(© 2003
S. Butenko, P. Pardalos, L. Pitsoulis

Chapter 10

An Introduction to MATLAB

10.1 Introduction

MATLAB is a modern software package for technical computing. It proved to be a powerful
tool for scientific and engineering numerical computation, visualization, and programming. It
is able to solve efficiently complex numerical problems arising in different areas of science and
engineering. The name MATLAB is derived from MATrix LABoratory.

This tutorial is designed to assist you in learning to use MATLAB. No history of using MAT-
LAB is required. A preliminary knowledge of elementary linear algebra concepts is assumed. A
background in programming principles is desirable for understanding the programming capabili-
ties of the package. For additional information on functions, commands, and examples the reader
is encouraged to use the on-line help facility and Reference/User’s guide attached to the software
and available from http://www.mathworks.com.

10.2 Running MATLAB

To start MATLAB on a Microsoft Windows platform run file matlab.exe (this can be done by
simply double-clicking the MATLAB shortcut icon which is usually located on Windows desktop).
To start MATLAB on Unix, type matlab at the operating system prompt.

This will open the MATLAB desktop.

10.3 Matrix Basics

10.3.1 Creating Matrices

Matrices in MATLAB can be entered in several different ways. We will start with introducing
a matrix by an explicit list of its elements. In this case, the list of elements representing the
matrix is surrounded by square brackets. The elements of the same row are separated by blanks
or commas; finally, two rows are separated by semicolon or by starting a new line.

Example 10.1. The matrix

A=

NCRTNG
ORI)
NGO

can be equivalently introduced in the following ways.

(a) >>A=1[123;443; 224]

133

134 CHAPTER 10. AN INTRODUCTION TO MATLAB

(by >A=1[123
443
2 2 4]

(c) > A

[1, 2, 3; 44 3
2 4]

N

In all three cases MATLAB will reply with

NS e
N DN
D w w

In the above, A is called variable, the set of symbols after equal sign is called expression; the
varible and expression, together with the equal sign form statement.

In general, a statement can consist of a (previously defined) variable only or of an expression
only. In the last case (when a statement is an expression), the result of the expression is assigned
to a default variable ans (a short for answer).

Example 10.2.

>> [4 5 6 7]

In the case when a statement consists of a variable only, MATLAB returns the value of this
variable (or an error message, if the variable was not previously defined). If a statement is
finished with a semicolon (;), the output is suppressed, but the operation determined by this
statement is completed.

Example 10.3.

>> B=[1 2 3; 4 5 6];

>> B
B:
1 2 3
5 6
>> Db

7?77 Undefined function or variable ’b’.

The last example also demonstrates that MATLAB is case-sensitive in the names of variables
(functions, commands), i.e. variable B is not the same as b.

10.3. MATRIX BASICS 135

10.3.2 Dimensioning of Matrices
Dimensioning is done automatically as soon as you enter or change a matrix.

Example 10.4. If we enter

> B =[11; 2 1]
and then later on we enter
>B=[111; 22 3]

then matrix B is automatically changed from 2 x 2 to a 2 x 3 matrix.

For an m x n matrix B and given 1 < i < m and 1 < j < n, the expression B(i,j) (called
subscript) refers to the element in the i-th row and the j-th column of B. The expression B(i, j)
can be treated as a variable which is already defined when 1 <i <m and 1 < j <n, and can be
defined later on for i > m or 7 > n. For a number k and positive integers ¢ and j, the statement
B(i,j) = k will result in the following:

o if 1 <i<mand 1< j<n then the element in the i-th row and the j-th column of B
takes value k, and the rest of the matrix is unchanged;

e if i >m+1orj>n+1 then the size of the matrix is increased to fit B(i,j). All the new
components (except B(i,7)) which appeared as a result of the size increasing are set equal
to zero.

In both cases, MATLAB will output the whole new matrix B.

Example 10.5.

>> B=[1 2
2 11;

>> B(1,1)=5

B=
5
2 1

>> B(3,4)=8

B=
5 2 0 0
2 1 0 0
0 0 0 8

Given a vector c, a single subscript c(i) represents i-th element of the vector. If applied to an
m X n - matrix B, a single subscript B(i) refers to the i-th element of the m x n- dimensional
vector formed from the columns of B.

136 CHAPTER 10. AN INTRODUCTION TO MATLAB

Example 10.6.

