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WHY MANIFOLDS?

Non-linearity underlies many mathematical structures and representations used in

computer vision. For example, many image and shape descriptors fall in this

category, as discussed in the introduction to this tutorial.

On the other hand, differential calculus is one of the most useful tools employed in

the study of phenomena modeled on Euclidean n-space R
n. The study of

optimization and inference problems, dynamics, and geomet ry on linear spaces

can all be approached with the tools of calculus.



A natural question arises:

What spaces can the techniques of differential calculus be e xtended to?

Since derivative is a local notion, it is reasonable to expect that differential calculus

can be developed in spaces that locally “look like” Euclidean spaces. These spaces

are known as differentiable manifolds .



Manifolds Underlying Data Points
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For simplicity, we only consider manifolds in Euclidean spaces , but a more general

approach may be taken. Also, most concepts to be discussed extend to

infinite-dimensional manifolds , whose relevance to shape and vision problems

already has been indicated in the introduction.

Our discussion will be somewhat informal. A few references to more complete and

general treatments:

• W. Boothby , An Introduction to Differentiable Manifolds and Riemannian

Geometry, Academic Press, 2002.

• F. Warner , Foundations of Differential Geometry and Lie Groups, Graduate Texts

in Mathematics, Springer-Verlag, 1983.

• J. Lee , Introduction to Smooth Manifolds, Springer-Verlag, 2002.



How to make sense of “locally similar” to an Euclidean space?

A map ϕ : U → R
m defined on an open region U ⊆ R

n, n ≤ m, is said to be a

parameterization if:

(i) ϕ is a smooth (i.e., infinitely differentiable), one-to-one mapping.

U ⊂ R
2

ϕ
−→

This simply says that V = ϕ(U) is produced by bending and stretching the region

U in a gentle, elastic manner, disallowing self-intersections .



(ii) The m × n Jacobian matrix J(x) =
[

∂ϕi

∂xj
(x)

]

has rank n, for every x ∈ U .

Here, x = (x1, . . . , xn) and ϕ = (ϕ1, . . . , ϕm).
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(a) ϕ(t) = (t3, t2) (b) ϕ(t, s) = (t3, t2, s)

This condition further ensures that V has no sharp bends, corners, peaks , or other

singularities.



(ii) The inverse map x = ϕ−1 : V → U is continuous .

ϕ
−→

This condition has to do with the fact that we should be able to recover U from V

with a continuous deformation . In the illustration above, ϕ−1 is not continuous.

One often refers to ϕ as a parameterization of the set V = ϕ(U), and to the

inverse mapping x = ϕ−1 as a local chart , or a local coordinate system on V .



Definition of Differentiable Manifolds

A subspace M ⊆ R
m is an n-dimensional differentiable manifold if every point

has a neighborhood that admits a parameterization defined on a region in R
n. More

precisely, for every point x ∈ M , there are a neighborhood Vx ⊆ M of x, and a

parameterization ϕ : U ⊆ R
n → R

m, with ϕ(U) = Vx.

ϕ
−→



Examples of Manifolds

• The Space of Directions in R
n

A direction is determined by a unit vector. Thus, this space can be identified with the

unit sphere

S
n−1 = {x ∈ R

n : ‖x‖ = 1}

Notice that S
n−1 can be described as the level set F −1(1) of the function

F (x1, . . . , xn) = x2
1 + . . . + x2

n.



This implicit description of the sphere is a special case of the following general

construction.

Let F : R
m → R

k, k < m, be a smooth mapping, and let a ∈ R
k. If the k × m

Jacobian matrix J(x) of F has rank k, for every x ∈ F−1(a), then

M = F −1(a) ⊂ R
m

is an (m − k)-dimensional manifold. When this condition on J is satisfied, a ∈ R
k

is said to be a regular value of F .

• The Graph of a Smooth Function

Let g : R
n → R

ℓ be smooth. Then,

M =
{

(x, y) ∈ R
n+k : y = g(x)

}

is an n-dimensional manifold. Here, F (x, y) = y − g(x) and M = F−1(0).



• The Group O(n) of Orthogonal Matrices

Let M(n) ∼= R
n2

be the space of all n × n real matrices, and S(n) ∼= R
n(n+1)/2

the subcollection of all symmetric matrices. Consider the map F : M(n) → S(n)

given by F (A) = AAt, where the superscript t indicates transposition.

