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PROGRAM OVERVIEW

Part I: Motivation (1:00 – 2:00pm)

presented by Anuj Srivastava

— Why should one study nonlinear manifolds?

— How can differential geometry be useful in vision applications?

— Examples, illustrations, and references

Part II: Tools from Differential Geometry (2:00 – 3:30pm)

presented by Washington Mio

— Differentiable manifolds, definitions and examples

— Tangent vectors and tangent spaces

— Riemannian metrics, gradients, geodesics, exponential map

— Integral curves and flows



Part III: Statistics on Nonlinear Manifolds (3:30 – 4:00pm)

presented by Anuj Srivastava

— Intrinsic and Extrinsic means

— Covariances in tangent spaces

— Probability distributions on manifolds

— Estimation and testing on manifolds, with examples

Part IV: Algorithms and Applications in Computer Vision (4:00 – 5:00pm)

presented by Xiuwen Liu

— Statistics on a unit circle

— Geodesic flows on shape spaces

— Optimal linear bases for image-based recognition

— Clustering on shape manifolds



NONLINEAR MANIFOLDS

• What are nonlinear manifolds?:

Nonlinear manifolds are manifolds that are not vector spaces, i.e. if x, y ∈ M ,

then ax + by may not be in M , for a pair a, b ∈ R [1, 14]. The usual Euclidean

calculus may not apply. Conventional statistics may not apply. (More later in Part II)

• When do we need them?:

In applications where certain constraints make the underlying space nonlinear. For

example, elements of R
n with unit norm constraint. Or, matrices with orthogonality

constraint.

• How do we deal with them?:

Using differential geometry of the underlying manifold, one can usually derive most

of the corresponding results from Euclidean spaces.



MOTIVATION – OUTLINE

A large number of problems in computer vision can be studied a problems in

optimization or inference on nonlinear manifolds.

We will describe some examples:

• Pose estimation and recognition of 3D objects from static 2D images.

• Tracking of 3D objects using video sequences.

• Component Analysis: Is PCA better than ICA? Or vice-versa? – Search for optimal

linear projection for reducing image size, before a statistical analysis.

Non-negative matrix factorizations, sparse representations, etc are other

examples.



• Statistical study of shapes: shapes of 2D and 3D objects can be represented via

landmarks, curves, or surfaces.

• Learning Image manifold: estimation and learning of manifolds formed by images

embedded in a bigger Euclidean space.

• Structure from motion, shape from shading, etc



PROBLEM 1: POSE ESTIMATION

We are interested in recognizing known objects in observed images. Consider a

simple sub-problem from “transformable templates”.

Goal: Given a 3D model of an object (truck in the figure), and a noisy image I , how to

estimate its pose (orientation) in that image?

Mathematical Formulation:

Let Iα be a 3D mesh of the object (e.g. facial scan). Orientation of an object can be



represented by a 3 × 3 orthogonal matrix [6]. The space of all such matrices is:

SO(3) = {O ∈ R
3×3|OT O = I3, det(O) = 1} .

Figure 1: A truck rendered at different orientations in SO(2).

Notation: Let T (sIα) denote an image of an object α taken from a pose s ∈ SO(3).

T is a projection from R
3 to R

2.

Image Model: Let a simple image model be: I = T (sIα) ⊕ clutter.



Problem: Given an image I , estimate s ∈ SO(3) according to:

ŝα = argmax
s∈SO(3)

P (I|s, α) (MLE) .

SO(3) is not a vector space. However, it is a Lie group! How to solve optimization

problems on Lie groups?

Given a function F : SO(n) → R, we need to tools to solve optimization problems

on SO(n). We need definitions of derivatives (gradients), Hessians, increments, etc.

[10, 5, 3, 15]



GRADIENT-BASED OPTIMIZATION

In R
n, one can seek a local optimum of a function F using a gradient process:

dX(t)

dt
= ∇F (X(t)) ,

or its discrete implementation, for ε > 0 small,

X(t + ε) = X(t) + ε∇F (X(t)) .

Addition is not a valid operation in SO(3)!

One has to use the differential geometry of SO(3) to construct gradient flows.



OBJECT RECOGNITION

Goal: Given a noisy image I of an object, find the most probable object?

Several strategies. One is to define posterior probability:

P (α|I) = P (α)

∫

S

P (I|s, α)P (s|α)ds .

S can include pose, illumination, motion, etc. S is the set of nuisance variables in

recognition.

Solve for:

α̂ = argmax
α

P (α|I) .

This requires tools for integration on a Lie group.



PROBLEM 2: OBJECT MOTION TRACKING

Goal: Given a time series of sensor measurements (images, range measurements),

estimate a moving object’s positions and orientations at each time.

Representation: Rotation and translation as treated as elements of special Euclidean

group SE(3) = SO(3) n R
3. Consider the stochastic process

{st ∈ SE(3), t = 1, 2, . . . , T} ,

and the goal is to estimate the time series {st} using observations.