>> ¢c=[9 6 5 4];
>> ¢c(3)

ans =

>> B=[17 4; 35 9];
>> B(3)

ans =
7

Given a matrix C we can find its size by using the following command:
[m, n] = size(C);

where the variable m is assigned the number of rows of C and the variable n the number of columns.
To find the length of a vector ¢ we can also use function length:

n = length(c)

Example 10.7.

> c=1[200 1];
>> [m, n] = size(c)

4

>> n = length(c)

10.3.3 The Colon Operator

One of the most important MATLAB’s operators is the colon, :. It enables users to create
and manipulate matrices efficiently. Using colon notation with some numbers a,b and h, the
expression

a:h:b

10.3. MATRIX BASICS 137

represents a vector
[a,a + h,a+2h,...,a+ kh].

In the above k is the largest integer, for which a + kh is in the interval [min{a, b}, max{a,b}].

Example 10.8.

>> v = 1:2:10

10 7 4 1 -2

When h = 1, the expression a:h:b is equivalent to a shorter one a:b.

Example 10.9.

>> 1:8
ans =

1 2 3 4 5 6 7 8

Colons can be used to constract not only vectors, but matrices as well (see the example below).
A subscript expression containing colons refers to a submatrix of a matrix. A colon by itself in
the subscript denotes the entire row or entire column.

Example 10.10. First, we constract a matrix, consisting of three rows each of which is
built using colon notation:

>> A = [1:5; 5:-1:1; 2:6]

A=
1 2 3 4 5
4 3 2 1
2 3 4 5 6

Then we use colons in the subscript to extract a submatrix of A corresponding to its first
two rows and first three columns:

>> A(1:2,1:3)

ans =

138 CHAPTER 10. AN INTRODUCTION TO MATLAB

The submatrix consisting of the first and the third rows of A can be found as follows:

>> A([1,3],:)

1 2 3 4 5
2 3 4 5 6

Similarly, we can modify a submatrix of A:

>> A(1:2,[1,3]1)=[1 0; 0 1]

A:
1 2 0 4
0 4 1 2 1
2 3 4 5

Here a 2 x 2 submatrix of A built from elements of its fist two rows and its first and third
columns, is replaced by the 2 x 2 identity matrix.

10.3.4 Matrix Operations

The basic matrix operations are the following;:

+ addition

- subtraction
multiplication
power

> transpose

left division

right division

~ -

Noted that the dimensions of the matrices used should be chosen in a way that all these operations
are defined, otherwise an error message will occur. To add two matrices A and B we type

E=A+B
and the matrix E is the result of their addition. Respectively, for multiplication
E = AxB
To raise a square matrix A to a power p
E =A"p

Note that E = A~ (-1) is nothing else than assigning the inverse of A to E.
The ’ operator defines the transpose of the matrix or a vector.

10.3. MATRIX BASICS 139

Example 10.11. The following statements are equivalent

> v = [1; 2; 3; 4]
> v =[12 3 4]’
(try it).

The matrix division operators are convenient for solving systems of linear equations, where
A\b is nothing else than A~!b, provided that A is nonsingular.

Example 10.12. Solve a system Az = b, where A and b are defined below, using left
division:

> A=1[143; -1 -20; 22 3]

A =
1 4 3
-1 -2 0
2 2 3

b=
12
-12
8
>> x=A\b
X=
4.0000
4.0000
-2.6667

Having defined the left division, the right division is then introduced as b/A = (A’\b’)°’. When
applied to scalars, right and left division differ only in the direction in which the division is made.

Example 10.13.

>> 3/2

ans =
1.5000

>> 3\2

ans =
0.6667

140 CHAPTER 10. AN INTRODUCTION TO MATLAB

If the operators \ / * = are preceded by a period, then they perform the same acion but
entry-wise (similarly to addition or subtraction of matrices).

Example 10.14.

>> A=[2 4
3 1];
>> B=[3 4
2 3];
>> A.%*B

(Compare the answer to the result of matrix multiplication of A and B, A*B).

10.3.5 Special Matrix - Building Functions

MATLAB includes some functions that generate known special matrices. Some of the most
frequently used are

Special Matrix - Building Functions

A = eye(m,n) — m x n Identity matrix

A = zeros(m,n) — m X n Zero matrix

A = ones(m,n) — m X n Matrix with ones

A = rand(m,n) — m X n Uniform random elements matrix
A = randn(m,n) — m x n Normal random elements matrix

To create a square matrix, the second argument can be omitted, for example, to generate an
identity matrix A, x, we simply type A = eye(n) .

