provided at the CVBVS’01

web-site, courtesy of Honeywell Laboratories.

This paper is organized as follows. Section 2 describes

the process of wavelet decomposition of images and utilizes

a parametric probability to model the marginal densities of

the wavelet coefficients. Section 3 uses an analytical

expression for L2 metric between these probabilities to

Fig. 2. 3D model for IR face images: the surface geometry (left panel) is

registered to the thermal texture (middle panel) and results in a 3D model of

IR face (right panel).
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impose a pseudo-metric on IR image space. Section 4

defines a pruning probability ~P and describes experiments to

illustrate these ideas for IR face identification.

2. Models for wavelet decompositions of images

Our choice of low-level image representation is based on

linear bandpass filtering and wavelet decomposition of the

observed images. One reason for performing wavelet

decomposition is that wavelet coefficients better lend to

statistical modeling than the original images. Before we

present details, we introduce some notation. Given an IR

image I and a bank of filters {FðjÞ; j ¼ 1; 2;…; J}, we

compute, for each filter FðjÞ; a filtered image IðjÞ ¼ I p FðjÞ;

where p denotes the 2D convolution operation. Elements of

IðjÞs are called the wavelet coefficients of image I: Let the

pixel location be denoted by z ¼ ½z1 z2� [ R2: Following is

a listing of the filters used in this paper:

1. Derivative filters. Pixel values in the directional

derivative of an image I are given by:

a1

›I

›z1

þ a2

›I

›z2

for a1; a2 $ 0; a2
1 þ a2

2 ¼ 1:0: Set a1 ¼ 0 for extracting

the horizontal edges, or a2 ¼ 0 for extracting the

vertical edges.

2. Gabor filters. These are bandpass filters with Gaussian

kernels centered around specific wavenumbers (see

Ref. [16] for details). For an angle u; a Gabor filter is

given by:

Fs;uðzÞ ; expð2ð~z2
1 þ ð~z2Þ

2Þ=2s2Þexp 2j
2p~z1

s

� �
;

~z1

~z2

" #
¼

cosðuÞ 2sinðuÞ

sinðuÞ cosðuÞ

" #
z1

z2

" #
;

where s denotes the scale/resolution associated with

the filter.

3. Laplacian of Gaussian filter. Higher order spatial

derivatives of an image also form important features

for image analysis. As an example, the Laplacian of an

image preceded by a Gaussian smoothing makes a

useful filter. In this case, the filtered image is obtain by

the operation 7ðI p GÞ where

7 ¼
›2

›z2
1

þ
›2

›z2
2

;

and

G ¼ exp 2
z2

1 þ z2
2

2s2

 ! !
:

In addition to the above-mentioned filters, one can also

utilize other filters: neighborhood operators, steerable

filters, interpolation filters, and so on. Each class of

filter selects and isolates certain features present in the

original image. In this paper, we do not address the

issue of optimal filter selection in the context of face

identification although it is an interesting problem by

itself. Instead, we will assume an arbitrary choice of

filters. Please refer to Ref. [19] for a discussion on

selecting optimal filters for a specific application.

Statistical modeling of images has been of great focus in

last few years, and a major discovery has been the non-

Gaussianity of image representations. (A review of recent

results in statistical modeling of images is presented in Ref.

[26].) As an example, wavelet coefficients of images are

found to have high kurtosis, heavy tails, and sharp cusps at

the median. Several probability models have been proposed

to explain this phenomenon, and in recent papers [11,27] we

have proposed a three-parameter family of probability

densities to model the univariate density of wavelet

coefficients. The starting point of this derivation is a

(high-level) physical model which assumes images to be a

superposition of views (or 2D profiles) of arbitrary targets

from arbitrary poses, and at arbitrary thermal states. Under

this model, and certain other simplifying assumptions, the

resulting density function of a wavelet coefficient is given

by:

f ðx;m; p; cÞ ¼
1

Zðp; cÞ
lx 2 mlp20:5

Kðp20:5Þ

ffiffiffi
2

c

r
lx 2 ml

 !
;

for p . 0; c . 0;

where K is a modified Bessel function of third kind and Z is

the normalizing constant given by Zðp; cÞ ¼
ffiffi
p

p
GðpÞ �

ð2cÞ0:5pþ0:25: m ¼ 0; implies a two parameter family, a

case that was studied in the original papers. These densities

are referred to as the Bessel K forms and the parameters (m;

p; c) as the Bessel parameters. Bessel K forms are unimodal,

symmetric, and leptokurtic.

