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Abstract

Linear techniques are widely used to reduce the dimension of image representation spaces in applications such as image indexing and
object recognition. Optimal Component Analysis (OCA) is a method that addresses the problem of learning an optimal linear represen-
tation for a particular classification task. The problem is formulated in the framework of optimization on a Grassmann manifold and
treated with stochastic gradient methods intrinsic to the manifold. OCA has been successfully applied to image classification problems
arising in a variety of contexts. However, as the search space is typically very high dimensional, OCA optimization often requires a large
number of iterations, each involving extensive computations that make the algorithm somewhat costly to implement. In this paper, we
propose a two-stage method, which we refer to as two-stage OCA, that improves the search efficiency by orders of magnitude without
compromising the quality of the estimation. In fact, extensive experiments using face and object classification datasets indicate that the
proposed method often leads to more accurate classification than the original OCA since it is not as prone to over-fitting. Two-stage
OCA also leads to substantial improvement in classification performance as compared to other linear dimension reduction methods.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The wide availability of affordable imaging devices such
as digital cameras and camcorders has reinvigorated the
interest of computer vision researchers in image-based
object detection and recognition for a broad spectrum of
applications including video surveillance and the develop-
ment of intelligent human—computer interfaces. As image
representations tend to be very high dimensional, dimen-
sion reduction methods are of central importance for
robust inference and computational efficiency. It is well-
known that variations observed in images representing a
specific class of objects, such as human faces, are typically
constrained to (possibly nonlinear) subspaces of much
smaller dimension. These variations are due to differences
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in the physical attributes of the subjects as well as to a
number of imaging parameters such lighting, orientation
and camera distance. While nonlinearity is inherent to
imaging processes and reflectance properties, linear repre-
sentations often provide satisfactory approximations for
tasks such as indexing and recognition (cf. [1,2]). In the
context of image classification, the primary goal of linear
dimension reduction is to obtain linear low-dimensional
approximations that capture and retain only the most rele-
vant features for the particular classification task at hand.
To be specific, let I be an image reshaped into n x 1 vec-
tor and let U be a n X d matrix, whose columns form an
orthonormal basis of a d-dimensional subspace S of R".
The vector a(I) = UTI € R, known as the vector of image
coefficients, provides a d-dimensional representation of the
orthogonal projection of I onto the subspace S. Recogni-
tion and other processes can then be based on «(/) instead
of I, resulting in substantial complexity reduction in the
representation and more efficient algorithms, if d < n.
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The main goal of this paper is to investigate dimension-
reduction techniques that are robust and effective for
image-based object recognition. Commonly used linear
methods include Principal Component Analysis (PCA)
(e.g. [3-5]), Linear Discriminant Analysis (LDA) (e.g. [6—
8]), and Independent Component Analysis (ICA) (e.g.
[9,10]). PCA is an unsupervised method which makes use
of the data covariance to estimate the principal modes of
variation; orthogonal projections onto the principal direc-
tions yield variables that are uncorrelated. PCA optimally
retains the variance of the data in the reduced feature space
and minimizes the reconstruction error for the training
images. However, in general, PCA does not lead to an opti-
mal solution as transformations that maximize the variance
are not necessarily optimal for recognition [6]. Note that
PCA does not utilize statistics higher than second order.
Higher order statistics can be accounted for with ICA,
which estimates statistically independent components.
However, ICA is not designed to optimize recognition,
either. LDA, on the other hand, aims to find an optimal
basis that separates the means of different classes as much
as possible. If the underlying distributions of all the classes
are Gaussian with the same variance, it can be shown that
LDA achieves maximum discrimination [6]. Note that the
optimality is not valid when the underlying models do
not satisfy this assumption (e.g. [11,12]). The basis given
by classical LDA can be readily computed by solving a gen-
eralized eigen-decomposition involving scatter matrices,
which requires one of the scatter matrices to be nonsingu-
lar. However, in many real applications, such as face recog-
nition and text classification, all scatter matrices in
question can be singular since the dimension of data, in
general, by far exceeds the number of data points—this is
known as the singularity problem [13,14]. In order to deal
with the singularity issue in under-sampled problems, sev-
eral extended LDA methods have been proposed recently
for recognition applications, such as pseudo-inverse LDA
[15], regularized LDA [16], PCA + LDA [17,18], LDA/
GSVD [19], and LDA/QR [20].

