
Midterm Exam - Introduction to Operating Systems
COP 4610, Fall 2001, Florida State University

Name .

SSN .

2 COP 4610 2 CGS5765

2 Section 6 2 Section 7 2 Section 8
(9:05-9:55am) (10:10-11:00am) (11:15am-12:05pm)

Score .

Initials: 1

1. (15 pnts, 3 pnts each) Single Choice - For each of the following questions, please select the
best answer from the given choices. Remember there is only ONE best answer to each question.

(a) The operating system is . []

i. Application software.

ii. Hardware.

iii. System software.

iv. A user program.

(b) Direct memory access is a technique that . []

i. Is most effective for slow character devices.

ii. Cannot be used for block devices.

iii. Enables the associated controller to read and write data directly from/to primary
memory with no CPU intervention during data transfer.

iv. None of the above.

(c) In a time-sharing system, an interrupt for a user’s program is handled by []

i. The user’s program directly.

ii. Operating system for the user program.

iii. Hardware.

iv. User’s current shell program.

(d) In a system where round robin is used for CPU scheduling, the following is true when a
process cannot finish its computation during its current time quantum []

i. The process will terminate itself.

ii. The process will be terminated by the operating system.

iii. The process’s state will be changed from running to ready.

iv. None of the above.

(e) The following algorithm is proposed to solve the critical section problem between two
processes P1 and P2, where lock is a shared variable.

P1 P2

do { do {
while (lock) { NULL;} while(lock) { NULL;}
lock = TRUE; lock = TRUE;
critical section; critical section;
lock=FALSE; lock=FALSE;
reminder section; reminder section;

} while(TRUE); } while(TRUE);

Which of the following statements is true regarding the proposed algorithm? []

i. Mutual exclusion to the critical section is guaranteed.

ii. Both processes can be in their critical section at the same time.

iii. Lock should be initialized to TRUE.

iv. None of the above.

Initials: 2

2. (20 pnts, 4 pnts each) Multiple Choices - For each of the following questions, please select
all the correct choices from the given ones. Remember there are possibly MULTIPLE choices to
each question.

(a) Suppose that a process is executing “counter=counter+1” while another process is executing
concurrently and independently “counter=counter-2”, where the counter is a variable
shared between the two processes and is accessed only by the two statements. Given that
the value of counter is five before execution, the possible value(s) after both processes finish
their statement are . []

i. Three.

ii. Four.

iii. Five

iv. Six.

(b) The following statement(s) are true regarding a monitor where no condition variable is
defined. []

i. Only one process can be running inside the monitor at any time.

ii. Processes can be blocked inside the monitor.

iii. No process can be blocked inside the monitor.

iv. Mutual exclusion is guranteed among all the functions/procedures defined within the
monitor.

(c) The following statement(s) are true regarding system calls . []

i. System calls are functions defined as part of the operating systems.

ii. System calls are functions that run in user mode in a dual mode system.

iii. System calls are implemented using a trap instruction which generates an interrupt.

iv. System calls are functions that run in system mode in a dual mode system.

(d) The following functions are necessary for an operating system that supports multiple users
and multiple processes. []

i. Process management.

ii. Device management.

iii. Memory management.

iv. Non-preemptive scheduling algorithm.

(e) The following statement(s) are true regarding a device that uses interrupt-driven I/O for
I/O operations . []

i. The CPU must continously check whether the current I/O operation is done.

ii. The CPU is informed through an interrupt request line when the current I/O operation
is done.

iii. I/O on the device can be overlapped with computation on CPU by other processes.

iv. A device status table is necessary to save information about pending I/O requests.

Initials: 3

3. (20 pnts, 4 pnts each) Briefly define and explain the following terms.

(a) Race condition.

(b) Context switch.

(c) Semaphore.

(d) Direct I/O with polling.

(e) Process state diagram (Draw a diagram with the three major states and the transitions
between states).

Initials: 4

4. (20 pnts) Assume that the following processes are the only processes in a computer system and
that there are no input/output requests from all the given processes. Given the following arrival
time and CPU burst time (also called service time) for each process, answer the following
questions.

