
My experience in using Linux From Scratch as
an advanced exercise

Randolph Langley
Florida State University

langley@cs.fsu.edu

October 17, 2016

Abstract
A summary of my experience and lessons
learned from using Linux From Scratch
installation as an advanced exercise over
the last two semesters.

1 Introduction
It was clear early on that system
administrators had to be rabid jacks of all
trades. – page 1269 ULSAH [2]

In summer 2016, I came up with the
idea of having students do a complete in-
stallation of Linux From Scratch as an op-
tional class project. In a class of 30-odd
students, 6 students completed this op-
tional project.

I found this quite encouraging. I think
that doing an installation of Linux From
Scratch (LFS) is an outstanding way to
learn exactly how a Linux system is put
together. Rather than just learning about
a single aspect of system configuration, I
find the depth and breadth of this project
to be a completely different experience for
the students.

LFS illustrates a complicated process
for building a shared library system, not
only giving great detail about the inter-
nals but also the philosophy behind build-
ing shared libraries.

2 Outline of talk

2.1 Philosophy

System administration can often seem
like it involves much configuration of com-
plex software, and from that laborious ex-
perience we hope to abstract out the in-
ternal structure of such complex systems.

I like to try to motivate the study of sys-
tem administration by expounding on the
model of a kernel which provides system
calls feeding libraries, which provide APIs
for userland processes. I find that this
more strongly motivates real-world trou-
bleshooting techniques based on strace
and ltrace.

Using LFS as a large scale exercise il-
luminates the orthogonal problem of the
complex process of building any new dy-
namically linked library system, not only
giving in great detail the internals of cur-

1



rent GNU/Linux practice, but also the
philosophy of building a new clean-room
toolset and environment.

2.2 A summary of the LFS
build exercise

There are too many other good reasons to
build your own LFS system to list them all
here. In the end, education is by far the most
powerful of reasons. As you continue in your
LFS experience, you will discover the power
that information and knowledge truly bring.
– Gerard Beekmans, LFS 7.10 Foreword

LFS, unlike a managed package distri-
bution like Red Hat or Debian, or even
pure source distributions like Sabotage, is
based on building a system from original
source by following a book, Linux From
Scratch [1] (currently version 7.10). The
book is composed of nine chapters:

• Chapter 1 Introduction

• Chapter 2 Preparing the Host System

• Chapter 3 Packages and Patches

• Chapter 4 Final Preparations

• Chapter 5 Constructing a Temporary
System

• Chapter 6 Installing the Basic Sys-
tem Software

• Chapter 7 System Configuration

• Chapter 8 Making the LFS System
Bootable

• Chapter 9 The End

The LFS system is based on 72 pack-
ages from various organizations; 36 of
them are from gnu.org websites, and 7
are from kernel.org. Three packages
are hosted at linuxfromscratch.org itself.
There are also 8 patch files.

Building the system starts with creat-
ing one or more partitions to host the
build (Chapter 4), and then compiling and
installing the fundamental 12 toolchain
steps in the new partition(s) in Chapter
5 (diagram 1.)

2



Diagram 1: Chapter 5's fundamental toolchain

Binutils Pass 1

GCC Pass 1

Linux headers

Glibc Pass 1

Libstdc++

Binutils Pass 2

GCC Pass 2

Tcl

Expect

DejaGNU

Check

Ncurses



After that, one compiles the remaining
19 base toolchain elements: Bash, Bzip2,
Coreutils, Diffutils, File, Findutils, Gawk,
Gettext, Grep, Gzip, M4, Make, Patch,
Perl, Sed, Tar, Texinfo, Util-linux, Xz.

In Chapter 6, one first sets up and
then enters the basic chroot environment.
The chroot ensures that we are both only
modifying the new build’s directories, and
that we are using initially only the new
toolset from Chapter 5 and those bits that
are being incrementally added as we work
through Chapter 6.

Chapter 6 has 63 steps that work with
source code, and 7 that work with the con-
figuration of the new build.

After first installing the Linux headers
and the man pages, the first compilation
is Glibc, followed by the section “Adjust-
ing the Toolchain” which makes sure that
the remaining compilations are working
against the just-compiled Glibc.