As distributions of real images are typically non-Gauss-
ian (cf. [21]), for image classification and object recognition
applications, there is no theoretical basis for the most com-
mon choices of dimension reduction methods; this is also
evident from (often contradictory) comparative studies
reported in the literature (e.g. [11,12,17]). In fact, one can
construct simple scenarios in which all standard choices
yield the worst classification performance. Such an example
is shown in Fig. 1, which consists of two classes (‘“+” and
x’) with eight points each, and the points are present in
clusters of fours. It is easy to show the one-dimensional
subspace resulting from PCA, ICA, and FDA coincides
with either the horizontal or the vertical axis. If we use
the nearest neighbor classifier and let a point from each
cluster be used for training, the one-dimensional PCA,
ICA, and FDA basis gives the worst performance. How-
ever, many other subspaces, such as the one shown in
Fig. 1(c) provides optimal performance. This provides

compelling evidence that, in the context of classification
and recognition, a more relevant question is to find an opti-
mal linear representation tailored to a particular classifica-
tion problem. Unlike the commonly used dimension
reduction methods, Optimal Component Analysis (OCA)
[22,23] is application specific and has been applied success-
fully to many pattern recognition problems. The search for
an optimal subspace is based on a stochastic gradient pro-
cess that seeks to maximize a specified performance func-
tion over all subspaces of a particular dimension; that is,
over the elements of a Grassmann manifold. A solution
is obtained by conducting a search over the Grassmannian
with an MCMC (Markov chain Monto Carlo) type algo-
rithm. OCA provides a computational framework for find-
ing optimal linear representations for particular
applications and its effectiveness has been demonstrated
on many real datasets [22].

The main limitations of OCA are the number of itera-
tions required in a typical search and the computational
costs associated with the estimation of gradients due to
the high dimensionality of the data. In this paper, we pro-
pose a two-stage strategy that improves the search effi-
ciency, overcomes the computational problems of OCA,
and better addresses issues related to over-fitting. (A preli-
minary, short version of this work appeared in [24].) In the
first stage, we obtain a more compact representation of the
input images by dimension reduction with a computation-
ally efficient method, such as PCA, ICA, LDA, Random
Component Analysis [25], or QR decomposition. Then,
in the second stage, OCA is employed to further reduce
the dimension, but this time also optimizing the classifica-
tion performance. As the dimension of the OCA search
space is now much lower, an optimal basis can be obtained
more efficiently. We show empirically that we can often
reduce the dimension to a (much) smaller dimension and
still achieve high classification performance.

The rest of the paper is organized as follows. Section 2
provides a brief review of OCA and the proposed two-stage
OCA method is presented in Section 3. Several experimen-
tal results using two-stage OCA on face and object datasets
are reported in Section 4. We conclude the paper with a
summary and a discussion of future work in Section 5.

2. Optimal component analysis

Optimal component analysis is a dimension reduction
technique that finds an optimal subspace (of a prescribed
dimension) of feature space that optimizes the ability of
the nearest neighbor classifier to index and classify images
or more general data. The measurement of optimality is
based on training data and the algorithm yields an ortho-
normal basis of the estimated optimal subspace.