Solution:

If st was in a Euclidean space, then the solution comes from filtering, smoothing, or

prediction.



Classical Filtering: For Euclidean case,

Use a state equation and an observation equation:

State equation : st+1 = A(st) + µt

Observation equation : It+1 = B(st+1) + νt

Then, find the mean and covariance associated with the posterior

P (st|I1, I2, . . . , It) .

If A and B are linear functions, (and µt, νt are independent Gaussian), then Kalman

filtering provides exact solution. Else, use Monte Carlo methods for approximate

solutions.



Nonlinear Manifolds: Kalman filtering does not apply, but Monte Carlo methods do!

Use nonlinear filtering equations: Under usual Markov assumptions,

Predict : P (st+1|I[1:t]) =

∫

st

P (st+1|st)P (st|I[1:t])dst

Update : P (st+1|I[1:t+1]) =
P (It+1|st+1)P (st+1|I[1:t])

P (It+1|I[1:t])

Use Monte Carlo method (condensation, Jump-Diffusion, etc.) to solve for the

posterior mean, covariance, etc, at each time.

We need tools to sample from probability distributions and to compute averages from

these samples on nonlinear manifolds.

Statistics on circle: [9], statistics on SO(n): [4], statistics on Grassmann manifolds:

[16]



PROBLEM 3: OPTIMAL LINEAR PROJECTIONS

• Raw images are elements of a high-dimensional space.

• One need to reduce their dimension using a linear or a nonlinear method, before

proceeding to a statistical analysis.

• In view of their simplicity, linear projections are popular, e.g. PCA, ICA, FDA, etc.

• Let X ∈ R
n be a random image (as a column vector), and

U ∈ R
n×d (d << n) be an orthogonal matrix. That is, UT U = Id.

Let u(X) = UT X be a reduced representation of X .



• How to choose U in a particular application? For example, in recognition of people

by their facial images, is PCA the best linear projection one can have?

• In general, the solution is difficult!

However, assume that we have a well-defined performance function F that

evaluates the choice of U .

For example, F is the recognition performance on the training data. (More in Part

IV). F can also be a measure of sparsity, or independence of components.

• How to solve for:

Û = argmax
U

F (U) .

On what space should this optimization problem be solved?

Representation: The set of all n × d orthogonal matrices forms a Stiefel manifold



Sn,d. In case F depends on the subspace but not on a basis chosen to represent the

subspace, then the search space is a Grassmann manifold Gn,d.

There are quotient spaces:

Steifel: Sn,d = SO(n)/SO(n − d) and

Grassmann: Gn,d = SO(n)/(SO(n − d) × SO(d)).

Solution: Solve for

Û = argmax
Sn,d

F (U) or argmax
Gn,d

F (U) .



Example: X denotes face images and u(X) is used for recognition. Let F be a

recognition performance and choose U to maximize F . U is an element of a

Grassmann manifold Gn,d. [8].
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Figure shows evolution of F (Xt), where Xt is a stochastic optimization process on

Gn,d.

(More in Part IV)



PROBLEM 4: STATISTICAL SHAPE ANALYSIS
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We wish to use shapes of boundaries as features in object recognition.

Consider shapes in R
2. The important issues are: how to represent shapes, how to

compare them, how to analyze them statistically?



PROCRUSTES APPROACH

Representation: Let a shape be represented by k points on its boundary. A shape is

an element of x ∈ R
2k or z ∈ C

k. [2, 13].

Shape Preserving Transformations: Under rigid rotation and translation, and uniform

scaling, the shape remains unchanged. We need a quantity that uniquely represents a

shape. Assuming known registration:

• Remove translation by assuming 1
k

∑k
i=1 zi = 0. All shapes are centered.

• Remove scale by assuming ‖z‖ = 1, i.e. all shape vectors lie on a unit sphere.

• Remove rotation in a pairwise fashion. For example, to align z(2) to z(1) replace

by ejθ̂z(2), where

θ̂ = argmin
θ∈SO(2)

‖z(1) − ejθz(2)‖2 .



PROCRUSTES APPROACH Contd.

Pre-shape Space:

C = {z ∈ C
k|1

k

k
∑

i=1

zi = 0, ‖z‖ = 1} .

Shape Space: S = C/SO(2). Shape space is a quotient space; all shapes that are

within a planar rotation are considered equivalent.

How to quantify dissimilarities between two shapes?

Construct a geodesic path between them on S , and compute the geodesic length. It

serves as a shape metric.



ANOTHER APPROACH: GEOMETRY OF CLOSED CURVES

Goal: To analyze shapes of continuous boundaries of objects as they appear in

images. [7]

Representation:

• Denote shapes by their angle functions θ (with arc-length parametrization).

