
Perl

Introduction

Scalars

Lists and arrays

Control structures

I/O

Associative arrays/hashes

Regular expressions

Subroutines and objects

Dealing with files

Directory and file manipulation

Unix Tools: Perl 1

Perl history

PERL stands for “Practical Extraction and Report Language”
(although there is the alternative “Pathologically Eclectic Rubbish
Lister”.)
It was created by Larry Wall and became known in the 1990s.
It was available both from ucbvax and via Usenet.
Perl is released under the Artistic License and under the GNU
General Public and License.

Unix Tools: Perl 1

Perl’s Artistic License

6. The scripts and library files supplied as input to or produced as output
from the programs of this Package do not automatically fall under the
copyright of this Package, but belong to whomever generated them, and may
be sold commercially, and may be aggregated with this Package. If such
scripts or library files are aggregated with this Package via the so-called
“undump” or “unexec” methods of producing a binary executable image,
then distribution of such an image shall neither be construed as a distribution
of this Package nor shall it fall under the restrictions of Paragraphs 3 and 4,
provided that you do not represent such an executable image as a Standard
Version of this Package.
7. C subroutines (or comparably compiled subroutines in other languages)
supplied by you and linked into this Package in order to emulate subroutines
and variables of the language defined by this Package shall not be considered
part of this Package, but are the equivalent of input as in Paragraph 6,
provided these subroutines do not change the language in any way that
would cause it to fail the regression tests for the language.

Unix Tools: Perl 1

Advantages of Perl

Perl 5 is a pleasant language to program in.

It fills a niche between shell scripts and conventional languages.

It is very appropriate for system administration scripts.

It is very useful for text processing.

It is a high level language with nice support for objects. A Perl
program often will take far less space than the equivalent C or
C++ program.

Unix Tools: Perl 1

Perl is Interpreted

Perl is first “compiled” into bytecodes; those bytecodes are then
interpreted. Ruby, Python, and Java all have modes that are
along these lines, although of course there other options which
make other tradeoffs.

This is faster than shell interpretation, particularly when you get
into some sort of loop. It is still slower than standard
compilation.

On machines that I have tested over the years, example times
include: an empty loop in bash for 1 million iterations takes 34
seconds; 1 million iterations of an empty loop in Perl takes
0.47-0.59 seconds; 1 million iterations of empty loop in C run in
0.001 to 0.003 seconds.

Unix Tools: Perl 1

A Perl Program

#!/usr/bin/perl -w
2008 09 25 - rdl
use strict;
print ‘‘Hello, World!\n’’;
exit 0;

The first line indicates that we are to actually execute “/usr/bin/perl”.
(The “-w” indicates “please whine”.) The second line is a comment.
The third line makes it mandatory to declare variables. (Notice that
statements are terminated with semicolons.) The 4th line does our
Hello World, and 5th line terminates the program.

Unix Tools: Perl 1

Basic concepts

There is no explicit “main”, but you can have subroutines.

Features are taken from a large variety of languages, but
especially shells and C.

It is very easy to write short programs that pack a lot of punch.

Unix Tools: Perl 1

Similarities to C

Many operators

Many control structures

Supports formatted i/o

Can access command line arguments

Supports access to i/o streams, including stdin, stdout, and stderr.

Unix Tools: Perl 1

Similarities to shell programming

Comment syntax of #

$variables

Interpolation of variables inside of quoting.

Support command line arguments.

Implicit conversion between strings and numbers.

Support for regular expressions.

Some control structures.

Many specific operators similar to shell commands and Unix
command syntax.

Unix Tools: Perl 1

Scalars

Scalars represent a single value:
my $var1 = “some string”;

my $var2 = 23;

Scalars are strings, integers, or floating point numbers.
There are also “magic” scalars which appear in Perl code. The most
common one is $_, which means the “default” variable, such as when
you just do a print with no argument, or are looping over the
contents of a list. The “current” item would be referred to by $_.

Unix Tools: Perl 1

Numbers

Both integers and floating point numbers are actually stored as double
precision values —unless you invoke the “use integer” pragma:
#!/usr/bin/perl -w
Script19.pl
2006-09-18 - rdl. Illustrate use of "use integer"
use strict;
use integer;
my $w = 100;
my $x = 3;
print "w / x = " . $w/$x . "\n";
[langley@sophie 2006-Fall]$./Script19.pl
w / x = 33

Unix Tools: Perl 1

Floating point literals

Floating point literals are similar to those of C.

