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A Secure and Efficient Conference Key Distribution System

(Extended Abstract)

Abstract

We present a practical interactive conference key distribution system based on public keys, which
is ‘proven’ secure provided the Diffie-Hellman problem is intractable. The system authenticates
the users and allows them to compute their own conference key. A certain number of interactions
is required, but the number of rounds is independent of the number of conference users. All
users involved perform the same amount of computation and communication. Our technique
for authentication can be extended and used as the basis for an authentication scheme which is
‘proven’ secure against any type of attack, provided the discrete logarithm problem is intractable.

1 Introduction

To communicate securely over insecure channels it is essential that secret keys are distributed securely. Even

if the encryption algorithm used is computationally infeasible to break, the entire system is vulnerable if

the keys are not securely distributed. Key distribution is central to cryptography and has attracted a lot of

attention (e.g., [18, 26, 8, 6, 32, 28, 33]). Research has focused on security and on efficiency. Many practical

systems have been proposed [32, 28, 33, 39, 19, 41]. The most familiar system is the Diffie-Hellman key

distribution system [18]. This enables two users to compute a common key from a secret key and publicly

exchanged information. However it does not authenticate the users, except for the public key version, in

which case the session key is fixed.

If more than two users want to compute a common key, then a conference key distribution system is used.

Designing such systems can be particularly challenging because of the complexity of the interactions between

the many users. Many conference key distribution systems have been presented recently [26, 27, 33, 39, 21,

10]. These however are either impractical, or only heuristic arguments are used to address their security.

Our goal in this paper is to present a practical and proven secure conference key distribution system.

Ingemarsson, Tang and Wong proposed a conference key distribution system for which the common key

is a symmetric function [26]. This has many attractive features but is insecure because the information

exchanged by the users makes it possible for a passive eavesdropper to compute the key. Our system is

similar but uses a cyclic function. This prevents the attack by passive eavesdroppers whilst retaining the

efficiency of the former scheme. The number of rounds (exchanges) which are required to compute the

common key is independent of the number of conference users. For authentication we use a public key

(interactive) authentication scheme which is proven secure against any known (generic chosen [24]) text

attack, if the Discrete Logarithm problem is intractable. Combining the two systems we get a conference



key distribution scheme which is provably secure against any type of attack, including those by malicious

active adversaries working together, provided the Diffie-Hellman problem is intractable.

Our authentication scheme is of interest in itself, because of its efficiency and proven security. We note

that all proven secure signature schemes presented so far [24, 30, 36, 2, 3] are impractical. We therefore

extend our scheme so that it is proven secure against any type of attack, including adaptive chosen text

attacks by real-time middle-persons, under the same cryptographic assumption. The resulting scheme is

roughly as fast as RSA [35], but in addition is proven secure.

The organization of this paper is as follows. In Section 2 we give definitions and present our model

for conference key distribution systems and for authentication schemes. In Section 3 we present a protocol

for a conference key distribution system which is secure against attacks by passive eavesdroppers provided

the Diffie-Hellman problem is hard. In Section 4 we present an authentication scheme and in Section 5 we

combine the two to get a a conference key distribution scheme which is secure against any type of attack.

In Section 6 we extend the security of our authentication scheme, and we conclude in Section 7.

2 Definitions

We consider networks2 in which the users Ui can broadcast ‘messages’ (strings) to each other. We allow

for the possibility that an eavesdropper3 E (a malicious adversary) may read the broadcast messages or

substitute some of them. We distinguish two types of networks: those for which E is passive and those for

which E is active. Let N be the security parameter.

Definition 1. Suppose that n = O(N c), c > 0 constant, interactive Turing machines U1, . . . , Un take part

in a protocol to generate a key. We say that the protocol is a conference key distribution system if, when all

the U1, . . . , Un are as specified, then each Ui computes the same key K = Ki. A conference key distribution

system guarantees privacy if it is computationally infeasible for a passive eavesdropper to compute the key

K.

Definition 2. Suppose that n = O(N c) interactive Turing machines U1, . . . , Un use a conference key

distribution system, and that each Ui has received (from an oracle) a secret key si (written on its knowledge

2A network is a collection of n interactive probabilistic Turing machines Ui with n − 1 write-only tapes, n − 1 read-only
tapes, a history tape, a knowledge tape and worktapes.

