
Chapter 8, Bash

September 17, 2015



Background

I Based on Bourne shell
I Introduced readline library
I Unlike busybox, bash doesn’t include work-alike commands for

common utilities like tar and rm.



Start-up with bash –login

I If it exists, /etc/profile is first sourced; use strace bash –login
to watch; typical contents for this are something like:

# /etc/profile: system-wide .profile file for the Bourne shell (sh(1))

# and Bourne compatible shells (bash(1), ksh(1), ash(1), ...).

if [ "$PS1" ]; then

if [ "$BASH" ] && [ "$BASH" != "/bin/sh" ]; then

# The file bash.bashrc already sets the default PS1.

....

# The default umask is now handled by pam_umask.

# See pam_umask(8) and /etc/login.defs.

if [ -d /etc/profile.d ]; then

for i in /etc/profile.d/*.sh; do



Start-up with bash –login

I After that, typically /etc/bash.bashrc is consulted
I Then /etc/bash completion is consulted for completion

information
I It’s hard to believe, but working over the command line

completion code is typically the most time-consuming part of
the bash start-up.



Start-up with bash –login personalization

I Next comes the personalization code. First ˜/.bash profile is
checked

I Then ˜/.bash login
I Then ˜/.profile



When you exit

I The file ˜/.bash logout is first consulted
I Then /etc/bash.bash logout



Start-up of just bash

I First /etc/bash.bashrc is consulted
I Then gobs of completion data are worked through
I Then ˜/.bashrc



source, src, or just “dot”

I Most shells support the ability to read more code into the
current shell process, much like an “#include” in C

I This is a separate and different ability from executing a child
bash process.



source, src, or just “dot”

I The advantage of doing this is that this read-in code can
change the current process’s state; a separate child process
cannot do so



Scripting

I Bash scripts need two attributes to be standalone:

I Permission bits must include “x”
I The first line of the file needs to be formed like

“#!/bin/bash”, or perhaps even “#!/usr/bin/env bash”



Short-circuits

I The && and || commands allow for short-circuiting

I With &&, if the first command fails, then the second one is
not executed

I With ||, if the first command succeeds, then the second is not
executed



Subshells

I You can create a subshell with ( ), which particularly useful
for backgrounding a statement list



Job control

I fg, bg, and jobs

I bg sends jobs to the “background”
I fg brings jobs back to the “foreground”
I jobs lists all jobs associated with a shell