Example 10.15.

>> A = rand(3,2)
A =
0.2190 0.6793
0.0470 0.9347
0.6789 0.3835
creates a 3 X 2 matrix of uniformally distributed on (0, 1) random elements

>> B=eye(3)+ones(3)

B:

10.4. MANAGING THE WORKSPACE AND THE COMMAND WINDOW 141

>> C=zeros(2,3)

10.4 Managing the Workspace and the Command Window

10.4.1 Saving a session; hardcopy

Whenever you start a MATLAB session and start working, you are actually working in a
workspace where all the variables and matrices that you define are kept in memory, and can
be recalled any time. To clear some of the variables, the command clear is used, which if
entered without arguments clears the values of all variables in the workspace. Entering

>> clear x

would simply clear the value of variable x.
If you exit MATLAB then all of the previously defined variables and matrices will be lost.
To avoid this, you can save your work before quitting the session using the command

>> save filename.mat

This will save the session to a binary file named filename.mat, which can be later retrieved with
the command

>> load filename.mat

If you omit the filename then the default name given by MATLAB is matlab.mat. However, even
if you save the variables of your workspace in a file, all the output that was generated during a
session has to be re-generated. This is where the diary command is used. More specifically, if
you enter

diary myfile.out

then MATLAB starts saving all the output that is generated in the workspace to the file
myfile.out; the command diary off stops saving the output.

10.4.2 Command line editing and recall

When editing the command line in MATLAB, the left/right arrows are used for the cursor
positioning, whereas pressing the Backspace or Delete key delets the character to the left of the
cursor. Enter help cedit to check other command line editing settings.

To recall one of the previous command lines, we can use the up/down arrows. When recalled,
a command line can be modified and executed in the revised form. This feature is especially
convenient when we are dealing with long statements.

142 CHAPTER 10. AN INTRODUCTION TO MATLAB

10.4.3 Output format

All computations in MATLAB are done in double precision. The command format can be used
to change the output display format for the most convenient at the moment.

format Default. Same as short.
format short Scaled fixed point format with 5 digits.
format long Scaled fixed point format with 15 digits.

format short e Floating point format with 5 digits.
format long e Floating point format with 15 digits.
format short g Best of fixed or floating point format with 5 digits.
format long g Best of fixed or floating point format with 15 digits.
format hex Hexadecimal format.
format + The symbols +, - and blank are printed

for positive, negative and zero elements.

Imaginary parts are ignored.

format bank Fixed format for dollars and cents.
format rat Approximation by ratio of small integers.
Spacing;:

format compact Suppress extra line-feeds.

format loose Puts the extra line-feeds back in.

When a format is chosen, it remains effective until changed.

Example 10.16. Numbers 7 and e are well-known irrational constants. In MATLAB,
there is a built-in constant pi approximating 7. An approximation of e can be found using
the function exp(1) (see Section 10.5).

>> a = pi

3.1416
>> b = exp(1)

b =
2.7183

>> format long
>> a

a =
3.14159265358979

>> b

b =
2.71828182845905

10.5. FUNCTIONS 143

10.4.4 Entering long command lines

If a statement is too long to fit on one line, three or more periods, ..., to continue the statement
on the next line.

Example 10.17.

>> q = 1000 + sqrt(10) - 35/2 - exp(5) + logl0(120) -...
cos(8%pi/13) + 372;

10.5 Functions

There is a great number and variety of functions that are available in MATLAB. All MATLAB
functions can be subdivided into two types, built-in functions and user-defined functions. In
this section a brief overview of the most important built-in functions is provided, while the
development of user-defined functions is described in Section 10.7.

10.5.1 Scalar Functions

MATLAB has built-in functions for all the known elementary functions, plus some specialized
mathematical functions. Below is a list of some of the most common scalar functions.