3An eavesdropper is an interactive probabilistic Turing machine with n(n− 1) read-only tapes Tij and n(n− 1) write-only
tapes Wij . The eavesdropper reads from Tij and writes on Wij . If what is written is different from what is read then the
eavesdropper is active. Otherwise the eavesdropper is passive. This, together with our definition of a network, allows for
a scenario in which a broadcasted message can be substituted for each individual receiver. Eavesdroppers are polynomially
bounded.



tape) which corresponds to its public key ki, which is published. Let n′ > 0 of these be honest4, n′′ =

n − n′ ≥ 0 be impersonators4, and assume that there is a secure network between the impersonators and

the (passive or active) eavesdropper. We say that a conference key distribution system is (computationally)

secure, if it is computationally infeasible for any set of n′′, 0 ≤ n′′ < n, impersonators U ′j in collaboration

with the eavesdropper to compute the same key Ki as computed by any of the honest machines Ui.

Remark 1. If the set of impersonators is empty we require that the (active) eavesdropper cannot compute

Ki.

Definition 3. (Informal) Consider a network with eavesdropper E. A protocol (U1, U2) in which U1

sends a message m is an authentication system if,

• Compliance: When U1, U2 are honest and E is passive then U2 accepts and outputs m with over-

whelming probability,

• Secure against impersonation: U2 rejects with overwhelming probability a dishonest U ′1,

• Secure against substitution: If E is active and U2 outputs m′ 6= m then U2 rejects with overwhelming

probability.

Definition 4. The Diffie-Hellman [18] problem: given p, α, β and γ, find β logαγmodp if it exists.

Breaking this problem has remained an open problem for more than 15 years. Even if the factorization of

the order of α is known the problem is assumed to be hard (cf. [9, 11, 12]). It is well known [31, 16, 29, 25]

that if the Discrete Logarithm problem is easy then so is the Diffie-Hellman problem, but the converse may

not be true.

3 A conference key distribution system

A center chooses a prime p = Θ(2cN ), c ≥ 1 constant, and an element α ∈ Zp of order q = Θ(2N ). If this

has to be verified then the factorization of q is given. The center publishes p, α and q.

Protocol 1. Let U1, . . . , Un be a (dynamic) subset of all users5 who want to generate a common conference

key.

4An honest machine Ui has a secret key si written on its knowledge tape. An impersonator U ′j is any polynomially bounded

interactive probabilistic Turing machine which replaces Uj but does not have the secret key of Uj (or an equivalent). In our
model the eavesdropper is not an impersonator: it can only impersonate Ui with the help of an impersonator (if there is one).
We will strengthen the definition in the final paper.

5An abuse of notation: there may be more than n users altogether.



Step 1 Each Ui, i = 1, . . . , n, selects6 ri ∈R Zq, computes and broadcasts zi = αrimodp.

Step 2 Each Ui, i = 1, . . . , n, checks7 that αq ≡ 1 (modp) and that (zj)q ≡ 1 (modp) for all j = 1, . . . , n,

and then computes and broadcasts

Xi ≡ (zi+1/zi−1)ri (modp),

where the indices are taken in a cycle.

Step 3 Each Ui, i = 1, . . . , n, computes the conference key,

Ki ≡ (zi−1)nri ·Xn−1
i ·Xn−2

i+1 · · · Xi−2 (modp).

Remark 2. Honest users compute the same key,

K ≡ α r1r2+r2r3+···+rnr1 (modp).

Indeed, set Ai−1 ≡ (zi−1)ri ≡ αri−1ri (modp), Ai ≡ (zi−1)ri ·Xi ≡ αriri+1 (modp), Ai+1 ≡ (zi−1)ri ·Xi ·

Xi+1 ≡ αri+1ri+2 (modp), etc., and we have Ki = Ai−1 · Ai · Ai+1 · · ·Ai−2. So the key is a second order

cyclic function of the ri (but not symmetric as in [26]).

For n = 2 we get X1 = X2 = 1 and K ≡ αr1r2+r2r1 ≡ α2r1r2(modp), which is essentially the same as for

the Diffie-Hellman [18] system (clearly there is no need to broadcast X1, X2 in this case).

Theorem 1. If n is even and polynomially bounded in the length of p, and if the Diffie-Hellman problem

is intractable, then Protocol 1 is a conference key distribution system which guarantees privacy.

Proof. From Remark 2 it follows that Protocol 1 is a conference key distribution system. We prove that

it guarantees privacy by contradiction. Suppose that a passive eavesdropper E succeeds with non-negligible

probability in breaking the key K1 ≡ (zn)nr1 ·Xn−1
1 ·Xn−2

2 · · · Xn−1 (modp) of U1. We shall show how to

use the program of E to break the Diffie-Hellman problem for any instance zn, z1.

