
Chapter 5 – “The” shell

September 15, 2015

Understanding the parts of the command line

I Executing a command
I Standard input and output
I Redirection
I Pipes
I Background versus foreground
I Globs
I Built-ins

Simple execution

CMD [ARG] [ARG] ... [RETURN]

I Where do we find “commands”? Either built-in, absolute
path, relative path, or via “$PATH”

Arguments and options

I We have a sequence with shell interpretation. The shell first
parses the command, expanding “metacharacters” and
variables

I Then it tries to execute the simple command (we will get to
compound commands expressing iteration and alternation
(like “while” and “if”) later)

I Then, if this is a simple binary, these bits are loaded onto the
new process’s stack.

I It’s then up to the process to work through these.

The common case

I The most common case for execution is

I First, do a “getopt(3)” to parse out the options
I Then work through any remaining tokens, treating them as

arguments

The common case

I Usually a process receives three file descriptors: 0, 1, and 2,
which are conventionally interpreted as standard input,
standard output, and standard error.

I It is very common (though certainly not requisite) to use libc
buffering over these file descriptors.

Editing the command line

I Very common these days; in the Unix world, generally the
“readline” library is used for this (and its default editing
bindings are those of emacs.)

Pipes

I You can use “|” to pipe stdout to stdin between processes.

Lists

I In shell-speak, a “list” is a sequence of commands and pipes
separated by by these metacharacters:

; && ||

I Some shells (notably Bash) list the “background” operator &
among these.

Globs

I As mentioned earlier, globs are created by “metacharacters”,
somewhat resembling traditional regular expression syntax.
The canonical implementation is in libc (see glob(3).)

* ? [{

I There’s a whole concepts manpage glob(7) describing all of
the details of glob syntax.

Useful globbing

$ touch file{1,2,3}

$ ls file*

file1 file2 file3

$ touch file1.backup file2.backup file3.backup

$ ls file*

$ ls !(*.backup)

Useful utilities and built-ins introduced in Chapter 5

I tr
I tee
I bg
I fg
I jobs

tr example

tr ’ \t’ ’\n’ < /etc/hosts

tee example

egrep local /etc/* 2>/dev/null | tee testfile