Some of MATLAB Scalar Functions

sin(x) — sin(x) asin(x) — arcsin(x)

cos(x) — cos(x) acos(x) — arccos(x)

tan(x) — tan(z) atan(x) — arctan(z)

sinh(x) — sinh(x) asinh(x) — sinh™!(x)

cosh(x) — cosh(x) acosh(x) — cosh™!(x)

tanh(x) — tanh(x) atanh(x) — tanh™!(z)

exp(x) — e ceil(x) — [z]

log(x) — In(x) floor(x) — |[z]

logl0o(x) — logjpz round — rounding (nearest)
abs (x) — |z fix(x) — round towards zero
sqrt(x) — rem(x,y) — remainder after division

Example 10.18. By definition, sinh(z) = €=¢—. So, for z = 1 we have

>> sinh(1) >> (exp(1)-exp(-1))/2

ans = ans =
1.1752 1.17562

The reminder after division of 3 by 2 is equal to 1:
>> rem(3,2)

ans =

144 CHAPTER 10. AN INTRODUCTION TO MATLAB

The function round rounds a number towards the closest integer. It is not the same as the
function fix, which outputs the closest integer towards zero:

>> round(2.9) >> fix(2.9)

ans = ans =

Functions floor and ceil round a number to the closest non-larger and non-smaller integer,

respectively:
>> floor(3.5) >> ceil(3.5)
ans = ans =

3 4

The following example shows using exponential and logarithmic functions:
>> exp(1) >> 1og10(1000)

ans = ans =
2.7183 3.0000

In all of the presented functions, if the argument x is an m X n matrix, then the function will
be applied to each of its elements and the dimension of the resulting answer will be also a m x n
matrix.

Example 10.19. In this example we take the square roots of absolute values of all elements
of a matrix A, and then round up the resulting elements, assigning the final result to a
matrix D. First, we do this step by step:

> A =[23-5;422; -1-4T7]

A =
2 3 -5
4 2 2
-1 -4 7

B =
2 3 5

2 2

1 4 7

>> C = sqrt(B)

C =
1.4142 1.7321 2.2361

10.5. FUNCTIONS 145

2.0000 1.4142 1.4142
1.0000 2.0000 2.6458

>> D = ceil(C)

D =
2 2 3
2 2
1 2 3

The same can be done in one line, using a superposition of all of the functions applied:

>> D = ceil(sqrt(abs(4)))

D =
2 2 3
2 2
1 2 3

10.5.2 Vector Functions

MATLAB’s vector functions operate both on vector-rows and vector-columns. When applied to a
matrix, a vector function acts column-wise. For example, if fun is a vector function, and fun(x)
is a number, then if applied to a matrix A, fun(A) produces a row vector, containing the results
of application of this function to each column of A.

Some of the MATLAB Vector Functions
max (x) — Largest component

min(x) — Smallest component

sort(x) — Sort in ascending order

sum(x) — Sum of elements

prod(x) — Product of elements

mean — Average or mean value

median — Median value

std — Standard deviation

all — True (1) if all elements of a vector are nonzero
any — True (1) if any element of a vector is nonzero

Example 10.20. By definition,

n
mean(x) = le/n,
i=1

i=1

<i 22 —n. mean(x)2)

std(x) = 1
n—

Let’s generate a random vector z, and check these definitions using MATLAB.

146 CHAPTER 10. AN INTRODUCTION TO MATLAB

>> n=b;
>> x=rand(1,n)

0.3843 0.9427 0.2898 0.4357 0.3234
>> mean(x)

ans =
0.4752

>> sum(x)/n

ans =
0.4752

>> std(x)

ans =
0.2673

>> sqrt ((sum(x."2)-n*mean(x)~2)/(n-1))

ans =
0.2673

Example 10.21. This example shows the (column-wise) action of the function max ap-
plied to a randomly generated matrix A. When applied twice, max(max (A)) outputs the
maximum element in the entire matrix.

>> A=rand(3)

A:
0.8637 0.0562 0.6730
0.8921 0.1458 0.3465
0.0167 0.7216 0.1722

>> max (A)

ans =
0.8921 0.7216 0.6730

>> max(max(A))

ans =
0.8921

10.5. FUNCTIONS

10.5.3 Matrix Functions

147

The matrix functions included in MATLAB cover the majority of matrix operations from ele-
mentary Gaussian elimination to sparse matrix operations used in topics such as graph theory.
Below is a list of various elementary matrix functions.

