Scalar values “typecast” to boolean values

Many of Perl’s control structures look for a boolean value. Perl
doesn’t have an explicit “boolean” type, so instead we use the
following “typecasting” rules for scalar values:

o If a scalar is a number, then O is treated as false, and any other
value is treated as true.

o If a scalar is a string, then “0” and the empty string are treated as
false, and any other value as true.

o If a scalar is not defined, it is treated as false.

Unix Tools: Perl 2

If elsif else

Note that both e1sif and else are optional, but curly brackets are
never optional, even if the block contains one statement.
if (COND)

[elsif

*

(
{
}
1
{

}H]
[else
{

H

Unix Tools: Perl 2

if-elsif-else examples

if example:

if (Sanswer == 12)
{

print "Right -- one year has twelve months!\n";

if-elsif-else examples

if/else example:

if (Sanswer == 12)
{
print "Right -- one year has twelve months!\n";
}
else

{

print "No, one year has twelve months!\n";

if-elsif-else examples

if-elsif-else example:

if (Sanswer < 12)
{
print "Need more months!\n";
}
elsif (Sanswer > 12)
{
print "Too many months!\n";
}
else

{

print "Right -- one year has twelve months!\n";

if-elsif-else examples

if-elsif-elsif example:

if($a eq "struct")

{

}

elsif ($a eq "const")

{

}

elsif ($a ne "virtual")
{

}

Unix Tools: Perl 2

defined () function

You can test to see if a variable has a defined value with defined ():

if (!defined($a))
{

print "Use of undefined value is not wise!";

}

Unix Tools: Perl 2

The while construction

while (<boolean>)

{

<statement list>

}

As with i f-elsif-else, the curly brackets are not optional.

Unix Tools: Perl 2

while examples

while (<STDIN>)
{
print;

}

[You might note that we are using the implicit variable $_ in this code
fragment.]

Unix Tools: Perl 2

until control structure

until (<boolean>)

{

<statement list>

}

The unt il construction is the opposite of the while construction
since it executes the <statement 1ist> until the <boolean>
test becomes true.

Unix Tools: Perl 2

until example

#!/usr/bin/perl -w

2006 09 20 -— rdl script22.pl
use strict;

my $line;

until (! ($1ine=<STDIN>))

{

print $line;

for control structure

for (<init>; <boolean test>; <increment>)

{

<statement list>

}

Very similar to the C construction. The curly brackets again are not

optional.

Unix Tools: Perl 2

for($i = 0; $i<10; $i++)
{

print "\$i % \$i = " . ixi . "\n";
}

Unix Tools: Perl 2

Lists and Arrays

@ A list in Perl is an ordered collection of scalars.

@ An array in Perl is a variable that contains an ordered colletion of
scalars.

Unix Tools: Perl 2

List literals

@ Can represent a list of scalar values

@ General form:
(<scalarl>, <scalar2>, ...)

Unix Tools: Perl 2

List literals

Examples

(0, 1, 5) # a list of three scalars that are numbers
("abc’, ’'def’) # a list of two scalars that are strings
(1, "abc’, 3) # can mix values

($a, $b) # can have values determined at runtime

() # empty list

Using gw syntax

You can also use the “quoted words” syntax to specify list literals:

("apples’, ’'oranges’, ’bananas’)
qw/ apples oranges bananas /
gw! apples oranges bananas !
gw (apples oranges bananas)
qw< apples oranges bananas >

List literals, cont’d

@ You can use the range operator “..” to create list elements.

o Examples:

(0..5) #

(0.1 .. 5.1) # same since truncated (not {\tt floor()}!)
(5..0) # evals to empty list

(1,0..5,’x" x 10) # can use with other types...

(Sm..S$n)

can use runtime limits

Array variables

@ Arrays are declared with the “@” character.

my Qa;
my @a = (‘a’, 'b", 'c’);

@ Notice that you don’t have to declare an array’s size.

Unix Tools: Perl 2

Arrays and scalars

@ Arrays and scalars are in separate name spaces, so you can have
two different variables $a and @a.

@ Mnemonically, “$” does look like “S”, and “a” does resemble
5‘@”.

Unix Tools: Perl 2