Orthogonal matrices are those satisfying AAt = I . Hence,

O(n) = F −1(I).

It can be shown that I is a regular value of F . Thus, the group of n × n orthogonal

matrices is a manifold of dimension

n2 −
n(n + 1)

2
=

n(n − 1)

2
.

Remark. O(n) has two components formed by the orthogonal matrices with positive

and negative determinants, resp. The positive component is denoted SO(n).



• Lines in R
n Through the Origin

A line in R
n through the origin is completely determined by its intersection with the unit

sphere S
n−1. This intersection always consists a pair of antipodal points

{x, −x} ⊂ S
n−1. Thus, the space of lines through the origin can be modeled

on the sphere S
n−1 with antipodal points identified. This is an (n − 1)-dimensional

manifold known as the real projective space RP
n−1.



• Grassmann Manifolds

The spaces G(n, k) of all k-planes through the origin in R
n, k ≤ n, generalize real

projective spaces. G(n, k) is a manifold of dimension k(n − k) and is known as a

Grassmann manifold .

A k-plane in R
n determines an (n − k)-plane in R

n (namely, its orthogonal

complement), and vice-versa. Thus, G(n, k) ∼= G(n, n − k).



What is a Differentiable Function?

Let f : Mn ⊂ R
m → R be a function. Given u0 ∈ M , let ϕ : U → R

m be a

parameterization such that ϕ(x0) = u0. The map f is said to be differentiable at

the point u0 if the composite map

f ◦ ϕ : U ⊂ R
n → R,

given by f ◦ ϕ(x) = f(ϕ(x)), is differentiable at x0.

ϕ
−→

f
−→



Tangent Vectors

A tangent vector to a manifold Mn ⊂ R
m at a point p ∈ M is a vector in R

m that

can be realized as the velocity at p of a curve in M .

More precisely, a vector v ∈ R
m is tangent to M at p if there is a smooth curve

α : (−ε, ε) → M ⊆ R
m such that α(0) = p and α′(0) = v.



Tangent Spaces

The collection of all tangent vectors to an n-manifold Mn ⊂ R
m at a point p forms an

n-dimensional real vector space denoted TpM .

If ϕ : U ⊂ R
n → M is a parameterization with ϕ(a) = p, then the set

{

∂ϕ

∂x1

(a), . . . ,
∂ϕ

∂xn

(a)

}

is a basis of TpM .



Example

Let F : R
m → R be a differentiable function, and let a ∈ R be a regular value of F .

The manifold M = F −1(a) is (n − 1)-dimensional and the tangent space to M

at p consists of all vectors perpendicular to the gradient vector ∇F (x); that is,

TxM = {v ∈ R
m : 〈∇F (x), v〉 = 0} .

Here, 〈 , 〉 denotes the usual inner (or dot) product on R
n.

• The Sphere

If F (x1, . . . , xn) = x2
1 + . . . + x2

n, the level set S
n−1 = F−1(1) is the

(n − 1)-dimensional unit sphere . In this case, ∇F (x) = 2(x1, . . . , xn) = 2x.

Thus, the tangent space to the S
n−1 at the point x consists of vectors orthogonal to

x; i.e.,

TxS
n−1 = {v ∈ R

n : 〈x, v〉 = 0} .



Derivatives

Let f : M → R be a differentiable function and v ∈ TpM a tangent vector to M at

the point p.

Realize v as the velocity vector at p of a parametric curve α : (−ε, ε) → M . The

derivative of f at p along v is the derivative of f(α(t)) at t = 0; that is,

dfp(v) =
d

dt
(f ◦ α) (0).

The derivatives of f at p ∈ M along vectors v ∈ TpM can be assembled into a

single linear map

dfp : TpM → R v 7→ dfp(v),

referred to as the derivative of f at p.



Differential Geometry on M

Given a manifold Mn ⊂ R
m, one can define geometric quantities such as the

length of a curve in M , the area of a 2D region in M , and curvature.

The length of a parametric curve α : [0, 1] → M is defined in the usual way, as

follows. The velocity vector α′(t) is a tangent vector to M at the point α(t). The

speed of α at t is given by

‖α′(t)‖ = [〈α′(t), α′(t)〉]
1/2

,

and the length of α by

L =

∫ 1

0

‖α′(t)‖ dt.