Consider

C = {θ ∈ L
2[0, 2π]|

∫

2π

0

cos(θ(s))ds =

∫

2π

0

sin(θ(s))ds = 0}

• Shape space S = C/S, where S includes rotation (unit circle) and

re-parametrization (unit circle) groups.

Solution: Compute exponential flows or geodesics on S to quantify shape differences.



Example
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Geodesic paths between the end shapes. Geodesic lengths quantify shape

differences, and help perform statistical analysis of shapes.



GEODESIC FLOWS ON SHAPE SPACES OF CUVES



PROBLEM 5: LEARNING IMAGE MANIFOLDS

Let I(s, α) denote an image of object α at variables (pose, location, illumination, etc)

denoted by s. Let Iα = {I(s, α)|s ∈ S} be the collection of all such images of α.

Iα is called image manifold of α.

IMAGE SPACE

IMAGE MANIFOLD



Complete image manifold:

I =
⋃

α

Iα .



Goal: We are interested in estimating (or learning) I from the given observations.

Representation: I is a low-dimensional manifold embedded in a large Euclidean

space. We wish to represent individual images by their coefficients in low-dimensional

subspaces.

Solutions: [12]

http://www.cse.msu.edu/ lawhiu/manifold/

1. Isomap: Denote observed images as points on a discrete lattice. Approximate

geodesic lengths on I by shortest graph lengths on this lattice. Perform dimension

reduction, dimension estimation, clustering, etc. using this geodesic length. [11].

2. Locally-linear embedding: [17]

3. Pattern Theoretic Approach:
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WHY MANIFOLDS?

Non-linearity underlies many mathematical structures and representations used in

computer vision. For example, many image and shape descriptors fall in this

category, as discussed in the introduction to this tutorial.

On the other hand, differential calculus is one of the most useful tools employed in

the study of phenomena modeled on Euclidean n-space R
n. The study of

optimization and inference problems, dynamics, and geometry on linear spaces

can all be approached with the tools of calculus.



A natural question arises:

What spaces can the techniques of differential calculus be extended to?

Since derivative is a local notion, it is reasonable to expect that differential calculus

can be developed in spaces that locally “look like” Euclidean spaces. These spaces

are known as differentiable manifolds.



Manifolds Underlying Data Points
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For simplicity, we only consider manifolds in Euclidean spaces, but a more general

approach may be taken. Also, most concepts to be discussed extend to

infinite-dimensional manifolds, whose relevance to shape and vision problems

already has been indicated in the introduction.

Our discussion will be somewhat informal. A few references to more complete and

general treatments:

• W. Boothby, An Introduction to Differentiable Manifolds and Riemannian

Geometry, Academic Press, 2002.

• F. Warner, Foundations of Differential Geometry and Lie Groups, Graduate Texts

in Mathematics, Springer-Verlag, 1983.

• J. Lee, Introduction to Smooth Manifolds, Springer-Verlag, 2002.



How to make sense of “locally similar” to an Euclidean space?

A map ϕ : U → R
m defined on an open region U ⊆ R

n, n ≤ m, is said to be a

parameterization if:

(i) ϕ is a smooth (i.e., infinitely differentiable), one-to-one mapping.

U ⊂ R
2

ϕ
−→

This simply says that V = ϕ(U) is produced by bending and stretching the region

U in a gentle, elastic manner, disallowing self-intersections.



(ii) The m × n Jacobian matrix J(x) =
[

∂ϕi

∂xj
(x)

]

has rank n, for every x ∈ U .

Here, x = (x1, . . . , xn) and ϕ = (ϕ1, . . . , ϕm).
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(a) ϕ(t) = (t3, t2) (b) ϕ(t, s) = (t3, t2, s)

This condition further ensures that V has no sharp bends, corners, peaks, or other

singularities.



(ii) The inverse map x = ϕ−1 : V → U is continuous.

ϕ
−→

This condition has to do with the fact that we should be able to recover U from V

with a continuous deformation. In the illustration above, ϕ−1 is not continuous.

One often refers to ϕ as a parameterization of the set V = ϕ(U), and to the

inverse mapping x = ϕ−1 as a local chart, or a local coordinate system on V .



Definition of Differentiable Manifolds

A subspace M ⊆ R
m is an n-dimensional differentiable manifold if every point

has a neighborhood that admits a parameterization defined on a region in R
n. More

precisely, for every point x ∈ M , there are a neighborhood Vx ⊆ M of x, and a

parameterization ϕ : U ⊆ R
n → R

m, with ϕ(U) = Vx.

ϕ
−→



Examples of Manifolds

• The Space of Directions in R
n

A direction is determined by a unit vector. Thus, this space can be identified with the

unit sphere

S
n−1 = {x ∈ R

n : ‖x‖ = 1}

Notice that S
n−1 can be described as the level set F −1(1) of the function

F (x1, . . . , xn) = x2
1 + . . . + x2

n.