More specifically, let U € R be a matrix whose col-
umns form an orthonormal basis of a d-dimensional sub-
space of R", where n is the size of the input image and d
is the dimension of the desired subspace (generally
n > d). For an image I, considered as a column vector of
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Fig. 1. A synthetic dataset consisting of two classes, each consisting of two clusters with four points. (a) The data set of two classes (“+” and ‘X

’) with eight

points each in R?. (b) The one-dimensional subspace from PCA, ICA, and FDA. (c) A one-dimensional subspace optimal for recognition using the nearest

neighbor classifier.

size n, the vector of coefficients is given by
a(I,U) = U'T € R and represents the orthogonal projec-
tion of I onto the subspace Sy spanned by the columns
of U. Suppose the training data consists of representatives
of C classes of images, with each class represented by k.in
training images (denoted by 7., ..., 1. km) and ks Cross
validation images (denoted by 7, ... ). Let
IgélnD(Icl,I e U)
mlnD(]Z,,,ch, U)+e

’ C JKeross

pU.U) = (1)

The numerator is the distance from 7/, to the closest train-
ing image not in its class and the denominator is the dis-
tance from 7/, to the closest training image in the same
class. Here, D denotes Euclidean distance; that is,

D(11,15;U) = ||y, U) = oLz, U) |, (2)

where ||| is the usual 2-norm. In Eq. (1), € >0 is a small
number introduced to avoid division by zero. Note that
large values of p are desirable, since this means that 7/, will
be closer to its class than to other classes in the subspace
Sy. A performance function F'is defined to essentially mea-
sure the average value of p over all cross-validation images,
as follows:

1 C  keross

G 20 DMl U) 1), G)

c=1 i=1

F(U) =

where /(-) is a monotonically increasing bounded function
used to control bias with respect to particular classes in
measurements of performance. In our implementation,
we use h(x) = 1/(1 + exp(—28 x)), where f is a parameter
that controls the degree of smoothness of F(U). Thus, F
is a quantifier of the ability of the nearest neighbor classi-
fier to discern the C classes after projection onto S. More-
over, as § — oo and € — 0, F gives precisely the recognition
performance of the nearest neighbor classifier after projec-
tion to the subspace given by U [22].

Under this formulation, F(U) = F(UH) for any dxd
orthogonal matrix H. This is the case because F depends
only on distances in Sy and right multiplication by H
changes the orthonormal basis, but not the subspace Sg.
Therefore, our search for optimal representation can be

viewed as an optimization problem on the space of d-
dimensional subspaces rather than the space of orthonor-
mal frames. The Grassmann manifold, %(n,d), is the set
of all d-dimensional subspaces of R" [26]. It is a compact,
connected manifold of dimension d(n — d), which can be
represented either by a basis (non-uniquely) or by a projec-
tion matrix (uniquely). Choosing the former, let U be an
n X d matrix whose columns are an orthonormal basis for
the given subspace of R" and let [U] denote the set of all
the orthonormal bases of Sv, ie.,
(U] = {UH|H € R H"H = 1,} € %(n,d). The remarks
above imply that F'is a function of [U], not just U. Unlike
the actual recognition performance, F([U]) is smooth and
thus allows us to use a gradient-type algorithm to solve
the optimization problem. An optimal d-dimensional sub-
space for the given classification problem from the view-
point of the available data is given by

[U] = argmax F([U]). )

Ul€%a

In [22], an optimization algorithm utilizing the geometric
properties of the manifold is presented. A Monte Carlo
version of a stochastic gradient-based algorithm with sim-
ulated annealing is used to find an optimal subspace U.
Since the gradient search is conducted over a Grassmann
manifold, the process has to account for its intrinsic geom-
etry. In [26], the Newton—Raphson method has been stud-
ied on such manifolds. We now review the MCMC-type
simulated annealing process presented in [22].

Let J be the n x d matrix given by the first d columns of
the n x n identity matrix. Complete the orthonormal set U
to an orthonormal basis of R" and let Q be the correspond-
ing n X n orthogonal matrix. Then, the gradient of F at [U]
is given by A([U])J, where

—03 3wV €W,
i=1 j=d+1
where
iy —F(U
w0) = tim @ = F (V)
€— €
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is the directional derivatives of F in the directions given by
Ej;. Here Ej; is an n X n skew-symmetric matrix