An image representation scheme is shown in Fig. 3. Each

image I is decomposed (via filtering) into J sets of wavelet

coefficients, and the marginal density of each component is

modeled using a three-parameter Bessel form. So the

original image I is now represented by 3J parameters

{ðmð1Þ; pð1Þ; cð1ÞÞ;…ðmðJÞ; pðJÞ; cðJÞ)}. We utilize a moment-

based estimation procedure to estimate m; p and c :

m̂ðjÞ ¼ SMðIðjÞÞ; p̂ðjÞ ¼
3

SKðIðjÞÞ;

ĉðjÞ ¼
SVðIðjÞÞ

p̂ðjÞ
;

ð1Þ

where SM is the sample mean, SV is the sample

variance and SK is the sample kurtosis of the pixel

values in the filtered image IðjÞ: The computational task

of estimating the marginal density is that of estimating
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the first, second and fourth moments only. Next we

illustrate these Bessel K forms through some examples.

Shown in the top panels of Fig. 4 are some sample IR

images from FSU face database. The middle row

displays the filtered images (or the wavelet coefficients)

for arbitrary Gabor filters (not shown). Bottom panels

plot the marginal densities of IðjÞ on a log scale: the

observed densities or histograms are plotted in the

marked lines and the estimated Bessel K forms

ðf ðx; m̂; p̂; ĉÞÞ are plotted in plain lines. We have also

tested the Bessel K forms for other databases. Shown in

Fig. 5 top panels are some additional examples, and in

bottom panels are the associated marginal densities: both

estimated and observed, each on a log scale. The first

two pictures are from Honeywell dataset and the last two

are from Equinox dataset.

Fig. 6 displays another example of estimating wavelet

densities. For the IR image shown in the leftmost panel, we

have estimated its marginal densities for a number of

wavelet coefficients corresponding to Gabor filters with

different orientations and scales. The estimated densities,

along with the observed densities, are shown in the

remaining six panels. It must be emphasized that Bessel K

family models wavelets coefficients of images in general,

and not just the face images or IR images. For different

types of images, the Bessel parameters take on different

values. Shown in Fig. 7 are three IR images of an indoor

environment that can form background clutter for face

identification. Shown in the lower panels are the estimated

Bessel K forms of the filtered versions of these images,

when filtered by arbitrary Gabor filters.

In our experiments, we have found a remarkable fit

between the observed and the estimated marginals, for a

large set of filtered IR images. To quantify the difference

between an observed histogram and the estimated Bessel

form, we utilize the Kullback-Leibler (KL) divergence on

the space of univariate densities. It should be noted that KL

is not a proper distance on the space of univariate densities

but it does quantify the difference between any two densities

Fig. 3. Representation scheme: I is decomposed into J wavelet coefficients

using filters Fð1Þ;…;FðjÞ: For each component, the marginal density is

modeled by a Bessel K form parameterized by the triple (mðjÞ; pðjÞ; cðjÞ).

Fig. 4. Estimation of Bessel K forms for IR images: the top row shows some IR images, second row shows the filtered images for arbitrary Gabor filters, and the

bottom row shows the estimated marginal densities (plain lines) drawn over the observed marginal densities (marked lines), both on a log scale.
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to some extent. Let fobsðxÞ be an observed marginal density

and f̂ ; f ðx; m̂; p̂; ĉÞ be an estimated Bessel form, then

the KL-divergence is computed as:

KLðf̂; fobsÞ ¼
ð
R

f ðx; m̂; p̂; ĉÞlog
f ðx; m̂; p̂; ĉÞ

fobsðxÞ

� �
dx:

We have computed this quantity for a large combination

of IR images (from FSU face dataset) and Gabor filters:

using 180 face images and 180 Gabor filters (fixed scale

but different orientations each one degree apart). Using

Monte Carlo sampling to randomly select an image and a

filter, this quantity was averaged over 3000 realizations

and the average value is found to be 0.0503. The

convergence plot is shown in the left panel of Fig. 8. To

understand this value, shown on the right side are four

examples of computing KL-divergence: each plot shows

an observed density, the corresponding estimated density,

and the KL-divergence for that pair (listed on the top).