We prepare the rest of the input to be given to E. Select numbers b2, b3, . . . , bn−1 at random from Zq,

and compute:

z2 ≡ zn · αb2 (modp), z3 ≡ z1 · αb3 (modp), . . . , zn−1 ≡ zn−3 · αbn−1 (modp). (1)

Since n is even we must also have,

zn ≡ z2 · α−b2 ≡ z4 · α−b2−b4 ≡ . . . ≡ zn−2 · α−b2−b4−...−bn−2 (modp),

z1 ≡ z3 · α−b3 ≡ z5 · α−b3−b5 ≡ . . . ≡ zn−1 · α−b3−b5−...−bn−1 (modp).
(2)

6We use the notation a ∈R A to indicate that a is selected from the set A uniformly and independently.
7If the center is trusted (oracle) the first test is not required.



From (1) it follows that X1 ≡ (z2/zn)r1 ≡ (αr1)b2 ≡ (z1)b2 (modp), so X1 is easy to compute. Simi-

larly for X2, X3, . . . , Xn−2. Using (2), Xn−1 ≡ (zn/zn−2)rn−1 ≡ (zn−1)−b2−b4−...−bn−2 (modp), and Xn ≡

(z1/zn−1)rn ≡ (zn)−b3−b5−...−bn−1 (modp). So it is feasible to compute all the Xi.

We now have the necessary input for E. That is, the Diffie-Hellman instance z1, zn, the computed

z2, . . . , zn−1 and the computed X1, . . . , Xn. From our assumption, E will obtain the corresponding K1.

Clearly E can easily compute (zn)nr1 modp from K1. It is well known [7, 34] that it is feasible to compute

n-th residues in Zp when n is polynomially bounded. E may not be able to find which one corresponds to

(zn)r1 modp, if there are many, so it picks one at random. With non-negligible probability bounded by 1/n it

will pick the right one. Consequently, with non-negligible probability E can succeed in getting (zn)r1 modp.

So we have a violation of the intractability of the Diffie-Hellman problem. 2

Corollary 1. Theorem 1 can easily be extended to allow for an odd number of users by slightly modifying

Protocol 1.

Proof. When the number of users is odd then one user, say the last one, behaves virtually as two

independent machines. 2

Remark 3. Clearly anybody can masquerade as Ui in Protocol 1. So the users are not authenticated. In

the following section we present an authentication scheme which, when combined with this system, offers

both privacy and authentication.

Remark 4. The following alternative scheme has been suggested to us. A chair, say U1, will distribute the

common key. First U1 establishes secret keys K1i with each user Ui separately (e.g. using the Diffie-Hellman

key exchange [18]), and then U1 selects a random key K which it sends to each Ui encrypted under K1i

(e.g. K ⊕K1i, where “⊕” is bitwise exclusive-or). This solution has a major disadvantage: the chair has to

perform n− 1 more computations than the other users. Moreover if broadcasting is as expensive as sending

to a single individual (as is the case on ethernet based local area networks), the communication cost of the

chair is n− 1 times more than the other users. Our scenario is symmetric in this respect.

4 An authentication scheme

As in Section 3, a center chooses p, α and q, but now q is a prime. Then each user P selects a, b ∈R Zq,

computes β = αamodp, γ = αbmodp, and registers k = (β, γ) as its public key.8

8There is no need for p, q to be standard.



Protocol 2. Common input: (p, α, q, β, γ).

P has a, b written on the knowledge tape, where β = αamodp, γ = αbmodp. P is given z ∈ Zq.

P authenticates z to V : P sends z to V and then proves to V that it knows the discrete logarithm of βzγ modp

(= az + bmodq), by using any interactive zero-knowledge proof of knowledge (e.g., [15, 14, 4, 17]).

V verifies this and checks7 that α 6≡ 1(modp), αq ≡ βq ≡ γq ≡ 1 (modp) and that q is a prime. If this fails

V halts.

Theorem 2. Protocol 2 is an authentication scheme secure against a generic chosen text attack (z ∈ Zq is

chosen independently of γ) if the order of α is prime, provided the Discrete Logarithm problem is intractable.

Proof. (Sketch) First consider an impersonation attack by P ′, which after having observed the history h of

earlier proofs9, is accepted by the verifier with non-negligible probability. From the definition of soundness10

for proofs of knowledge [20, 1] it follows that P ′ must know az + bmodq. P ′ is now used as a black box to

break the Discrete Logarithm of γ. Take as common input (p, α, q, αr, γ), where r ∈R Zq. The history h can

easily be simulated. Then give the common input and h to P ′ to get: z ∈ Zq and rz +DL(γ) modq. Since

z, r are known it is easy to compute DL(γ).