Geodesics

The study of geodesics is motivated, for example, by the question of finding the curve

of minimal length connecting two points in a manifold M . This is important in

applications because minimal-length curves can be used to define an intrinsic

geodesic metric on M , which is useful in a variety of ways. In addition, geodesics

provide interpolation and extrapolation techniques, and tools of statistical analysis on

non-linear manifolds.

In order to avoid further technicalities, think of geodesics as length-minimizing curves

in M (locally, this is always the case). A more accurate way of viewing geodesics is as

parametric curves with zero intrinsic acceleration .

A curve α : I → M ⊂ R
m is a geodesic if and only if the acceleration vector

α′′(t) ∈ R
m is orthogonal to Tα(t)M , for every t ∈ I .



Numerical Calculation of Geodesics

1. Geodesics with prescribed initial position and velocity

For many manifolds that arise in applications to computer vision, one can write the

differential equation that governs geodesics explicitly, which can then be integrated

numerically using classical methods.



2. Geodesics between points a, b ∈ M

One approach is to use a shooting strategy . The idea is to shoot a geodesic from a

in a given direction v ∈ TaM and follow it for unit time. The terminal point

expa(v) ∈ M is known as the exponential of v. If we hit the target (that is,

exp(v) = b), then the problem is solved.



Otherwise, we consider the miss function h(v) = ‖ exp(v) − b‖2, defined for

v ∈ TaM .

The goal is to minimize (or equivalently, annihilate) the function h. This optimization

problem on the linear space TaM can be approached with standard gradient

methods.



Optimization Problems on Manifolds

How can one find minima of functions defined on nonlinear manifolds

algorithmically ? How to carry out a gradient search ?

Example. Let x1, . . . , xk be sample points in a manifold M . How to make sense of

the mean of these points?

The arithmetic mean µ = (x1 + . . . + xk) /k used for data in linear spaces

does not generalize to manifolds in an obvious manner. However, a simple calculation

shows that µ can be viewed as the minimum of the total variance function

V (x) =
1

2

k
∑

i=1

‖x − xi‖
2.

This minimization problem can be posed in more general manifolds using the geodesic

metric.



Given x1, . . . , xk ∈ M , consider the total variance function

V (x) =
1

2

k
∑

i=1

d2(x, xi),

where d denotes geodesic distance. A Karcher mean of the sample is a local

minimum µ ∈ M of V .

Back to Optimization

Gradient search strategies used for functions on R
n can be adapted to find minima of

functions f : M → R defined on nonlinear manifolds. For example, the calculation

of Karcher means can be approached with this technique. We discuss gradients next.



What is the Gradient of a Function on M?

The gradient of a function F : M → R at a point p ∈ M is the unique vector

∇MF (p) ∈ TpM such that

dFp(v) = 〈∇MF (p), v〉 ,

for every v ∈ TpM . How can it be computed in practice? Oftentimes, F is defined

not only on M , but on the larger space R
m in which M is embedded. In this case,

one first calculates

∇F (p) =

(

∂F

∂x1

, . . . ,
∂F

∂x1

)

∈ R
m.

The orthogonal projection of this vector onto TpM gives ∇MF (p).



Gradient Search

At each p ∈ M , calculate ∇Mf(p) ∈ TpM . The goal is to search for minima of f

by integrating the negative gradient vector field −∇Mf on M .

• Initialize the search at a point p ∈ M .

• Update p by infinitesimally following the unique geodesic starting at p with

initial velocity −∇Mf(p).

• Iterate the procedure.

Remark. The usual convergence issues associated with gradient methods on R
n

arise and can be dealt with in a similar manner.



Calculation of Karcher Means

If {x1, . . . , xn} are sample points in a manifold M , the negative gradient of the total

variance function V is

∇MV (x) = v1(x) + . . . + vn(x),

where vi(x) is the initial velocity of the geodesic that connects x to xi in unit time.



Applications to the Analysis of Planar Shapes

To illustrate the techniques discussed, we apply them to the study of shapes of planar

contours. We consider two different approaches, namely:

• The Procrustean Shape Analysis of Bookstein and Kendall.

• The Parametric-Curves Model of Klassen, Srivastava, Mio and Joshi.