% if k=i [=j,
0 otherwise,

1 <i<d and d<j<n. The matrices E;J represent an
orthonormal basis of the vector space tangent to ¥%(n,d)
at [J]. The deterministic gradient flow is a solution of the
equation

du,
T =AW, (6

where U, is the solution at time ¢. Computationally, we dis-
cretely update U, according Eq. (6) and at each iteration,
the gradient vector of F with respect to U, is computed.
This gives rise to a deterministic gradient optimization
algorithm that is intrinsic to the Grassmann manifold,
1.e., every new solution is guaranteed to be on the manifold
given that Uy is. This algorithm shares the limitations of all
deterministic gradient algorithms and it will not be able to
escape a local maximum. To overcome this problem, in [22]
stochastic optimization is used by first perturbing the gra-
dient randomly and then using a Markov chain Monte
Carlo process. A proposed subspace is accepted with a
probability that depends on the performance improvement
and an annealing parameter. If the performance on the new
subspace is better than that of the current solution, it is al-
ways accepted; otherwise, the worse the performance, the
lower the probability of the subspace being accepted. This
guarantees that a global optimal solution' can be reached
given that the Markov chain is sufficiently long. For de-
tails, see [22].

The computational complexity of each iteration of the
algorithm is C, = O(d X (n — d) X k¢ross X Ktraining X 1 X d).
C, is obtained by the following observations. The dimen-
sion of the gradient vector is d X (n — d), which can be seen
from Eq. (5) (as there are d X (n — d) E};’s). For each Ej, in
order to compute o;{U), we need to compute F(e”U),
which requires to compute the ratio (Eq. (1)) for each cross
validation image, which again requires a search of the clos-
est training image in the same class and the closest in other
classes. Therefore estimating the gradient requires the given
computational complexity. By exploiting the structure of
A(U), an O(n) updating algorithm can be achieved and thus
it can be ignored. The overall computational complexity is
therefore C,, x T, where T is the number of iterations.

Note that the OCA algorithm requires solving an opti-
mization problem with dimension of d X (n — d); for recog-
nition applications based on images, n is typically on the
order of 10,000. In [22], OCA has been implemented and
demonstrated on recognition problems with n of 10,000.

! Note that the solution of Eq. (4) can be a set rather than a unique
subspace.

However, due to its computational complexity, OCA has
not been used widely for recognition applications.

3. Two-stage OCA

A significant reduction of the computational complexity
can be achieved by restricting the OCA search to d-dimen-
sional subspaces of the span of the training images. If the
dataset contains N images, [i,..., Iy, we arrange them as
Dy = [I1,15,...,Iy] € WY, If the rank of Dy is r, let D
be an n X r matrix such DD = I, and whose columns form
a basis of the span of the training set. Then, D'/ € R gives
a reduced representation of an image I € R". In typical rec-
ognition problems based on images, r < n, so that the
OCA search can be carried out much more efficiently in
this r-dimensional representation as the dimension of the
Grassmann manifold is reduced from d(n — d) to d(r — d).
Note that, in this type of preliminary dimension reduction,
all the information contained in the original training set is
retained. According to the analysis given in the last section,
the computation complexity of each OCA iteration is then
O(r%) instead of O(n?).

This gives rise to a two-stage OCA algorithm. Instead of
solving the OCA optimization in the original image space,
we limit the search to the span of the training images using
a lower dimensional representation. To achieve even higher
efficiency, in practice, we may want to further reduce the
dimension using a computationally efficient dimension
reduction method first. We refer to this step as pre-dimen-
sion reduction.

An immediate question is how to choose pre-dimension
reduction technique. Note that the performance is essen-
tially determined by the distance between images in the
reduced space (see Egs. (2) and (3)), therefore, any method
that retains the effective discriminative subspace would be
sufficient. Two choices seem to be most relevant. First,
we can choose to minimize the average reconstruction
error, which can be achieved using PCA [4,7]. An alterna-
tive is to choose the components that are most discrimina-
tive assuming the underlying distributions are Gaussian
with fixed variance; this can be achieved using FDA by
solving a generalized eigenvalue problem [6]. However, as
pointed out earlier, there is no theoretical basis for choos-
ing PCA or FDA, in general.

