
SPIM for Windows—A Tutorial

Salah A. Almajdoub
smajdoub@eng.uob.bh
University of Bahrain

Electrical Engineering Department

Introduction

This is a tutorial to SPIM for windows; a simulator for MIPS 2000 machines. This tutorial
teaches you how to load and run a simple assembly language program. Breakpoints and step
execution techniques used for debugging are also presented.

A Detailed Example

Start SPIM and open the following file; . This file contains a simple assembly programadd.s
that calculates the sum of an array matrix and stores the sum at a memory location5

Result Nstart. The array is stored at memory location and the size of the array is5

stored at .Size

###
add.s
addition of an array
#
###

 .text
 .align 2
 .globl main
main:
 lw $a0, Size # read the size of array
 li $a1, 0 # index i
 li $a2, 0 # a2 contains the sum
 li $t2, 4 # t2 contains the constant 4

loop: mul $t1, $a1, $t2 # t1 gets i * 4
 lw $a3, Nstart($t1)# a3 = N[i]
 add $a2, $a2, $a3 # sum = sum + N[i]
 add $a1, $a1, 1 # i = i + 1
 beq $a1, $a0, STOR # go to STOR if finished
 j loop

STOR: sw $a2, Result # store the sum at Result

 .data
 .align 2
Nstart: .word 8, 25, -5, 55, 33, 12, -78
Size: .word 7
Result: .word 0

add.s: A program to calculate the sum of elements in an array

SPIM for Windows—A Tutorial

SPIM creates four windows; text segment, data segment, massages and registers windows.
The text segment window shows the add program as loaded to the memory. The first column
gives the memory location of each instruction and the second column gives the instruction
encoding in hexadecimal. The actual instructions follows the instruction encoding. The add
program contains several psuedinstructions but SPIM can only load real instructions to the
memory. Hence, every line contains the real instruction as loaded to the memory followed by
the original instruction in the assembly program file. For example, load immediate instruction
li $a1, ori $5, $0, 0� is actually a pseudoinstruction and its implementations is .

Pseudoinstructions can be represented by up to three actual instructions. Notice that the
first instruction

 lw $a0, Size
is represented by two instructions

 lui $1, 4097
 lw $4, 28($1)

These two instructions work together to read the size of the array from address5

0x1001001c. The first instruction loads register $1 with 0x10010000 while the second
instruction calculates the address of Size by adding 28 to register $1 producing the address
0x1001001c. Then the content of this address is loaded to register $4 ($a0).

[0x00400000] 0x3c011001 lui $1, 4097 [Size]; 11: lw $a0, Size # read the size of array
[0x00400004] 0x8c24001c lw $4, 28($1) [Size]
[0x00400008] 0x34050000 ori $5, $0, 0 ; 12: li $a1, 0 # index i
[0x0040000c] 0x34060000 ori $6, $0, 0 ; 13: li $a2, 0 # a2 contains the sum
[0x00400010] 0x340a0004 ori $10, $0, 4 ; 14: li $t2, 4 # t2 contains the constant 4
[0x00400014] 0x00aa0018 mult $5, $10 ; 16: mul $t1, $a1, $t2
[0x00400018] 0x00004812 mflo $9
[0x0040001c] 0x3c011001 lui $1, 4097 [Nstart] ; 17: lw $a3, Nstart($t1)
[0x00400020] 0x00290821 addu $1, $1, $9
[0x00400024] 0x8c270000 lw $7, 0($1) [Nstart]
[0x00400028] 0x00c73020 add $6, $6, $7 ; 18: add $a2, $a2, $a3
[0x0040002c] 0x20a50001 addi $5, $5, 1 ; 19: add $a1, $a1, 1 # i = i + 1
[0x00400030] 0x10a40002 beq $5, $4, 8 [STOR-0x00400030] ; 20: beq $a1, $a0, STOR
[0x00400034] 0x08100005 j 0x00400014 [loop] ; 21: j loop
[0x00400038] 0x3c011001 lui $1, 4097 [Result] ; 24: sw a2, Result # store the sum at Result
[0x0040003c] 0xac260020 sw $6, 32($1) [Result]

Text Segment Window Content

The Data Segment window display shows the data loaded into your program's memory.
Locations 0x10010000 to 0x10010018 should include the elements of the array 8, 25, -5,5 ³

55, 33, 12, -78 . The values appear in hexadecimal. Location 0x1001001c, which contains´

:�'�, is the last data item in the line that starts with address 0x10010010. Your Data Segment
window should display 0x0000007 at the memory location 0x1001001c indicating that is:�'�

initialized to 7. Remember that each word needs the addresses of four bytes.

[0x10010000] 0x00000008 0x00000019 0xfffffffb 0x00000037
[0x10010010] 0x00000021 0x0000000c 0xffffffb2 0x00000007

Part of Data Segment Window Content

To run this program you need to select (simulator go) from SPIM menu or press F5.¡

This should pop up a window that asks for the starting address. Type 0x00400000 which is
the address of the first instruction in memory then click OK. The add program should run and

SPIM for Windows—A Tutorial

then the memory location 0x10010020 should contain 0x00000032 i.e. the Result location is
set to 50 which is the sum of the array elements.

Usually programmers don't start with correct programs so they study the behavior of their
programs using a process called debugging. Two main tools are used for debugging programs;
breakpoints and step by step execution. Select (simulator breakpoints) and write the¡

address 0x0040000c then click add and close. This should add a break point at the instruction
li $a2, 0

Select (simulator go) to run the program. The program should stop at the breakpoint.¡

Select No when your asked if you want to continue execution. Now you should try step
execution technique. In this technique you run the program step by step. Select
(simulator single step) or press F10. Notice how one line of code gets executed. Press F10¡

again and watch the changes in the registers in the registers window. Repeat pressing F10 until
you finish running the whole program or you can select (simulator continue) to continue¡

the execution till the end of the program.
The log file is a text file that contains information about how the program was loaded and

run. Also the log file records the content of the registers, text segment and data segment. To
generate a log file select (file save log file). Then provide a name for this file e.g.¡

addrun.log.