This implicit description of the sphere is a special case of the following general

construction.

Let F : R
m → R

k, k < m, be a smooth mapping, and let a ∈ R
k. If the k × m

Jacobian matrix J(x) of F has rank k, for every x ∈ F−1(a), then

M = F −1(a) ⊂ R
m

is an (m − k)-dimensional manifold. When this condition on J is satisfied, a ∈ R
k

is said to be a regular value of F .

• The Graph of a Smooth Function

Let g : R
n → R

` be smooth. Then,

M =
{

(x, y) ∈ R
n+k : y = g(x)

}

is an n-dimensional manifold. Here, F (x, y) = y − g(x) and M = F−1(0).



• The Group O(n) of Orthogonal Matrices

Let M(n) ∼= R
n2

be the space of all n × n real matrices, and S(n) ∼= R
n(n+1)/2

the subcollection of all symmetric matrices. Consider the map F : M(n) → S(n)

given by F (A) = AAt, where the superscript t indicates transposition.

Orthogonal matrices are those satisfying AAt = I . Hence,

O(n) = F −1(I).

It can be shown that I is a regular value of F . Thus, the group of n × n orthogonal

matrices is a manifold of dimension

n2 −
n(n + 1)

2
=

n(n − 1)

2
.

Remark. O(n) has two components formed by the orthogonal matrices with positive

and negative determinants, resp. The positive component is denoted SO(n).



• Lines in R
n Through the Origin

A line in R
n through the origin is completely determined by its intersection with the unit

sphere S
n−1. This intersection always consists a pair of antipodal points

{x, −x} ⊂ S
n−1. Thus, the space of lines through the origin can be modeled

on the sphere S
n−1 with antipodal points identified. This is an (n − 1)-dimensional

manifold known as the real projective space RP
n−1.



• Grassmann Manifolds

The spaces G(n, k) of all k-planes through the origin in R
n, k ≤ n, generalize real

projective spaces. G(n, k) is a manifold of dimension k(n − k) and is known as a

Grassmann manifold.

A k-plane in R
n determines an (n − k)-plane in R

n (namely, its orthogonal

complement), and vice-versa. Thus, G(n, k) ∼= G(n, n − k).



What is a Differentiable Function?

Let f : Mn ⊂ R
m → R be a function. Given u0 ∈ M , let ϕ : U → R

m be a

parameterization such that ϕ(x0) = u0. The map f is said to be differentiable at

the point u0 if the composite map

f ◦ ϕ : U ⊂ R
n → R,

given by f ◦ ϕ(x) = f(ϕ(x)), is differentiable at x0.

ϕ
−→

f
−→



Tangent Vectors

A tangent vector to a manifold Mn ⊂ R
m at a point p ∈ M is a vector in R

m that

can be realized as the velocity at p of a curve in M .

More precisely, a vector v ∈ R
m is tangent to M at p if there is a smooth curve

α : (−ε, ε) → M ⊆ R
m such that α(0) = p and α′(0) = v.



Tangent Spaces

The collection of all tangent vectors to an n-manifold Mn ⊂ R
m at a point p forms an

n-dimensional real vector space denoted TpM .

If ϕ : U ⊂ R
n → M is a parameterization with ϕ(a) = p, then the set

{

∂ϕ

∂x1

(a), . . . ,
∂ϕ

∂xn

(a)

}

is a basis of TpM .



Example

Let F : R
m → R be a differentiable function, and let a ∈ R be a regular value of F .

The manifold M = F −1(a) is (n − 1)-dimensional and the tangent space to M

at p consists of all vectors perpendicular to the gradient vector ∇F (x); that is,

TxM = {v ∈ R
m : 〈∇F (x), v〉 = 0} .

Here, 〈 , 〉 denotes the usual inner (or dot) product on R
n.

• The Sphere

If F (x1, . . . , xn) = x2
1 + . . . + x2

n, the level set S
n−1 = F−1(1) is the

(n − 1)-dimensional unit sphere. In this case, ∇F (x) = 2(x1, . . . , xn) = 2x.

Thus, the tangent space to the S
n−1 at the point x consists of vectors orthogonal to

x; i.e.,

TxS
n−1 = {v ∈ R

n : 〈x, v〉 = 0} .



Derivatives

Let f : M → R be a differentiable function and v ∈ TpM a tangent vector to M at

the point p.

Realize v as the velocity vector at p of a parametric curve α : (−ε, ε) → M . The

derivative of f at p along v is the derivative of f(α(t)) at t = 0; that is,

dfp(v) =
d

dt
(f ◦ α) (0).

The derivatives of f at p ∈ M along vectors v ∈ TpM can be assembled into a

single linear map

dfp : TpM → R v 7→ dfp(v),

referred to as the derivative of f at p.