In addition, for very large datasets, more efficient meth-
ods may be preferred as both PCA and FDA require solv-
ing an eigenvalue problem. In particular, to be more
scalable, Ye and Li [20] proposed a two-stage QR/LDA
method. In the first stage, QR is applied to the matrix con-
sisting of the mean image of each class and therefore a
much small matrix (compared to the covariance matrix of
the entire dataset); additionally QR can be solved more effi-
ciently as the ordering of different dimensions is not
required. Then LDA is applied in the reduced space, which,
in addition to the efficiency, also avoids the singularity
problem; see [20] for details. Here we use the QR decompo-
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sition in the first stage of our QR/OCA algorithm to
achieve the scalability and efficiency.

To summarize, our two-stage OCA method is imple-
mented as follows: in the first stage, we reduce the input
data from the original high dimension to a lower dimension
using a computationally efficient method; in the second
stage, an OCA search is performed in the reduced space.
As the search space is (much) smaller than the original
one, the computational cost is greatly reduced. The compu-
tational costs for OCA on two Grassmann manifolds G, 4
and G, 4 (where ny =n/m, m is the dimension reduction
factor, m > 1, and n > d, and n; > d) can be compared.
For each iteration, the computational complexity with
images of size n is C,= O(dX(n — d) X keross X Kirain-
ing X n X d). For ny =n/m, the computational complexity
with images of size n; is

Co, :0(d x (% - d) X Kiest X Kisaining X % x d)

n—md
~m*(n—d) C
1

~—C,
m2 "

1

considering the fact n > d. Obviously it is more efficient to
learn on %, , than on ¥,, for the dimension of search
space is reduced from d X (n — d) to d x (n; — d). Addition-
ally, since the search in the reduced space is more effective,
the number of required iterations can be much smaller,
demonstrated by the experimental results shown in Fig. 3.

4. Experimental results

We evaluate numerically the effectiveness of the two-
stage OCA algorithm in this section. The data sets used
for performance study are summarized in Section 4.1. In
Section 4.2 we compare the efficiency and effectiveness of
the proposed two-stage OCA algorithm to that of the ori-
ginal OCA algorithm. Then, in Section 4.3, we present the
classification accuracy of two-stage OCA algorithm using
different dimensional reduction methods in the first stage
of the algorithm, such as PCA/OCA, ICA/OCA, LDA/
OCA, RCA/OCA, and QR/OCA; we also compare the
PCA/OCA algorithm with other classification methods,
such as PCA, PCA + LDA, and LDA/QR. The program
is implemented in C and the experiments are conducted
on a workstation with an Intel Xeon 3.00 GHz CPU with
8GB of RAM.

4.1. Data sets

We have used four data sets for performance evalua-
tions and comparisons, including three well-known face
datasets and one 3D object recognition dataset. Fig. 2 gives
some sample images of these data sets.

e ORL face data set [27]. It contains 400 centralized face
images of 40 individuals with image size of 92 x 112.
The major challenge on this data set is the variation of
the face poses as there is no lighting variation with min-

d
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Fig. 2. Some example images of data sets used in experiments. (a) ORL; (b) PIE; (c) AR; (d) COIL.
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imal facial expression variation and no occlusion. We
use the whole images as the input, i.e., the dimension
of an instance is 92 x 112 = 10,304.

PIE face data set [28]. We only use part of the whole
data set, where cropped face images are available. The
subset used in our experiments contains 66 people with
21 images each. The image size is 100 x 100 = 10,000.
AR face data set [29]. It is a large face image data set.
The images contain significantly large areas of occlu-
sion, due to the presence of sun glasses and scarves.
The existence of occlusion dramatically increases the
within-class variations of AR face image data and
makes the recognition more difficult. In order to com-
pare with results shown in [14], here we use the same
subset of AR, containing 1638 face images of 126 indi-
viduals and each image is pre-processed the same way
as in [14]. Specifically, as used in [14], we first crop the
original images (of size 768 x 576) from rows 100 to
500 and columns 200-550, and then subsample the
cropped images with sample step 4 x 4. The dimension
of each image is reduced to 101 x 88 = 8888 as in [14].
COIL object data set [30]. The COIL-100 data set con-
sists of images of 100 3D objects with 72 images (of dif-
ferent poses) per object. The images in the data set are
normalized such that the larger of the two object dimen-
sions (height and width) fits a 32 x 32 area.