Next consider a substitution attack by P ′ who succeeds with non-negligible probability in modifying in

real time the proof (P, P ′) of knowledge of az + bmodq to a proof (PP ′, V ) of knowledge of az′ + bmodq,

z′ 6= z (after having observed earlier proofs). We shall show that PP ′ can be used to break the Discrete

Logarithm problem of β. Assume that P has az + bmodq on its knowledge tape (only, not a, b). As in

the previous case, PP ′ must know az′ + bmodq. Choose r ∈R Zq (r replaces az + b), z ∈ Zq, and history

h, and let γ ≡ αrβ−z (modp). So z must be independently of γ (otherwise we could not take r to be

random). Then input to PP ′: (p, α, q, β, γ), z, h, and put r on the knowledge tape of P , to get: z′ and

DL(β)z′ +DL(γ) ≡ DL(β)(z′ − z) + r (modq). Since z′, z, r are known, it is easy to compute DL(β) when

z′ 6= z. 2

Remark 5. Although zero-knowledge proofs do not guarantee inherently secure identification [5], in the

context of authentication only real-time attacks in which the message is not authentic (e.g., substituted)

make sense. We have discussed such real-time attacks in the proof.

9These earlier proofs are proofs (P, V ) of knowledge of azi + b, and proofs (P, P ′, V ) in which (P, P ′) have used (k, zj) and
(P ′, V ) have used (k, z′j).

10Important technical remarks about proofs of knowledge were discussed in [1]. In the final paper we discuss these issues in
our context.



5 An authenticated conference key

Theorem 3. Let p1, α1 and q1 be as in Section 3, and p2, α2 and q2 be as in Section 4 with q2 a prime

and p1 ≤ q2. If each Ui authenticates zi to Ui+1 as in Protocol 2 with parameters p2, α2, q2 and public key

ki = (β2, γ2), before Step 3 of Protocol 1, then the conference key distribution system is secure provided the

Diffie-Hellman problem is intractable.

Proof. (Sketch) By permuting the indices the proof is reduced, as in Theorem 1, to showing that successful

adversaries can compute (zn)r1 modp. Since zn has been authenticated by Un, the adversaries have no control

over it, without U1 finding out. (Clearly the Discrete Logarithm problem is intractable when the Diffie-

Hellman problem is intractable.) So the adversaries must succeed in computing (zn)r1 modp, knowing only

z1 = αr1 modp and zn. As in Theorem 1 this leads to a violation of the intractability of the Diffie-Hellman

problem. 2

Corollary 2. Protocol 2 can be replaced by any proven secure authentication scheme, provided its security

assumption is added to the conditions of Theorem 3.

6 A proven secure authentication scheme

The authentication Protocol 2 has not been proven secure against a chosen attack. Indeed in Theorem 2

the proof of security against a substitution attack relies on the independence of the message from γ of the

public key. We now will modify Protocol 2 to obtain security against all known attacks, including adaptive

chosen text attacks.

Let (p2, α2, q2), (p3, α3, q3) be as in Section 4 with p2 ≤ q3, and k = (β2, β3, γ3) be the public key of user

U , with β2 = αa2
2 modp2, β3 = αa3

3 modp3, γ3 = αb33 modp3, a2 ∈R Zq2 , a3, b3 ∈R Zq3 . The following protocol

is used to authenticate any number z ∈ Zq2 :

Protocol 3. Common input: (p2, α2, q2, p3, α3, q3 ; β2, β3, γ3).

P has written on its knowledge tape a2, a3, b3, where β2 = αa2
2 modp2, β3 = αa3

3 modp3, γ3 = αb33 modp3. P

is given z ∈ Zq2 .

P authenticates z to V : P sends to V : z and γ2 = αb22 modp2, where b2 ∈R Zq2 , and then proves to V ,

simultaneously, that it knows the discrete logarithm base α2 of β z
2 · γ2 modp2 (= a2z + b2 modq2), and

the discrete logarithm base α3 of β γ2
3 · γ3 modp3 (= a3γ2 + b3 modq3), by using a zero-knowledge proof of

knowledge (e.g., [15, 14, 4, 17]).