The number 0.0503 underscores the goodness of fit

obtained in modeling observed histograms via estimated

Bessel K forms.

Since the Bessel K forms are derived using an image

generation model, it is possible to provide a physical

interpretation to the shape parameter p: As detailed in

Ref. [27], p relates to the characteristics (shape,

frequency of occurrence, etc.) of the imaged objects as

seen in IðjÞ; depending upon the choice of filter FðjÞ: For

instance, if the filter is an edge-detector, for a certain

orientation, then p relates to the sharpness and the

number of edges oriented in that direction, in the image

Fig. 6. Estimated marginal densities of several wavelet decompositions of the same image (left panel). Different wavelet coefficients correspond to different

Gabor filter orientations and scales.

Fig. 5. Estimated Bessel K forms for sample images from Honeywell and Equinox datasets. Top panels: IR images, middle panels: filtered images for arbitrary

Gabor filters, and bottom panels: observed (marked lines) and estimated (plain lines) marginal densities.
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I: For a suitably large number of filters, the set of Bessel

K parameters can characterize the contents of I to a

reasonable extent.

3. Pseudo-metrics for comparing IR images

One distinct advantage of having analytical (parametric)

probability models, is the resulting theoretical framework

for image analysis. For instance, we would like to be able to

compare IR images by directly comparing their respective

Bessel parameters without ever computing the histograms.

A closed form expression of a metric involving only the

parameters can be very efficient.

To quantify the difference between two Bessel K forms,

we have chosen the L2-metric. Other metrics, such as the

Kullback-Leibler divergence, Renyi divergence, earth

mover’s metric, or the L1 metric, can also be used. Although

L 2 is a common choice for search/optimization problems,

our choice is purely based on the convenience of a simple

expression. The main drawback of this choice is that the

Bessel K forms are not in L2 for p , 0:25 and therefore

the metric is not applicable to those cases. In cases where

the estimated p values fall below 0.25, we map it back to L2

by replacing its p value by 0:25 þ e for a small e . 0:

Fig. 8. Left panel: convergence of Monte Carlo averaging of KL-divergence as the sample size increases. Right panel: examples of KL-divergence between

estimated and observed densities. Left to right the values are: 0.0004, 0.0137, 0.0415, and 0.0853, respectively.

Fig. 7. Estimated Bessel K forms model the wavelet coefficients of background clutter images.
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For any two Bessel K forms f ðx; p1; c1Þ and

f ðx; p2; c2Þ; the L2-metric can be defined as:

dðp1; c1; p2; c2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
R ðf ðx; p1; c1Þ 2 f ðx; p2; c2ÞÞ

2 dx
q

:

Here we have assumed m1 ¼ m2 ¼ 0 as is often the case

for the filters used in this paper. This metric can be computed

in a closed form, under certain restrictive conditions, as

follows. In Ref. [27], the L2-distance between the two Bessel

K forms, parameterized by (p1; c1) and (p2; c2), respectively,

has been shown to be: for p1; p2 . 0:25; c1; c2 . 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð0:5Þ

2
ffiffiffiffi
2p

p
Gð2p1Þffiffiffi

c1
p þ

Gð2p2Þffiffiffi
c2

p 2
2Gðp1 þp2Þffiffiffi

c1
p

c1

c2

� �p2

F

 ! !vuut ;

ð2Þ

where GðpÞ ¼Gðp20:5Þ=GðpÞ and F¼Fððp1 þp2 2

0:5Þ;p2;p1 þp2;12
c1

c2
Þ (F is the hypergeometric function).

This result provides a metric to compare two Bessel K

forms, or two wavelet marginals. It can be extended to a

pseudo-metric on the image space as follows. For any two

IR images, I1 and I2; and the filters Fð1Þ;…;FðJÞ; let the

corresponding parameter values be given by: ðp
ðjÞ
1 ; c

ðjÞ
1 Þ and

ðp
ðjÞ
2 ; c

ðjÞ
2 Þ; respectively, for j ¼ 1; 2;…; J: Then, the L2-

distance between wavelet representations of the two images

is defined as:

dIðI1; I2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

j¼1

dðp
ðjÞ
1 ; c

ðjÞ
1 ; p

ðjÞ
2 ; c

ðjÞ
2 Þ2

0
@

1
A

vuuut :

It may be useful to choose instead:

dIðI1; I2Þ ¼ max
j

dðp
ðjÞ
1 ; c

ðjÞ
1 ; p

ðjÞ
2 ; c

ðjÞ
2 Þ:

In either case, the value of dIð·; ·Þ depends upon the choice of

filters used in representing the images. Also, dIðI1; I2Þ is not

a proper metric on the image space since it is possible to

have two different images with dI equal to zero. For any two

images that have wavelet coefficients with identical margin-

als, the resulting distance will become zero.