4.2. Comparison with original OCA

In this set of experiments, we study the computational
efficiency gain of the proposed two-stage OCA algorithm
by comparing its running time to that of the original
OCA algorithm. Table 1 summarizes the data sets used in
the experiments. Table 2 shows the running time, recogni-
tion ratio F and classification accuracies with respect to the
dimension kept in the first stage of PCA/OCA on the four
data sets. It shows clearly that the two stage OCA algo-
rithm speeds up the original OCA algorithm dramatically.
For example, on the ORL data set, the running time of ori-
ginal OCA is about 2 days (for 1000 iterations), while it
only takes 971 s when we reduce the dimension from
10,304 to 50. In addition to the significant time reduction,
the two-stage OCA also gives a solution that leads to a
higher classification accuracy. On the AR data set, the
accuracy improvement is significant, from 92% given by

Table 1
Statistics for our real test data sets

Dataset Dimension Classes Number of images per class
Total Training Test
ORL 10,304 40 10 5 5
PIE 10,000 66 21 10 11
AR 8888 126 13 6 7
COIL 1024 100 72 36 36

Table 2
Time (in seconds per iteration), recognition ratio F and classification
accuracy (%) of PCA/OCA

ORL Dimension 10,304 199 150 100 50 20
Time 173 10.00 7.20 2.10 0.97 0.67
F 0.9523  0.99340 0.9928 0.9967 0.9985 0.9969
Accuracy 100 100 100 100 100 100
PIE Dimension 10,000 599 300 100 50 20
Time 224 15.20 8.42 2.24 1.27 0.70
F 0.9534 0.9921  0.9924 0.9967 0.9987 0.9938
Accuracy  98.76  98.21 98.07 100 99.45  97.66
AR Dimension 8888 500 300 100 50 20
Time 421 15.20 8.42 1.13 1.07 0.54
F 0.9245 0.9779  0.9761 0.9675 0.9467 0.9302
Accuracy  92.12  97.01 93.66 9580 93.66 92.12
COIL Dimension 1,024 500 300 100 50 20
Time 531 32.20 9.42 1.53 1.34 0.78
F 0.9482 0.9504  0.9587 0.9491 0.9457 0.9424

Accuracy  98.78  97.86 98.70  99.28  97.94  94.36

the original OCA to 97% given by PCA/OCA with the
dimension reduced to 500 in the first stage.

As shown in the last section, when the dimension is
reduced, it will also be more efficient to learn an optimal
basis in the lower dimensional space. Fig. 3 shows the evo-
lution of performance ratio F of the original OCA and
PCA/OCA on ORL and PIE data sets. For example,
Fig. 3(a) shows the evolution of F of the original OCA
algorithm and PCA/OCA algorithms with dimension
reduced to 19 and 50 in the first stage. As the plots show,
not only PCA/OCA achieves higher performance ratio
than the original OCA, and it also takes much fewer itera-
tions to reach nearly 1.0 in the reduced space. While in the
original space, the performance ratio is much lower and is
not close to 1.0 after 1000 iterations. The results on the PIE
data set, shown in Fig. 3(b) are also consistent, where
PCA/OCA algorithms achieve the best performance of
the original OCA algorithm (in 1000 iterations) in less than
20 iterations. Besides PCA/OCA, other two-stage algo-
rithms show similar patterns, where the results using
LDA/OCA is shown in Fig. 4 for ORL and PIE data sets.
These results, along with that shown in Table 2, clearly
demonstrate the significant improvement in efficiency and
effectiveness of the proposed two-stage OCA method com-
pared to the original OCA.