Differential Geometry on M

Given a manifold Mn ⊂ R
m, one can define geometric quantities such as the

length of a curve in M , the area of a 2D region in M , and curvature.

The length of a parametric curve α : [0, 1] → M is defined in the usual way, as

follows. The velocity vector α′(t) is a tangent vector to M at the point α(t). The

speed of α at t is given by

‖α′(t)‖ = [〈α′(t), α′(t)〉]
1/2

,

and the length of α by

L =

∫ 1

0

‖α′(t)‖ dt.



Geodesics

The study of geodesics is motivated, for example, by the question of finding the curve

of minimal length connecting two points in a manifold M . This is important in

applications because minimal-length curves can be used to define an intrinsic

geodesic metric on M , which is useful in a variety of ways. In addition, geodesics

provide interpolation and extrapolation techniques, and tools of statistical analysis on

non-linear manifolds.

In order to avoid further technicalities, think of geodesics as length-minimizing curves

in M (locally, this is always the case). A more accurate way of viewing geodesics is as

parametric curves with zero intrinsic acceleration.

A curve α : I → M ⊂ R
m is a geodesic if and only if the acceleration vector

α′′(t) ∈ R
m is orthogonal to Tα(t)M , for every t ∈ I .



Numerical Calculation of Geodesics

1. Geodesics with prescribed initial position and velocity

For many manifolds that arise in applications to computer vision, one can write the

differential equation that governs geodesics explicitly, which can then be integrated

numerically using classical methods.



2. Geodesics between points a, b ∈ M

One approach is to use a shooting strategy. The idea is to shoot a geodesic from a

in a given direction v ∈ TaM and follow it for unit time. The terminal point

expa(v) ∈ M is known as the exponential of v. If we hit the target (that is,

exp(v) = b), then the problem is solved.



Otherwise, we consider the miss function h(v) = ‖ exp(v) − b‖2, defined for

v ∈ TaM .

The goal is to minimize (or equivalently, annihilate) the function h. This optimization

problem on the linear space TaM can be approached with standard gradient

methods.



Optimization Problems on Manifolds

How can one find minima of functions defined on nonlinear manifolds

algorithmically? How to carry out a gradient search?

Example. Let x1, . . . , xk be sample points in a manifold M . How to make sense of

the mean of these points?

The arithmetic mean µ = (x1 + . . . + xk) /k used for data in linear spaces

does not generalize to manifolds in an obvious manner. However, a simple calculation

shows that µ can be viewed as the minimum of the total variance function

V (x) =
1

2

k
∑

i=1

‖x − xi‖
2.

This minimization problem can be posed in more general manifolds using the geodesic

metric.



Given x1, . . . , xk ∈ M , consider the total variance function

V (x) =
1

2

k
∑

i=1

d2(x, xi),

where d denotes geodesic distance. A Karcher mean of the sample is a local

minimum µ ∈ M of V .

Back to Optimization

Gradient search strategies used for functions on R
n can be adapted to find minima of

functions f : M → R defined on nonlinear manifolds. For example, the calculation

of Karcher means can be approached with this technique. We discuss gradients next.



What is the Gradient of a Function on M?

The gradient of a function F : M → R at a point p ∈ M is the unique vector

∇MF (p) ∈ TpM such that

dFp(v) = 〈∇MF (p), v〉 ,

for every v ∈ TpM . How can it be computed in practice? Oftentimes, F is defined

not only on M , but on the larger space R
m in which M is embedded. In this case,

one first calculates

∇F (p) =

(

∂F

∂x1

, . . . ,
∂F

∂x1

)

∈ R
m.

The orthogonal projection of this vector onto TpM gives ∇MF (p).



Gradient Search

At each p ∈ M , calculate ∇Mf(p) ∈ TpM . The goal is to search for minima of f

by integrating the negative gradient vector field −∇Mf on M .

• Initialize the search at a point p ∈ M .

• Update p by infinitesimally following the unique geodesic starting at p with

initial velocity −∇Mf(p).

• Iterate the procedure.

Remark. The usual convergence issues associated with gradient methods on R
n

arise and can be dealt with in a similar manner.



Calculation of Karcher Means

If {x1, . . . , xn} are sample points in a manifold M , the negative gradient of the total

variance function V is

∇MV (x) = v1(x) + . . . + vn(x),

where vi(x) is the initial velocity of the geodesic that connects x to xi in unit time.



Applications to the Analysis of Planar Shapes

To illustrate the techniques discussed, we apply them to the study of shapes of planar

contours. We consider two different approaches, namely:

• The Procrustean Shape Analysis of Bookstein and Kendall.

• The Parametric-Curves Model of Klassen, Srivastava, Mio and Joshi.

In both cases, a shape is viewed as an element of a shape space. Geodesics are

used to quantify shape similarities and dissimilarities, interpolate and extrapolate

shapes, and develop a statistical theory of shapes.