In both cases, a shape is viewed as an element of a shape space . Geodesics are

used to quantify shape similarities and dissimilarities, interpolate and extrapolate

shapes, and develop a statistical theory of shapes.



Procrustean Shape Analysis

A contour is described by a finite, ordered sequence of landmark points in the plane,

say, p1, . . . , pn. Contours that differ by translations, rotations and uniform

scalings of the plane are to be viewed as having the same shape. Hence, shape

representations should be insensitive to these transformations.

If µ be the centroid of the given points, the vector

x = (p1 − µ, . . . , pn − µ) ∈ R
2n.

is invariant to translations of the contour. This representation places the centroid at the

origin. To account for uniform scaling, we normalize x to have unit length. Thus, we

adopt the preliminary representation

y = x/‖x‖ ∈ S
2n−1.



In this y-representation, rotational effects reduce to rotations about the origin . If

y = (y1, . . . , yn), in complex notation, a θ-rotation of y ∈ S
2n−1 about the origin

is given by

y 7→ λy = (λy1, . . . , λyn),

where λ = ejθ , where j =
√
−1.

In other words, vectors y ∈ S
2n−1 that differ by a unit complex scalar represent the

same shape. Thus, the Procrustean shape space is the space obtained from S
2n−1

by identifying points that differ by multiplication by a unit complex number. It is manifold

of dimension (2n − 2) known as the complex projective space CP (n − 1).

Geodesics in CP (n − 1) can be used to study shapes quantitatively and develop a

statistical theory of shapes. This will be discussed in more detail in Part III.



Examples of Procrustean Geodesics



Parametric-Curves Approach

As a preliminary representation, think of a planar shape as a parametric curve

α : I → R
2 traversed with constant speed, where I = [0, 1].

To make the representation invariant to uniform scaling, fix the length of α to be 1.

This is equivalent to assuming that ‖α′(s)‖ = 1, ∀s ∈ I .

Since α is traversed with unit speed, we can write α′(s) = ejθ(s), where

j =
√
−1.

A function θ : I → R with this property is called an angle function for α. Angle

functions are insensitive to translations, and the effect of a rotation is to add a

constant to θ.



To obtain shape representations that are insensitive to rigid motions of the plane,

we fix the average of θ to be, say, π. In other words, we choose representatives that

satisfy the constraint
∫ 1

0

θ(s) ds = π.

We are only interested in closed curves. The closure condition

α(1) − α(0) =

∫ 1

0

α′(s) ds =

∫ 1

0

ejθ(s) ds = 0

is equivalent to the real conditions

∫ 1

0

cos θ(s) ds = 0 and

∫ 1

0

sin θ(s) ds = 0.

These are nonlinear conditions on θ, which will make the geometry of the shape space

we consider interesting.



Let C the collection of all θ satisfying the three constraints above. We refer to an

element of C as a pre-shape.

• Why call θ ∈ C a pre-shape instead of shape ?

This is because a shape may admit multiple representations in C due to the choices in

the placement of the initial point (s = 0) on the curve. For each shape, there is a circle

worth of initial points. Thus, our shape space S is the quotient of C by the action of

the re-parametrization group S
1; i.e., the space

S = C/ S
1,

obtained by identifying all pre-shapes that differ by a reparameterization.



The manifold C and the shape space S are infinite dimensional . Although these

spaces can be analyzed with the techniques we have discussed, we consider

finite-dimensional approximations for implementation purposes.

We discretize an angle function θ : I → R using a uniform sampling

x = (x1, . . . , xm) ∈ R
m.

The three conditions on θ that define C can be rephrased as:

∫ 1

0
θ(s) ds = π ⇐⇒ 1

m

∑m
i=1 xi = π

∫ 1

0
cos θ(s) ds = 0 ⇐⇒

∑m
i=1 cos(xi) = 0

∫ 1

0
sin θ(s) ds = 0 ⇐⇒

∑m
i=1 sin(xi) = 0



Thus, the finite-dimensional analogue of C is a manifold Cm ⊂ R
m of dimension

(m − 3). Modulo 2π, a reparameterization of θ corresponds to a cyclic permutation

of (x1, . . . , xm), followed by an adjustment to ensure that the first of the three

conditions is satisfied. The quotient space by reparameterizations is the

finite-dimensional version of the shape space S.

Examples of Geodesics in S
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