4. Pruning for IR face recognition

Given an image I; we seek to prune the elements of A
using wavelet decomposition of I and the resulting Bessel K

Fig. 9. Example images from FSU IR face database.

Fig.10.Plotsof ~PðalIÞcomputedforimagesdrawnfromthetestset.Forthresholdingattheuniformprobability,onlythesubjectsabovethedottedlineareshortlisted.

Table 1

Recognition performance of eigen faces, independent faces, and Bessel K

forms

Test/training ratio Eigen faces

(%)

Independent faces

(%)

Bessel forms

(%)

Correct to be the closest

1:1 90.48 89.52 97.14

3:1 87.42 88.05 91.20

7:1 80.21 70.05 83.96

Correct within the closest two

1:1 94.29 96.19 99.05

3:1 92.45 91.20 96.23

7:1 87.70 83.42 91.98
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representations. We assume the training data to be images of

each of the subject a [ A at some sampled values of

nuisance variables (pose, facial expressions, thermal state,

etc.). Let the sample set be denoted by S0 , S; the training

set consists of lAl £ lS0l number of images. Select a bank of

filters Fð1Þ;Fð2Þ;…;FðJÞ that are found useful for face

recognition application. For each of the training image

and each filter in the filter bank, we can pre-compute the

Bessel parameters {ðp
ðjÞ
a;s; c

ðjÞ
a;sÞ : j ¼ 1; 2;…; J; a [ A;

s [ S0} as part of the training procedure. The training

algorithm is as follows.

Algorithm 1. Training algorithm

1. For each a [ A; s [ S0; and each filter in the filter bank,

compute the filtered image IðjÞ ¼ Iða; sÞ p FðjÞ:

2. Estimate the Bessel parameters {p
ðjÞ
a;s; c

ðjÞ
a;s : j ¼ 1; 2;…; J}

using Eq. (1).

For a test image I; let its Bessel representation, under the

same bank of filters, be given by {ðp
ðjÞ
obs; c

ðjÞ
obsÞ :

j ¼ 1; 2;…; J}. Define a probability mass function on A
according to:

~PðalIÞ¼
1

~Z
exp 2min

s[S0

XJ

j¼1

dðp
ðjÞ
obs;c

ðjÞ
obs;p

ðjÞ
a;s;c

ðjÞ
a;sÞ

2

0
@

1
A=T

0
@

1
A ð3Þ

where ~Z is the normalizer and T controls our confidence

(analogous to the temperature in simulated annealing) in

this probability. Use of min operator implies a choice of

nearest neighbor distance in defining ~P:

Algorithm 2. Test algorithm

1. Compute IðjÞ ¼ I p FðjÞ; and compute the Bessel par-

ameters p
ðjÞ
obs; c

ðjÞ
obs; for all j; using Eq. (1).

2. Using Eq. (2), compute the metric dðp
ðjÞ
obs; c

ðjÞ
obs; p

ðjÞ
a;s; c

ðjÞ
a;sÞ

for all a [ A and s [ S0: Compute the probability mass

function specified in Eq. (3).

3. For a threshold 0 , n , 1; define the set of pruned

hypotheses: A0 ¼ {a [ A : ~PðalIÞ $ n}:

To illustrate this idea, we describe some experimental

results. We have divided the face database into non-

overlapping training and test sets. Some of the images

are used as training and the remaining are used for

testing. We have used J ¼ 39 filters, including the

gradient filters, the Laplacian of Gaussian filters, and

the Gabor filters (Fig. 9).

For the FSU database, Fig. 10 shows the plots of ~PðalIÞ
versus a (at T ¼ 0:3) for six different images I in the test set.