Procrustean Shape Analysis

A contour is described by a finite, ordered sequence of landmark points in the plane,

say, p1, . . . , pn. Contours that differ by translations, rotations and uniform

scalings of the plane are to be viewed as having the same shape. Hence, shape

representations should be insensitive to these transformations.

If µ be the centroid of the given points, the vector

x = (p1 − µ, . . . , pn − µ) ∈ R
2n.

is invariant to translations of the contour. This representation places the centroid at the

origin. To account for uniform scaling, we normalize x to have unit length. Thus, we

adopt the preliminary representation

y = x/‖x‖ ∈ S
2n−1.



In this y-representation, rotational effects reduce to rotations about the origin. If

y = (y1, . . . , yn), in complex notation, a θ-rotation of y ∈ S
2n−1 about the origin

is given by

y 7→ λy = (λy1, . . . , λyn),

where λ = ejθ , where j =
√
−1.

In other words, vectors y ∈ S
2n−1 that differ by a unit complex scalar represent the

same shape. Thus, the Procrustean shape space is the space obtained from S
2n−1

by identifying points that differ by multiplication by a unit complex number. It is manifold

of dimension (2n − 2) known as the complex projective space CP (n − 1).

Geodesics in CP (n − 1) can be used to study shapes quantitatively and develop a

statistical theory of shapes. This will be discussed in more detail in Part III.



Examples of Procrustean Geodesics



Parametric-Curves Approach

As a preliminary representation, think of a planar shape as a parametric curve

α : I → R
2 traversed with constant speed, where I = [0, 1].

To make the representation invariant to uniform scaling, fix the length of α to be 1.

This is equivalent to assuming that ‖α′(s)‖ = 1, ∀s ∈ I .

Since α is traversed with unit speed, we can write α′(s) = ejθ(s), where

j =
√
−1.

A function θ : I → R with this property is called an angle function for α. Angle

functions are insensitive to translations, and the effect of a rotation is to add a

constant to θ.



To obtain shape representations that are insensitive to rigid motions of the plane,

we fix the average of θ to be, say, π. In other words, we choose representatives that

satisfy the constraint
∫ 1

0

θ(s) ds = π.

We are only interested in closed curves. The closure condition

α(1) − α(0) =

∫ 1

0

α′(s) ds =

∫ 1

0

ejθ(s) ds = 0

is equivalent to the real conditions

∫ 1

0

cos θ(s) ds = 0 and

∫ 1

0

sin θ(s) ds = 0.

These are nonlinear conditions on θ, which will make the geometry of the shape space

we consider interesting.



Let C the collection of all θ satisfying the three constraints above. We refer to an

element of C as a pre-shape.

• Why call θ ∈ C a pre-shape instead of shape?

This is because a shape may admit multiple representations in C due to the choices in

the placement of the initial point (s = 0) on the curve. For each shape, there is a circle

worth of initial points. Thus, our shape space S is the quotient of C by the action of

the re-parametrization group S
1; i.e., the space

S = C/ S
1,

obtained by identifying all pre-shapes that differ by a reparameterization.



The manifold C and the shape space S are infinite dimensional. Although these

spaces can be analyzed with the techniques we have discussed, we consider

finite-dimensional approximations for implementation purposes.

We discretize an angle function θ : I → R using a uniform sampling

x = (x1, . . . , xm) ∈ R
m.

The three conditions on θ that define C can be rephrased as:

∫ 1

0
θ(s) ds = π ⇐⇒ 1

m

∑m
i=1 xi = π

∫ 1

0
cos θ(s) ds = 0 ⇐⇒

∑m
i=1 cos(xi) = 0

∫ 1

0
sin θ(s) ds = 0 ⇐⇒

∑m
i=1 sin(xi) = 0



Thus, the finite-dimensional analogue of C is a manifold Cm ⊂ R
m of dimension

(m − 3). Modulo 2π, a reparameterization of θ corresponds to a cyclic permutation

of (x1, . . . , xm), followed by an adjustment to ensure that the first of the three

conditions is satisfied. The quotient space by reparameterizations is the

finite-dimensional version of the shape space S.

Examples of Geodesics in S
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STATISTICS – OUTLINE

We are interested in extending usual techniques from statistics onto nonlinear

manifolds: learning, estimation, clustering, testing.

We will cover the following topics:

• Probability distributions on manifolds of interest.

• Definitions and computations of intrinsic means and covariances. Extrinsic versus

intrinsic analysis.

• Sampling and Monte Carlo estimation on manifolds. Statistical bounds on

estimation.

• Learning and hypothesis testing on manifolds.



PROBABILITY DISTRIBUTIONS ON MANIFOLDS

• Probability densities on R
n are defined with respect to the Lebesgue measure.

Similarly, probability measures on a manifold M is defined with respect to an

invariant measure, e.g. Haar measure for Lie groups.