V verifies this, checks that γ q2
2 ≡ 1 ( mod p2), and then checks7 that α 6≡ 1( mod p), α q2

2 ≡ β q2
2 ≡ 1 (modp2),

α q3
3 ≡ β q3

3 ≡ γ q3
3 ≡ 1 (modp3) and that q2, q3 are primes and p2 ≤ q3. If this fails V halts.



Theorem 4. Protocol 3 is a secure authentication scheme if the Discrete Logarithm problem is intractable.

Proof. (Sketch) The proof is an extension of Theorem 2. The argument for impersonation attacks is

essentially the same, so we only consider substitution attacks. Suppose that P ′ succeeds with non-negligible

probability in modifying the proof (P, P ′) of knowledge of A2 ≡ a2z+b2 (modq2) and A3 ≡ a3γ2+b3 (modq3)

(z is chosen by P ′), to a proof (PP ′, V ) of knowledge of a2z
′ + b2 modq2 and a3γ

′
2 + b3 modq3, with z′ 6= z,

after having observed earlier proofs. Then PP ′ must know both a2z
′+ b′2 modq2 and a3γ

′
2 + b3 modq3, where

γ′2 = α
b′2
2 modp3. We shall use PP ′ to break the Discrete Logarithm problem. We distinguish two cases,

which we run each with probability one half.

Case 1: γ′2 ≡ γ2 (modp2). Take δ2 ∈R 〈α2〉 (δ2 replaces β2) as an instance for the Discrete Logarithm

problem and choose a3, b3 ∈R Zq3 , and compute β3 = αa3
3 modp3, γ3 = αb33 modp3. For any given z ∈ Zq2

take r2 ∈R Zq2 (r2 replaces a2z + b2 modq2), and compute γ2 = α r2
2 δ−z2 modp2 and r3 = a3γ2 + b3 modq3,

and a simulated history h. Then input to PP ′: (δ2, β3, γ3), z, h, and put r2, r3 on the knowledge tape of P ,

to get: z′ and γ′2, A′2, A′3. If γ′2 ≡ γ2 (modp2) then A′2 ≡ DL(δ2)z′+DL(γ2) ≡ DL(δ2)(z′− z) + r2 (modq2),

and since z′ 6= z we get DL(δ2). Else ignore.

Case 2: γ′2 6≡ γ2 (modp2). Take δ3 ∈R 〈α3〉 (δ3 replaces β3) as an instance for the Discrete Logarithm

problem, and r3 ∈R Zq3 (r3 replaces a3γ2+b3 modq3) and choose a2, b2 ∈R Zq2 , and compute β2 = αa2
2 modp2,

γ2 = αb22 modp2, and γ3 ≡ α r3
3 · δ−γ2

3 modp3. Input to P ′: (β2, δ3, γ3), which chooses z ∈ Zq2 . Compute

r2 = a2z+b2 modq2, and history h. Then input to PP ′: (β2, δ3, γ3), z, h, and put r2, r3 on the knowledge tape

of P , to get: z′, γ′2, A′2, A′3. If γ′2 6≡ γ2 (modp2) then A′3 ≡ DL(δ3)γ′2+DL(γ3) ≡ DL(δ3)(γ′2−γ2)+r3 modq3,

and we get DL(δ3). Else ignore. 2

7 Conclusion

We have presented a conference key distribution system and proven that it is secure against a passive

adversary if the Diffie-Hellman problem (a 15 year open problem) is hard. The session key is a cyclic

function (of the indices of the users) of degree two, which is the main reason for its practicality. Ingemarson

Tang and Wong considered conference systems for which the key was a symmetric function of degree two,

but these were insecure. Shamir’s signature scheme [38], cryptanalyzed by Coppersmith and Stern, also uses

symmetric functions. Our results suggest that cyclic functions still have some use in cryptography. Although

it is hard for an adversary to compute the session key, it is not clear which bits of this key are hard. Since

this problem is also open for the Diffie-Hellman key exchange, it is beyond the scope of this paper.



Our scheme does not require a chair whose cost will be higher than the other participants. Furthermore

the number of rounds required is independent of the number of conference participants (and small [4, 17]).

To achieve security against active adversaries we have extended our conference key distribution protocol.

Users have a public key and authenticate their messages using an appropriate authentication scheme. The

resulting system is proven secure against an active attack under the same assumptions as before, while

remaining practical.

The authentication used in our protocol is only proven secure against a (chosen independently) known

plaintext attack (which is sufficient for the security of the conference key system). We have extended our

authentication system so that it is also proven secure against an adaptive chosen text attack by a real

time middle-person provided the discrete logarithm problem is intractable. This resulting scheme remains

practical.
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