Elementary Matrix Functions

norm(A)
rank (A)

det (A)
trace(A)
diag(A)
tril(A)
triu(A)
null(A)
rref (A)
[1,ul=1u(p)
inv(A)
[v,d]=eig(A)
poly(4)

L A

The norm of A

The dimension of the row space of A
The determinant of A

The sum of the diagonal elements of A
Diagonal of A

Lower triangular part of A

Upper triangular part of A

The nullspace of A

Reduced Row Echelon Form of A

LU factorization triangular matrices
The inverse of A

v: eigenvectors, d: eigenvalues of A
p(A) = det(A — A\I): characteristic polynomial of A

If Ais an n x 1 vector then, by definition,

n »
norm(A,p) = (Z |Ai|p> .
i=1

When A is an nxm matrix, then norm(A) is the largest singular value of A while norm(A, >fro’)
is the Frobenius norm of the matrix

N|=

n m
[AllF = EEIEEIA%

i=1 j=1

The function rref (A) provides the reduced row echelon form of matrix A, for example

> A=[345;3-21]1

A —
3 4
3 -2
>> rref (A)
ans =
1 0
0 1

7/9
2/3

148 CHAPTER 10. AN INTRODUCTION TO MATLAB

An interesting version of this function is the rrefmovie (A) which pauses at each elementary
row operation used to reduced the matrix A to row echelon form.

An n x n system of equations can be written as Ax = b. Expressing A as the product of two
triangular matrices A = LU and letting

y=Uz,

we have
Ly =0.

Therefore, we can first solve the last system for y using forward substitution, and knowing y we
can solve the system Ux = y for x using back substitution. The matrices L,U are provided by
the function [L,U]=1u(A).

Example 10.22. In this example we find the solution to the linear system

3r1 + 4dxo 4+ lxg = -2
261 — laxg + bxy = 5
51 + 6x9 + 223 = 4

and verify the solution. We use rational approximation output format (format rat).

>> format rat
> A=[341; 2 -15; 56 2];

>> b=[-2; 5; 4];

>> A\b

ans =
138/5
-89/5
-68/5

>> [L,U]l=1u(A)

L =
3/5 -2/17 1
2/5 1 0
1 0 0
U =
5 6 2
0 -17/5 21/5
0 0 5/17

>> y=L\b

10.5. FUNCTIONS 149

y =
4

17/5

-4

>> x=U\y
138/5

-89/5
-68/5

The eigenvalues of a matrix and its eigenvectors can be easily found using the function [v,d]=eig(A).

Example 10.23.

A=
2 3 4
5 3
1 2 4

>> [v,d]=eig(A)

v =
1898/2653 -605/1154 594/2549
-430/633 -929/1224 -709/900
145/887 -751/1945 3904/6847
d =
130/1987 0 0
0 771/83 0
0 0 1007/612

where the columns of v are the eigenvectors and the diagonal elements of d are the corre-
sponding eigenvalues.

The characteristic polynomial of a matrix A, p(A\) = det(A — AI), can be found using the function
poly(A), which returns a row vector with the coefficients of p(\). Recall, that the roots of the
characteristic polynomial are the eigenvalues of A.

Example 10.24.

>> A=[1 1; 2 2]

A:

>> [v,d]=eig(A)

150 CHAPTER 10. AN INTRODUCTION TO MATLAB

V =
-985/1393 -1292/2889
985/1393 -2584/2889
d =
0 0
0 3
>> poly (A)
ans =
1 -3 0

where it is easily seen that the roots of the characteristic polynomial
p(A) = A2 — 3\

are the eigenvalues 0 and 3.

10.5.4 Polynomial Functions

Recall that in MATLAB a polynomial is represented by the vector of its coefficients. For example,
the polynomial 22 + 2z — 3 is expressed by the vector [1 2 -3]. MATLAB contains a set of
built-in functions which allow to manipulate polynomials easily. Some of these functions are
listed in the table below.

Polynomial Functions

conv — Convolution and polynomial multiplication
deconv — Deconvolution and polynomial division
poly — Polynomial with specified roots

polyder — Polynomial derivative

polyfit — Polynomial curve fitting

polyint — Analytic polynomial integration

polyval — Polynomial evaluation

polyvalm — Matrix polynomial evaluation

roots — Polynomial roots

Mentioned in the previous subsection function poly(v), when applied to a vector v, produces
the vector of the coefficients of the polynomial whose roots are the elements of v. Below we give
examples of using this and other polynomial functions.