• (Radon-Nikodym) Derivatives of probability measures with respect to underlying

invariant measures provide probability densities.

• Some examples of probability densities:

– Unit circle S1: Analog of Gaussian density:

f(θ; θ0, a) =
1

I0(a)
exp(a cos(θ − θ0))

is the von Mises density. θ0 is the mean angle, and a is a measure of the

variance. I0 is a modified Bessel function of zeroth order.



– Special Orthogonal group SO(n):

f(O|A) =
1

Z
exp(trace(OAT )

for some A ∈ R
n×n. Let A = ŌP be the polar decomposition of A, then Ō

is the mean of f and P relates to the variance.

– Grassmann manifold Gn,d: Let U ∈ Gn,d be represented by an n × d

(tall-skinny) orthogonal matrix.

f(U) =
1

Z
exp(trace(UAUT )

for some symmetric, positive definite matrix A ∈ R
n×n. SVD of A gives mean

and variance of f .

A more general form is given later.



STATISTICS ON MANIFOLDS

Definition and estimation of mean on a manifold.

For a Riemannian manifold M , let d(p1, p2) be the Riemannian distance between p1

and p2 in M . Also, let M be embedded inside R
n for some n, and let ‖p1 − p2‖

denote the Euclidean distance after embedding.



Mean under a probability density function f(p):

• Intrinsic mean:

p̂ = argmin
p∈M

∫

M

d(p, u)2f(u)γ(du) ,

• Extrinsic mean:

p̂ = argmin
p∈M

∫

M

‖p − u‖2f(u)γ(du) ,

This can also be viewed as computing the mean in R
n and then projecting it back

to M . Extrinsic analysis implies emedding the manifold in a larger Euclidean

space, computing the estimate there, and projecting the solution back on the

manifold.

The solution may depend upon the choice of embedding.



EXAMPLE OF MEAN ESTIMATION ON A CIRCLE

Given θ1, θ2, . . . , θn ∈ S1.

1. Intrinsic Mean:

d(θ1, θ2) = min{|θ1 − θ2|, |θ1 − θ2 + 2π|, |θ1 − θ2 − 2π|

Then, find the mean

θ̂ = argmin θ

n
∑

i=1

d(θ, θi)
2 .

Solve this problem numerically.

2. An Extrinsic Mean: Let zi = ejθi ∈ C, i = 1, . . . , n. Then, ẑ = 1
n

∑n
i=1 zi,

and set θ̂ = arg(ẑ).



STATISTICS ON MANIFOLDS

Covariance under a probability density function f(p):

• Let expp : TP (M) 7→ M be the exponential map, computed using geodesic

defined earlier.

• Let p̂ be the mean, and Tp̂(M) be the tangent space at p̂. Then, let f̃ be the

probability density induced on Tp̂(M) using the inverse of exponential map.

• Similarly one can compute higher monments.



Define the covariance Σ:

Σ =

∫

xxT f̃(x)dx ∈ R
m×m

where m = dim(M) and x = exp−1
p̂ (p).

(Essentially, one computes the covariance matrix in the tangent space.)

• A simple example of f̃ is multivariate normal in the tangent space at p̂.



LEARNING PROBABILITY MODELS FROM OBSERVATIONS

Example: Assume a multivariate normal model in the tangent space at mean.

Observed shapes:

Sample statistics of observed shapes:
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LEARNING PROBABILITY MODELS FROM OBSERVATIONS

Synthesis:

(i) Generate samples of x, multivariate normal on the tangent space, and

(ii) Use expp̂(x) to generate samples on M .

Examples: Samples from multivariate normal model on tangent shape space.
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Algorithms and Examples

Here we focus on computational issues of implementing algorithms based on

nonlinear manifolds. Live demonstrations will be given to show the feasibilities,

effectiveness and efficiency.

We use two examples for illustrations.

• Optimal Component Analysis.

• Computation of geodesics on shape manifolds and shape clustering



Optimal Component Analysis

Optimal component analysis (OCA) is a framework to formulate computer vision

problems based on linear representations on proper manifolds

• Define optimization criteria.

• Identify the underlying manifolds, such as Grassmann or Stiefel manifold.

• Design optimization algorithm utilizing the geometric properties of the manifold.

While there exist several standard component analysis techniques, a critical difference

between OCA and these standard techniques is that OCA provides a general

procedure in that it can be used to solve different kinds of problems



Commonly Used Linear Representation Manifolds

Paramete- Manifold Search space Examples
rization

Subspace Grassmann Gn,d d(n − d) Optimal subspace/

Principal/minor
components

Orthonormal Stiefel Sn,d d(n − d+1
2 ) Orthonormal

basis filters

Directions Direction manifold d(n − 1) Optimal filters /

(d Grassmann Gn,1) Independent
components

Vectors Euclidean dn Linear basis
with weights



Optimal Linear Subspaces

When the performance does not depend on the choice of basis but only the subspace,

the underlying solution space is Grassmann.