All the subjects that have ~PðalIÞ larger than some threshold,

say the uniform probability n ¼ 1=lAl; are shortlisted to form

A0: For instance, the first plot is for an image I of the third

subject ðatrue ¼ 3Þ and the third plot corresponds toatrue ¼ 1:

For the latter case, a shortlisting by thresholding leaves only

three possible hypotheses, as compared to the original nine.

Choice of n reflects a balance between the desired amount of

pruning and the probability of incorrect pruning.

To illustrate the strength of these representations, we

have also used them for face identification using the

nearest-neighbor criterion. For J ¼ 39 filters, each training

image is represented by 78 parameters. For comparison,

we have also computed identification performance using

eigen- and independent-component analysis. For eigen and

independent faces, we first compute the eigen/independent

basis using the training faces and then we project each

training image on the eigen/independent basis. The

difference between two images is quantified by the

Euclidean distance between their projections. To study

identification performance under different conditions we

vary the number of training faces per subject. For both the

eigen and independent representations, we have used 78

coefficients, wherever possible, in order to make the

representation complexity comparable to that of Bessel K

forms. We have obtained identification results for two

databases: FSU database and a subset of Equinox

database.

1. FSU face database. Table 1 shows the identification

performance of the three methods for the FSU face

Fig. 11. Sample images from Equinox database.

Table 2

Correct identification rate with different training images of the Equinox

dataset

Training/test images First correct (%) First two correct (%)

1948/1945 99.95 100.0

993/2900 99.97 100.0

527/3366 99.97 100.0

343/3550 99.94 99.97
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database. Bessel K forms have the best identification rate

among the three methods under all the conditions. This is

because that Bessel K forms capture the perceptual

characteristics of IR faces through a number of filters

and they are less sensitive to deformations due to the

filtering stage.

2. Equinox IR face database.TheBesselK formhas also been

applied to a large IR face dataset generated by Equinox.1

We have used a subset consisting of 63 subjects with a total

of 3893 long-wave infrared (LWIR) images of faces.

Fig. 11 shows some sample pictures from that dataset.

Recognition results are presented in Table 2. High level of

identification performance can be attributed to the fact that

the images used here were all reasonably well aligned. The

variation in head pose and placement were relatively less

as compared to the FSU database. Plots of ~P (at T ¼ 0:05)

are shown in Fig. 12.

5. Image synthesis using Bessel K forms

An important question in using univariate densities of the

wavelet coefficients for face identification is: Can these

marginals impose sufficient constraints on a global pattern

like a face where the geometric structures are considered

important for identification? We believe the answer is yes,

and we demonstrate that by carrying out a face synthesis

experiment by matching the marginal distributions of

filtered images using a Gibbs sampler. More specifically,

given an input image (such as the one shown in the top left

panel of Fig. 13), we calculate its wavelet marginals using a

bank of J ¼ 79 filters. Denote the marginal densities by:

f ðx; p1; c1Þ; f ðx; p2; c2Þ;…; f ðx; pJ ; cJÞ: The next step is to

generate a random image I that has the same marginal

densities under the similiar bank of filters. Using a Gibbs

sampler for random sampling, we start with a white noise

image (top right panel) as the initial condition. Additionally,

to avoid local minima in the sampling process, we assume

that face images provide boundary conditions for sampling.

The bottom panels show some samples from the Gibbs

sampler. These examples suggest that important geometric

features, such as the global shape of the face and eyes, are

captured by the marginal distributions. This also justifies

why Bessel K representation yields a good performance for

statistical hypothesis pruning.

6. Conclusion

We have applied an analytical probability model for

wavelet coefficients, presented in Refs. [11,27] to the task of

Fig. 12. Some example plots of ~P for the Equinox dataset.

Fig. 13. The top panel shows the input image (left) and the initial white noise image (right). Lower panels show synthesized face images obtained by matching

marginal distributions of filtered images.

1 Available at http://www.equinoxsensors.com/products/HID.html.
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statistical hypothesis pruning in IR face identification. Each

IR face image is decomposed into its wavelet coefficients

and the marginal densities of the coefficients are modeled as

three-parameter Bessel K forms. An IR image can now be

represented by the set of Bessel parameters denoting a

significant reduction in representation. To quantify image

differences, we have derived an L2-metric on the space of

Bessel K forms and have demonstrated its application to IR

face identification. We have also compared the effectiveness

of Bessel K forms with principal and independent

component representations for face identification (Algor-

ithm).
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