Example 10.25. The elements of the vector r=[1 3] are the roots of the polynomial
c(z) = (z — 1)(z — 3) = 22 — 42 + 3 (represented by vector c):

>> r=[1 3];
>> c=poly(r)

10.6. PROGRAMMING IN MATLAB

151

Given polynomials ¢(z) = 22 — 4z + 3 and d(x) = 2% — 22 — 1 (corresponding to vector d),

their product is the polynomial p(x) = ¢(x) -
to the vector p:

>> d=[1 -2 -1];
>> p = conv(c,d)

p:
1 -6 10 -2 -3

Then h(x) = p(x)/d(x) = c(z):
>> h=deconv(p,d)

h=
1 -4 3

The derivative of p(z) is p/(z) = 423 — 1822 + 20z — 2:

>> polyder(p)

ans =
4 -18 20 -2

The value of ¢(z) at x =1 is ¢(1) = 0:
>> polyval(c,1)

ans =

10.6 Programming in MATLAB

r) = 2* — 623+ 1022 — 22 + 3, corresponding

Probably one of the most appealing features of MATLAB is its programming capabilities. All
the classical programming techniques can be used, which when combined with the mathematical
capabilities of the package results in a very effective tool for implementing and testing algorithms.

10.6.1 Relational Operators
The relational operators used by MATLAB are

== equals

= not equals

< less than

> greater than

<= less or equal to

>= greater or equal to

and the value of a relation can be either true (1) or false (0).

152 CHAPTER 10. AN INTRODUCTION TO MATLAB

Example 10.26.

> v =[2 3 4 5];
> x =[2 36 7];
>> relation v == X

relation =

>> relation = v < X
relation =

0 0 1 1

Here the components of vector relation show if the specified relation is true for the cor-
responding elements of vectors v and x.

10.6.2 Loops and if statements

For, while loops, and if statements in MATLAB operate similarly to those in other program-
ming languages.

for
The general form of a for statement is:

for {variable = expression}
{statements}
end

The columns of the matrix represented by the expression are stored one at a time in the variable,
and the statements are executed. A frequently used form of a for loop is

for i=1:n
{statements}

end

although any other vector, or even matrix can be used instead of 1:n. A for loop in the above
form will repeat the set of statements contained inside exactly n times, each time increasing the
value of i by 1, and then terminate. The following are examples of using for loop in MATLAB.

Example 10.27. This loop sums up all integers between 1 and 10:

> n = 10;
>> s = 0;
>> for i = 1:n
s =8 + 1i;
end
>> s
s =

55

10.6. PROGRAMMING IN MATLAB 153

Below we show how for loops are used to sum up all the elements of a matrix.

>> A=[1:10; 2:11];
>> [m, n] = size(A);
>> sumA = 0 ;
> for i =1:m
for j=1:n
sumA = sumA + A(i,j);
end
end
>> sumA

sumA =
120

while
The syntax of while loop is

while {relation}
{statements}
end

The statements contained in this loop are repeated as long as the relation in the first line remains
true. Note that some of the variables participating in this relation should be modified inside the
loop, otherwise it may never terminate.

if
The general form of the if statement is

if {relation}
{statements}
elseif {relation}
{statements}
else
{statements}
end

The statements will be performed only if the relation is true.

Example 10.28. To sum the elements above, below and on the diagonal of a matrix A in
three different sums we can use the following sequence of MATLAB statements:

>> [m, n] = size(Ad);
>> Usum = 0;
>> Lsum = 0;
>> Dsum 0;
> fori=1:m
for j=1:n
if 1 < j

Usum = Usum + A(i, j) ;

154 CHAPTER 10. AN INTRODUCTION TO MATLAB

elseif j < i
Lsum = Lsum + A(i, j) ;
else
Dsum = Dsum + A(i, j) ;
end
end
end

where Usum is the sum of the elements of the upper triangular part, Lsum - of the lower
triangular part, and Dsum is the sum of the diagonal elements of A, respectively.

10.6.3 Timing

One of the most important performance measures used to estimate the efficiency of a developed
algorithm, is time required for an algorithm to perform a certain job. In MATLAB, the function
etime in conjunction with the function clock is used to record the elapsed time:

tstart = clock;
{statements}
tend = clock;
totaltime = etime(tend,tstart);

and totaltime will be the time needed for the program to execute the statements.