To be concrete, here we use recognition for illustration. Let there be C classes to be

recognized from the images; each class has ktrain training images (denoted by

Ic,1, . . . , Ic,ktrain
) and kcr cross validation (denoted by I ′

c,1, . . . , I
′
c,kcr

).



Optimal Linear Subspaces -cont.

For recognition, we define the following criterion,

ρ(I ′c,i, U) =
minc′ 6=c,j D(I ′c,i, Ic′,j ; U)

1/|τ(I ′c,i, K)|
∑

j∈τ(I′

c,i
,K) D(I ′c,i, Ic,j ; U) + ε0

, (1)

where τ(I ′c,i, K) is the set of images of K closest to I ′
c,i but in class c

D(I1, I2; U) = ‖a(I1, U) − a(I2, U)‖, and ε0 > 0 is a small number to avoid

division by zero. Then, define R according to:

R(U) =
1

Ckcr

C
∑

c=1

kcr
∑

i=1

h(ρ(I ′c,i, U) − 1), 0 ≤ R ≤ 1.0 (2)

where h(·) is a monotonically increasing and bounded function. In our experiments,

we have used h(x) = 1/(1 + exp(−2βx)), where β controls the degree of

smoothness of R.



Optimal Linear Subspaces -cont.

Live Demonstration One: Recognition using part of the CMPU PIE dataset

• C = 10.

• n = 25 × 25.

• d = 10.

• Initial condition: ICA.

• 54s for 100 iterations
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Optimal Linear Subspaces -cont.

Live Demonstration Two: Recognition using part of the CMPU PIE dataset

• C = 10.

• n = 25 × 25.

• d = 10.

• Initial condition: Axis.

• 1m for 100 iterations
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Optimal Linear Subspaces -cont.

Live Demonstration Three: Recognition using part of the CMPU PIE dataset

• C = 10.

• n = 25 × 25.

• d = 5.

• Initial condition: Axis.

• 25s for 100 iterations
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Optimal Linear Subspaces -cont.

Live Demonstration Four: Recognition using part of the CMPU PIE dataset

• C = 10.

• n = 25 × 25.

• d = 3.

• Initial condition: Axis.

• 36.5s for 200 iterations
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Optimal Linear Subspaces -cont.

Offline Demonstration: Recognition using part of the CMPU PIE dataset

• C = 66.

• n = 25 × 25.

• d = 10.

• Initial condition: Axis.

• 10m for 100 iterations
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Optimal Linear Subspaces -cont.

Offline Demonstration: Recognition using part of the CMPU PIE dataset

• C = 66.

• n = 100 × 100.

• d = 10.

• Initial condition: Axis.

• 42934s for 500 iterations
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Further Speedup Techniques

We have developed techniques to further speed up the optimization process.

A particularly effective technique is called hierarchical learning based on some

heuristics to decompose the process into layers.



Hierarichal Learning
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Hierarichal Learning -cont.

We have applied hierarchical learning on CMPU PIE and ORL datasets. We typically

speed up the process by a factor of 30.
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Optimal Linear Subspaces -cont.

Some experimental results
PCA - Black; ICA - Red; FDA - Green; OCA - Blue
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Other Performance Functions

Note that this framework applies to any performance functions.

To derive linear representations that are sparse and effective for recognition, we have

used a linear combination of sparseness and recognition performance as the

performance function.



Sparse Linear Representations for Recognition
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Comparison of Sparseness and Recognition
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Discussion

Note that OCA provides a framework to formulate and solve problems. In computer

vision, a central issue is generalization, which is determined by the performance

function you use. The performance we use here is loosely connected to large margin

idea and often give good generalization performance.
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Geodesic Path Examples on Shape Manifold
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Geodesic Computation and Shape Clustering

Live Demonstration Five: Geodesic Computation and Shape Clustering.

Here we show how fast one can compute geodesics among shapes and then perform

clustering based on the pair-wise geodesic distances.

For a small database of 25 shapes, the pair-wise geodesic (300) computation takes 13

seconds in C and the clustering takes 10 seconds in Matlab (A C implementation

would improve by a factor 5-10).

For a larger database of 300 shapes, the pair-wise geodesic (44850) computation

takes 600 seconds and the clustering takes 170 seconds in Matlab.



Shape Clustering -cont.



Shape Clustering -cont.



Hierarchical Shape Clustering

We have clustered 3000 shapes using this method. This figure shows the first few

layers in the resulting shape hierarchy.
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A Brief Summary of Part IV

• By utilizing geometric structures of underlying manifolds, we have developed

effective optimization algorithms that can be implemented efficiently.

• Note that the computation here can be done offline.

• We hope techniques along this line of research will be developed for many other

computer vision problems.



THANK YOU!
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