4.3. Classification accuracy

As indicated in Section 3, different dimensional reduc-
tion methods can be used in the first stage of the two stage
OCA, such as PCA, IDA, LDA RCA, QR, and etc. In the
following set of experiments, we evaluate the two-stage
OCA algorithm in terms of classification accuracy on
ORL, PIE, AR and COIL datasets. For all the datasets,
we reduce the dimension from the original dimension to
100 in the first stage. Table 3 shows the classification accu-
racy with respect to different dimensional reduction meth-
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ods used in the first stage. From these results, we have the
following important observations:

e All the two-stage OCA methods achieve high classifica-
tion accuracy on these datasets, especially for ORL and

PIE datasets.

e LDA/OCA achieves best classification accuracy on PIE
and AR datasets. These may indicate the underlying dis-
tributions in these data sets can be approximated well by
Gaussian distributions in the reduced space and LDA
preserves most of the discriminative dimensions of the
data. Note that LDA or variant LDAs in general do

not perform as well (see Table 4).

e PCA/OCA achieves best classification accuracy on the

COIL data set except one case.

e Asthe AR and COIL datasets are more challenging, the
classification accuracy is worse than that on the ORL
and PIE datasets; note however, compared to other
methods shown in Table 4, two-stage OCA algorithms
give marked improvement in accuracy on the AR

dataset.

Fig. 5 shows the evolution of performance and classifi-
cation accuracy of the proposed PCA/OCA algorithm on
ORL, PIE, AR and COIL data sets. In each panel, the
upper plot in shows the evolution of classification accuracy
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Table 3
Classification accuracy (%) of two-stage OCA on the four data sets
Data set KNN PCA/OCA ICA/OCA RCA/OCA LDA/OCA QR/OCA
1 100 100 97.5 100 100
3 100 100 95.0 100 100
ORL 4 100 97.5 90.0 100 100
5 100 97.5 90.0 100 100
10 100 95.0 87.5 100 100
1 100 98.07 93.66 100 100
3 99.45 95.32 81.82 100 98.76
PIE 4 98.76 93.66 80.44 100 98.21
5 98.21 99.11 79.20 100 98.07
10 97.66 98.21 73.56 100 93.66
1 95.80 92.45 92.06 99.89 93.66
3 92.45 93.66 80.50 99.77 92.45
AR 4 92.12 92.12 80.16 99.54 92.12
5 90.63 90.02 79.37 99.43 93.66
10 85.63 84.36 76.98 97.01 90.63
1 99.28 97.86 96.13 98.78 97.22
3 98.70 94.36 92.50 97.94 94.36
COIL 4 97.94 92.58 88.95 96.83 91.66
5 94.75 92.52 88.22 95.33 92.00
10 92.95 86.58 84.26 92.50 86.81
Table 4
The classification accuracy (%) of different dimension reduction methods on ORL and AR data set
Data set KNN PCA PCA + LDA LDA/GSVD QR/LDA
1 97.25(1.42) 95.00(3.12) 94.00(3.76) 98.25(1.69)
3 94.50(3.07) 94.75(3.43) 94.00(3.76) 98.00(2.58)
ORL 5 92.25(2.99) 95.50(2.58) 94.00(3.76) 98.25(2.06)
10 81.25(5.03) 93.75(3.58) 94.00(3.76) 96.75(2.37)
1 65.30(2.63) 92.45(1.22) 92.60(1.16) 98.41(1.26)
3 59.05(2.10) 90.72(1.17) 92.60(1.16) 94.03(1.63)
AR 5 57.49(2.04) 88.50(1.17) 92.60(1.16) 89.53(1.67)
10 44.70(2.49) 85.63(1.84) 92.60(1.16) 86.93(2.44)
KNN OCA PCA/OCA QR/OCA LDA/OCA
1 100(—) 100(0) 100(0) 100(0)
3 100(—) 100(0) 100(0) 100(0)
ORL 5 100(—) 100(0) 100(0) 100(0)
10 100(—) 100(0) 100(0) 100(0)
1 100(—) 99.21(1.32) 98.35(1.23) 99.87(0.85)
3 96.49(—) 94.78(2.45) 98.21(1.21) 96.03(1.08)
AR 5 95.24(-) 94.11(1.32) 93.87(2.84) 95.86(0.94)
10 92.74(—) 88.10(3.65) 87.10(3.21) 92.13(2.56)