10.7 M-files

An M-file is a MATLAB-executable file that consists of a sequence of statements and commands.
An M-file can be created in any text editor, but it should be saved in a diskfile with the extension
.m. There are two types of M-files, scripts and functions. A script is nothing else but a file
containing series of statements.

Example 10.29. Suppose that we created the following script file called scriptl.m.

Q=[1 2; 3 4];
determinantQ = det(Q)
traceQ = trace(Q)
Then with entering

>> scriptl

(which is the file’s name without the extension .m) in the MATLAB command window, the
script is automatically loaded and its statements and commands are executed:

>> scriptl

determinant =
-2

traceQ =
5

10.7. M-FILES 155

The following file, script2.m, works interactively, i.e. it requires a user’s input to continue
computations.

Q=input (’input a square matrix: ’);
disp([’the determinant of ’ mat2str(Q) ’ is ’ num2str(det(Q))]);
disp([’its trace is equal to ’ num2str(trace(Q))]1);

Here the functions input, mat2str and num2str are used to read user’s input, and to
convert the matrix and a number to a string, respectively. Function disp is used to display
a vector of elements, each of which is a string in this case. When executed, the script asks
the user to input a square matrix:

>> script2
input a square matrix:

and when a square matrix is entered, it outputs the determinant and the trace of this matrix
in the following way:

input a square matrix: [1 2; 3 4]
the determinant of [1 2;3 4] is -2
its trace is equal to 5

A function file is created in a similar way as scripts, the only difference is that a function also
has input arguments. The first line of a function file is usually in the form

function {output arguments} = {functionname}({input arguments})

It declares the function name, input and output arguments. A function with the first line as
above should be saved in a file with the name functionname.m (corresponding to the function
name in the starting line). To execute a function, we type the function name followed by input
arguments in the parenthesis, in exactly the same way as we did it for built-in functions.

Example 10.30. Suppose we want to write a function, which takes two vectors and
multiplies them together. We create the following M-file:

function H = mul(v,x)

% v, x : vectors of the same dimension

% the function mul(v,x) multiplies them together
H=vixx ;

Then we save this file as mul.m. To run it, in the MATLAB command window we first
define two vectors v and x of the same dimension, and then enter w = mul(v,x). Then the
variable w will be assigned the result of the multiplication of vectors v, x:

>> v=[1; 1; 2];
>> x=[2; -1; 0];
>> w = mul(v,x)

156 CHAPTER 10. AN INTRODUCTION TO MATLAB

The % symbol is used for comments; the part of the line after the % sign is ignored by MATLAB.
The first few lines of comments in the M-file are used in the on-line help facility. For example, if
we enter help mul in the command widnow, MATLAB will reply with

v, X : vectors of the same dimension
the function mul(v,x) multiplies them together

It is recommended to include comments in all user-defined functions.

In the next example we demonstrate some more features of built-in functions. Given a scalar
function f(z), and two vectors z and y of the same dimension, we want to write a function
which would output the values of f(2) - f(y) and f(a’-y) (recall, that a scalar function acts
entrywise on vectors). First of all, our function should have two output arguments. We will use
the function nargin (“number of input arguments”) to make sure that the user inputs exactly
three arguments. We will also use the function feval, which executes the function specified by
a string, for example, if f="sin’ then feval (f,3.1415) is the same as sin(3.1415).

Example 10.31. The following function is saved in the disk file called mulf .m.

function [prodf, fprod] = mulf(func,x,y)
% f is a scalar function

% x, y : vectors of same dimension

% prodf = f(x’)*f(y)

% fprod = f(x’*y)

if nargin "= 3 | size(x) =size(y)
error(’Please check your input’)

end
prodf = feval(func,x’)*feval(func,y);
fprod = feval(func,x’*y);

Now, suppose that we want to apply this function for f(z) = z2, x = (1,2,3)’, and y =
(3,2,1). First, we need to create the following user-defined function for f(z) and save it
as f.m.

function f=f(x)

% Given x, f(x) returns the square of x.
f=x.72;

Then we input the values for the vectors x and y:
> x = [1; 2; 3]; y = [3; 2; 1];

Finally, to see both output arguments we type

>> [pf, fpl = mulf(’£f’,x,y)

in the MATLAB command window, giving

10.8. GRAPHICS 157

pf =
34

fp =
100
10.8 Graphics

MATLAB has excellent visualization capabilities: it is able to produce planar plots and curves,
three-dimensional plots, curves, and mesh surfaces, etc. In this section we will introduce some of
the basic MATLAB graphics features.