All three of these literals represent the same value:
12345.6789
123456789e-4
123.456789E2

Unix Tools: Perl 1

Integer decimal literals

Similar to C:
0 -99 1001

Can use underscore as visual separator:
2_333_444_555_666

Unix Tools: Perl 1

Other integeral literals

Hexadecimal:
0xff12 0x991b

Octal:
0125 07611

Binary:
0b101011

Unix Tools: Perl 1

C-like operators

Operator Meaning

= Assignment
+ - * / % Arithmetic
& | << >> Bitwise operators
> < >= <= Relationals returning “boolean” value
&& || ! Logicals return “boolean” value
+= -= *= Binary assignment
++ -- Increment/Decrement
? : Ternary
, Scalar binary operator that takes on rhs value

Also, see man perlop

Unix Tools: Perl 1

Operators not similar to C operators

Operator Meaning

** Exponetiation
<=> Numeric comparison
x String repetition
. String concatenation
eq ne lt gt ge le String relations
cmp String comparison
=> Like comma but forces first left word

to be a string

Again, see man perlop

Unix Tools: Perl 1

Strings

Strings are a base type in Perl.
Strings can be either quoted to allow interpolation (both
metacharacters and variables), or quoted so as not to be. Double
quotes will allow this, single quotes prevent interpolation.

Unix Tools: Perl 1

Single quoted strings using ’

Single quoted strings are not subject to most interpolation.
However, there are two to be aware of: (1) Use \’ to indicate a literal
single quote inside of a single quoted string that was defined with ’.
(You can avoid this by using the q// syntax.) (2) Use \\ to insert a
backslash; other \SOMECHAR are not interpolated inside of single
quoted strings.

Unix Tools: Perl 1

Double quoted strings

You can specify special characters in double quoted strings easily:
print "this is an end of line\n";
print "there are \t tabs \t embedded \t here \n";
print "embedding double quotes \" are easy \n";
print "that costs \$1000 \n";
print "the variable \$variable ";

Unix Tools: Perl 1

String operators

The period “.” is used to indicate string concatenation.

The “x” operator is used to indicate string repetition:
“abc ” x 4 → “abc abc abc abc ”

Unix Tools: Perl 1

Implicit conversions atwixt numbers and strings

Perl will silently convert numbers and strings where appropriate.
For instance:
"5" x "10" → "5555555555"

"2" + "2" → 4

"2 + 2" . 4 → "2 + 24"

Unix Tools: Perl 1

Scalars

Ordinary scalar variables begin with $

Variable names correspond to the regular expression syntax
$[a-zA-Z][a-zA-Z0-9_]*

Scalars can hold integers, strings, or floating point numbers.

Unix Tools: Perl 1

Declaring scalars

I recommend you use the pragma use strict;

When you do so, you will have to explicitly declare all of your
variables before using them. Use my to declare your variables.

You can declare and initialize one or more variables with my:
my $a;
my ($a,$b);
my $a = ‘‘value’’;
my ($a,$b) = (‘‘a’’, ‘‘b’’);

Variable declarations can occur almost anywhere

Unix Tools: Perl 1

Variable interpolation

You can use the special form ${variablename} when you are
trying to have a variable name interpreted when it is surrounded by
non-whitespace:
[langley@sophie 2006-Fall]$ perl
$a = 12;
print "abc${a}abc\n";
abc12abc

Unix Tools: Perl 1

Undef value

A variable has the special value undef when it is first created (it can
also be set with the special function under() and can be tested with
the special function defined()).
An undef variable is treated as zero if it is used numerically.
An undef variable is treated as an empty string if it is used as a
string value.

Unix Tools: Perl 1

The print operator

The print operator can print a list of expressions, such as
strings, variables, or a combination of operands and operators.

By default, it prints to stdout.

The general form is print [expression [,
expression]*];

Unix Tools: Perl 1

The line input operator <STDIN>

You can use <STDIN>to read a single of input:
$a = <STDIN>

You can test for end of input with defined($a).

Unix Tools: Perl 1

The chomp function

You can remove the newline from a string with chomp:
$line = <STDIN>;
chomp($line);

chomp($line = <STDIN>);

Unix Tools: Perl 1

The chomp function

[langley@sophie 2006-Fall]$ perl
chomp($line = <STDIN>);
print $line;
abcdefghijik
abcdefghijik[langley@sophie 2006-Fall]$

Unix Tools: Perl 1

String relational operators

The string relational operators are eq, ne, gt, lt, ge, and
le.
Examples:
100 lt 2
"x" le "y"

Unix Tools: Perl 1

String length

You can use the length function to give the number of characters in
a string.

Unix Tools: Perl 1