Next the file utility is compiled, and
then Binutils is recompiled for the third
time, followed by GCC’s third compi-
lation. Then we are off to the races:
59 packages are then compiled, with
the eight downloaded patches applied
amongst a vast motley of configura-
tion options, tests, and path adjust-
ments (it’s not all just ./configure
--prefix=/usr && make && make
install), ending with the compilation of
Vim.

In Chapter 7 final configuration is done
to the system; Chapter 8 finishes the ex-
ercise with creating /etc/fstab, com-
piling a new Linux kernel, and running
GRUB. Chapter 9 congratulates the in-
staller and invites the installer to join
the 26,000+ people who have listed them-
selves as having completed the exercise.

2.3 How I structure this
I have the students do this exercise with
QEMU virtualization, with the host sys-
tem as Salix (an outstanding Slackware
distribution that I only recently found.)
The students install Salix to one image
file, and do the LFS installation on a sep-
arate image file. The final step is booting
the new LFS installation alone.

2.4 The value of this exercise
Obviously, anyone doing this exercise
will learn a tremendous amount about
every level of the operation of Linux:
this exercise covers literally everything
from building a kernel to configuring ev-
ery major /etc file and directory on a
GNU/Linux system.

Beyond that obvious value, doing the
LFS exercise in the timeframe of an ex-
ercise in a single class is a strenuous en-
deavor. Attention to detail is key, as is
developing an understanding of the nu-
ances of the structure of the complex
dynamically-linked GNU/Linux monocul-
ture. While much of the keyboard work
can be done as an exercise in cut-and-
paste from the LFS book to Bash run-
ning in the chroot environment, that’s not
uniformly true, and learning to recognize
those more challenging areas is one of the
better lessons available in this exercise.

LFS illustrates a complicated process
for building a new dynamic library sys-
tem, not only giving in complete detail
the internals but also the philosophy of
building such systems. It also discusses
the philosophy of package management
from the most fundamental angle: here
we have a lot of source code which we will
compile and install, but how do we main-
tain the forthcoming flood of changes that

4



will develop in the future? Often these
changes are engendered by a CVE and in
many cases should be dealt with immedi-
ately.

It also gives one perspective on the on-
going debate about the trade-offs involved
in dynamic linking versus static linking,
and the value of alternative C libraries,
such as MUSL.

3 Conclusion and next
steps

While this exercise will stimulate a lot
of interest from some students, many of
whom will learn a great deal from do-
ing this, inevitably some students will be
overwhelmed by such a challenge. I have
tried to motivate students to start work-
ing on this early by giving more credit for
finishing early, since anyone who procras-
tinates on this exercise is very unlikely to
finish it in a blaze of last-minute frenetic
“configure and make.”

The next step obviously might be an
exercise in Beyond Linux From Scratch,
which would give deeper insight into the
complexities of source code interactions
and localization issues. However, I think
an exercise in applying package manage-
ment a la the issues introduced in 6.3
would be even more interesting since it
involves many philosophical trade-offs –
just look at how many different pack-
age management systems exist in the
GNU/Linux world: from RPM and Debs
to Sabotage Linux’s butch, the panoply
is worth exploring.

Another angle that I personally find in-
teresting is looking at systems like Alpine
Linux, sta.li, and Sabotage Linux, which
are innovating the Linux landscape with

a move to MUSL and a strong interest in
static linking.

References
[1] Gerard Beekmans, edited by

Bruce Dubbs, Linux From
Scratch, version 7.10, http:
//www.linuxfromscratch.org/
lfs/view/stable/, 2016.

[2] Evi Nemeth, Garth Snyder, Trent
Hein, Ben Whaley, et al, Unix and
Linux System Administration Hand-
book, 4th Edition, Prentice Hall, 2011.

[3] Alpine Linux,
https://alpinelinux.org/.

[4] STALI: Static Linux,
http://sta.li/.

[5] musl libc,
https://www.musl-libc.org/.

5

http://www.linuxfromscratch.org/lfs/view/stable/
http://www.linuxfromscratch.org/lfs/view/stable/
http://www.linuxfromscratch.org/lfs/view/stable/
https://alpinelinux.org/
http://sta.li/
https://www.musl-libc.org/

	Introduction
	Outline of talk
	Philosophy
	A summary of the LFS build exercise
	How I structure this
	The value of this exercise

	Conclusion and next steps