Process Arrival Time CPU Burst Time
P1 0 20
P2 3 7
P3 5 2
P4 7 3

(a) (15 pnts) Draw the Gantt chart and compute the average waiting time for the following
CPU scheduling algorithms. Here the waiting time of a process includes all the time it is in
the ready list.

i. First Come First Service (FCFS).

ii. Preemptive Shortest Job Next (also called Shortest Remaining Job Next).

iii. Round-Robin with time quantum of 4 (Assume that new processes will be inserted at
the end of the ready list).

(b) (5 pnts) According to your results, which scheduling algorithm among those given in (a)
gives the shortest average waiting time? Is that consistent with your theoretical prediction?
Justify your answer.

Initials: 5

5. (20 pnts, 5 ptns each) In a system, there are multiple reader processes which read from a
shared file and multiple writer processes which update a shared file. The following variables are
shared among all processes:

int readCount;
FILE *sharedFile;
semaphore mutex, writeBlock;

Reader and writer processes are given in the following C++-like pseudo programs:

Reader Process Writer Process

while(TRUE) { while(TRUE) {
1 <other computing>; 1 <other computing>;
2 P(mutex); 2 P(writeBlock);
3 readCount++; 3 Update(sharedFile); //Critical section
4 if (readCount==1) 4 V(writeBlock);
5 P(writeBlock); }
6 V(mutex);
7 Read(sharedFile); //Critical section
8 P(mutex);
9 readCount−−;
10 if (readCount ==0)
11 V(writeBlock);
12 V(mutex);

}

(a) How should the shared variable readCount, and the semaphores mutex and writeBlock be
initialized so that the system would work properly?

(b) Suppose that when a writer is updating, three new readers have arrived and they are the
only reader processes at that time. Show where the readers are blocked.

(c) Suppose that some readers are reading, explain what happens to a newly arrived writer.

(d) Are writers subject to starvation in this solution? Justify your answer.

Initials: 6

6. (20 pnts, 5 pnts each) Given that each of the following C++ programs compiles and runs
successfully without any error. Write the shell command that is equivalent to running each given
program once.

(a) The corresponding shell command is .

#include <sys/types.h>

#include <unistd.h>

#include <iostream.h>

#include <sys/wait.h>

int main(void)

{
char *argv[3];

int status;

argv[0] = ‘‘sleep’’; argv[1]=‘‘100’’; argv[2]=(char *)NULL;

int pid=fork();

if (pid == 0)

execv(‘‘/bin/sleep’’, argv);

wait(&status);

return 0;

}

(b) The corresponding shell command is .

#include <sys/types.h>

#include <unistd.h>

#include <iostream.h>

#include <fcntl.h>

#include <sys/stat.h>

int main(void)

{
char *argv[2];

int fd = open(‘‘tmp.out’’, O CREAT|O TRUNC|O WRONLY, S IRWXU);

close(1); dup(fd); close(fd);

argv[0] = ‘‘ls’’; argv[1]=(char *)NULL;

execv(‘‘/bin/ls’’, argv);

}

Initials: 7

(c) The corresponding shell command is .

#include <sys/types.h>

#include <unistd.h>

#include <iostream.h>

#include <sys/wait.h>

int main(void)

{
char *argv[3];

argv[0] = ‘‘sleep’’; argv[1]=‘‘100’’; argv[2]=(char *)NULL;

int pid=fork();

if (pid == 0)

execv(‘‘/bin/sleep’’, argv);

return 0;

}

(d) The corresponding shell command is .

#include <sys/types.h>

#include <unistd.h>

#include <iostream.h>

int main(void)

{
char *argv[2];

int fd[2];

pipe(fd);

int pid = fork();

if (pid ==0) {
argv[0] = ‘‘ls’’; argv[1]=(char *)NULL;

close(1); dup(fd[1]); close(fd[0]); close(fd[1]);

execv(‘‘/bin/ls’’, argv);

}
argv[0] = ‘‘cat’’; argv[1]=(char *)NULL;

close(0); dup(fd[0]); close(fd[0]); close(fd[1]);

execv(‘‘/bin/cat’’, argv);

}

END OF QUESTIONS