while the lower plot shows the evolution of performance
function. These plots show that the performance achieves
100% after less than 200 iterations for ORL data set, for
PIE data set, it can achieve 100% for less than 10 iterations;
for AR and COIL data sets, the classification accuracy is a
little worse, but the proposed method achieves over 95% in
500 iterations. As shown in the lower plots, for ORL and
PIE face data sets, the performance ratio F' is close to 1,
indicating all the images are classified correctly and
robustly. For the AR and COIL data sets, the performance
ratio is also high, indicating the classification is robust.
Fig. 6 shows the evolution of performance and classifica-
tion accuracy of the LDA/OCA algorithm on the data sets

and the plots also demonstrate the effectiveness of two-
stage OCA.

The next set of experiments compares the performance
of two-stage OCA methods with other classification meth-
ods, including PCA, PCA +LDA, LDA/GSVD, QR/
LDA, and the original OCA algorithm. The ORL and
AR face data sets are used in these experiments. For a fair
comparison, we use the results of other methods from [20].
In [20], the relevant parameters are as follows: 100 princi-
pal components of PCA are used in the PCA stages of
PCA + LDA. For LDA algorithm, the output dimension
is k — 1, where k is the number of classes, as the k centroids
in all data sets are linearly independent. The classification
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Fig. 5. Evolution of recognition accuracy and performance F versus ¢ of PCA/OCA algorithm on the four data sets. In each panel, the top plot shows the
recognition accuracy of U, and the bottom plot shows F of U,. (a) ORL; (b) PIE; (c) AR; (d) COIL.

performance is estimated by using 10-fold cross-validation
as used in [20]. In our two-stage OCA experiments, we use
the same experiment setting and the same input images
used in [20]. Table 4 shows the classification accuracy
results of different dimensional reduction methods on
ORL and AR face set. The mean and standard deviation
(in parenthesis) of accuracies from 10 runs are shown.
(For the original ORL algorithm, only a single run is con-
ducted due to the long running time.) It shows that the pro-
posed two-stage OCA method outperforms other methods
in all the cases.

5. Conclusion

In this paper we have proposed a family of two-stage
OCA algorithms to improve the search efficiency and
reduce the computation required by the original OCA algo-
rithm at the same time. These algorithms are derived based
on the observation that the much of solution space of the
original OCA corresponds the null space of datasets and

therefore the search there is not effective for typical recog-
nition applications. By using a dimension reduction
method first, the learning efficiency in the solution space
is greatly improved. The significant improvement in effi-
ciency and effectiveness is also supported by experiments
using four recognition data sets. Additionally, compared
to other methods, the proposed two-stage OCA algorithms
often give marked improvement in classification accuracy.

Note that two-stage OCA requires n; (the dimension
given by the first stage) to be given. It seems that an opti-
mal range of values exists: when n; is too large (in the
extreme case it becomes the original OCA), the complexity
increases and the search becomes ineffective; on the other
hand, when #; is too small (in the extreme case, the second
stage OCA is not required and it degenerates to the first-
stage method), effective linear representations may not be
obtained (e.g., PCA for the AR dataset in Table 4). While
one can estimate for the lowest dimension that gives satis-
factory performance by a linear search, it seems that a bet-
ter solution is to generalize the proposed algorithm to
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multiple stages, i.e., one can learn a solution in a lower
reduced space and then using the found solution to
initialize the search in a higher space, which can be done
recursively. The effectiveness of multiple stage OCA
algorithms is being studied.

While this paper focuses on linear representations, the
proposed two-stage OCA algorithms can be generalized
to model nonlinearity using kernel methods. As shown in
[31], nonlinear representations induced by a kernel function
can be written as linear representations with respect to a
basis that depends on the kernel function and the training
set. As two-stage OCA algorithms significantly improve the
performance of OCA, two-stage OCA algorithms with
respect to the kernel basis should improve kernel OCA; this
is being investigated.
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