10.8.1 Planar plots

Planar plots are created using the command plot.

Example 10.32. The following opens a graphics window and draws the graph of the
exponential function over the interval -2 to 2:

>> x=-2:0.01:2;
>> y=exp(x);
>> plot(x,y)

The vector x represents the interval over which the plot is built; in this example we use
a partition of [—2, 2] with meshsize 0.01. The vector y contains the values of the function
exp(z) in the points given by x.

10.8.2 Three-dimensional (3-D) plots
Line plots

3-D line plots are built using the command plot3, which operates similarly to plot in two dimen-
sions. Namely, given three vectors x, y and z of the same length, plot3(x,y,z) builds a plot of
the piecewise linear curve connecting the points with coordinates defined by the corresponding
components of x, y and z. In the example below we define x, y and z parametrically, using
vector t.

Example 10.33.

158

>>
>>
>>
>>
>>

t=0:0.01:10%p1i;
x=cos(t);
y=sin(t);
z=sqrt(t);
plot3(x,y,z)

Mesh and surface plots

CHAPTER 10. AN INTRODUCTION TO MATLAB

3-D mesh plots are created using the command mesh. When an m x n matrix Z is used as a single
argument (mesh(Z)), then the mesh surface uses the values of Z as z-coordinates of points defined
over a geometrically rectangular grid {1,2,...,m} x {1,2,...,n} in the x — y plane. Similarly,
3-D colored surfaces are created using the command surf.

To draw a 3-D graph of a function of two variables f(x,y) over a rectangle, we first use the
function [X,Y] = meshgrid(x,y) to transforms the domain specified by vectors x and y into
matrices X and Y which are used for the evaluation of f(z,y). In these matrices, the rows of X
are copies of the vector x and the columns of Y are copies of the vector y. The function f(x,y)
is then evaluated entrywise over the matrices X and Y, producing the matrix Z of the function
values, to which mesh(Z) or surf (Z) can be applied.

Example 10.34. Below we draw the mesh surfaces of a random matrix and the matrix

consisting of all ones, both of dimension 50 x 50 :

A graph of f(z,y) = cos(2x) sin(y)e

>> mesh(rand(50))

as follows.

>> mesh(ones(50))

2 2

"5 over the rectangle [—,] x [—m, 7] can be drawn

10.8. GRAPHICS

>> t=-pi:0.1:pi;

>> [X,Y]=meshgrid(t,t);

>> Z=cos(2*X) .*sin(Y) .*...
exp((-X."2-Y."2)/5);

>> mesh(Z)

159

>> t=-pi:0.1:pi;

>> [X,Y]=meshgrid(t,t);

>> Z=cos(2%X) .*sin(Y) .*...
exp((-X."2-Y."2)/5);

>> surf (Z)

160 CHAPTER 10. AN INTRODUCTION TO MATLAB

10.9 On-line Help in MATLAB

Selected topics

Matlab Help facility is a very convenient tool for getting familiar with MATLAB built-in functions
and commands. By entering “help” you will obtain the list of MATLAB Help topics. The following
is a list of some of these topics (toolboxes are optional and are not necessary installed).

general - General purpose commands.

ops - Operators and special characters.
lang - Programming language constructs.
elmat - Elementary matrices and matrix manipulation.
elfun - Elementary math functions.

specfun - Specialized math functions.

matfun - Matrix functions - numerical linear algebra.
datafun - Data analysis and Fourier transforms.
polyfun - Interpolation and polynomials.

funfun - Function functions and ODE solvers.
sparfun - Sparse matrices.

graph2d - Two dimensional graphs.

graph3d - Three dimensional graphs.

specgraph - Specialized graphs.

graphics - Handle Graphics.

uitools - Graphical user interface tools.
strfun - Character strings.

iofun - File input/output.

timefun - Time and dates.

datatypes - Data types and structures.

demos - Examples and demonstrations.

optim - Optimization Toolbox.

signal - Signal Processing Toolbox.

stats - Statistics Toolbox.

symbolic - Symbolic Math Toolbox.

tour - MATLAB Tour

For more help on a topic, you can type “help topic” in the Matlab command window. This
will give a list of commands and functions for the given topic. Then again, you can enter “help
function_name” to get a detailed description of how to use the function of interest.

