
Source level debugging

Source level debugging is a nice help when debugging execution
problems.

To enable source level debugging with gcc/g++, you should use
the -g option.

Unix Tools: Program Development 3



Source level debugging

The symbol table information includes the correspondence
between

statements in the source and locations of instructions in the
executable
variables in the source and locations in the data areas of the
executable

Unix Tools: Program Development 3



GDB: the Gnu debugger

GDB is a line oriented debugger where actions are initiated by
typing in commands at a prompt.

It can be invoked for executables created by gcc and g++.

Unix Tools: Program Development 3



GDB: the Gnu debugger

General capabilities
Starting and exiting your program from the debugger.
Pausing and continuing execution of your program while in the
debugger.
Examining the state of your program.
Changing the state of your program.

Unix Tools: Program Development 3



Starting and stopping GDB

You can start gdb along these lines
gdb YOURPROGRAM [core|pid]

If you don’t specify a core file or a process id, then you can start
a new execution of YOURPROGRAM with the run command.

Unix Tools: Program Development 3



Starting and stopping GDB

You can specify whatever arguments you like after run,
including i/o redirection.
run 123 > /tmp/out

You can exit gdb with the quit command.

Unix Tools: Program Development 3



Stopping and continuing execution of your program in gdb

You can set and remove breakpoints.

You can also step through execution, and as well simply continue
it.

Unix Tools: Program Development 3



Setting and removing breakpoints

You can set a breakpoint to stop either when a certain location in
the source is reached, or when a condition occurs.

The general form is
break [SOMEFUNCTION|SOMELINENUM] [if SOMECONDITIION]

Specifying just break will set a breakpoint at your current
location.

You can remove a breakpoint with
delete BREAKPOINT

Unix Tools: Program Development 3



Examples

(gdb) break sets a breakpoint at the current line

(gdb) break 50 sets a breakpoint at line 50 of the current file

(gdb) break main sets a breakpoint at routine main()

(gdb) break 10 if i == 66 break execution at line 10 if the variable i
has the value 10

(gdb) delete 3 remove the 3rd breakpoint

(gdb) delete deletes all breakpoints

Unix Tools: Program Development 3



You can step to the next statement, or you can step into a function.
The general form is
step [N] # also, "s [N]" is generally defined as "step [N]" for most versions of gdb

where N indicates the number of steps to take, defaulting to 1 if not
specified. Execution will not continue through a breakpoint (or
program termination.)

Unix Tools: Program Development 3



Nexting through execution

Often, you don’t want to step into a function. You can use the next
command to simply go to the next statement rather than stepping
into a function specified on the current line.
next [N] # also, "n [N]" is generally defined as the same

Unix Tools: Program Development 3



Continuing execution

You can continue execution up to the next breakpoint found, or
program termination.
cont [N] # also, "c [N]" is generally defined as the same

N here specifies skip the first N-1 breakpoints.

Unix Tools: Program Development 3



Continuing execution until the end of a loop

You can use the until command to execute your program until it
reaches a source line greater than the one that you are currently on. If
you are not at a jump back, this is the same as the next command. If
you are at a back jump such as in a looping construct, then this will let
you execute until the point that you have exited the loop.

Unix Tools: Program Development 3



Examining the state of your program

Listing source code.

Printing the values of expressions.

Displaying the values of expressions.

Printing a stack trace.

Switching context in a trace.

Unix Tools: Program Development 3



Listing source code

You can list source code a specified line or function.
The general form is
list [[FILENAME:]LINENUM[,LINENUM]]|[[FILENAME:]FUNCTIONNAME]

If you don’t specify anything, then you will get 10 lines from the
current program location, or 10 more lines if you have already listed
the current program location.

Unix Tools: Program Development 3



Listing source code examples

(gdb) list # list 10 lines from the current location

(gdb) list 72 # list lines 67-76 (the 10 lines around line 72

(gdb) list calc.c:55 # list lines 50-59 of the file calc.c

(gdb) list 80,95 # list lines 80..95 of the current file

(gdb) list somefunc # list the function somefunc

(gdb) list cal.c:january # list the january function in cal.c

Unix Tools: Program Development 3



Printing the values of expressions

You can print the value of expressions involving variables based on
the state of the execution of the process. You can also specify to some
degree the formatting of those expressions, such as asking for
hexadecimal or octal values.
print[/FMT] EXPRESSION

The FMT can be ’o’ for octal, ’x’ for hexadecimal, ’d’ for signed
decimal, ’f’ for float, ’u’ for unsigned decimal, ’t’ for binary, and ’a’
for address. If no EXPRESSION is given, the last one is used.

Unix Tools: Program Development 3



Example print commands

print i # prints the value of the variable i
print a[i] # prints the value of a[i]
print/t a[i] # prints a[i] in binary
print a[i]-x # prints the value of a[i] - x
print a # prints the values in array a
print p # prints the value of the pointer p
print *p # prints the value pointed to by p
p i # prints the value of i

Unix Tools: Program Development 3



Displaying the values of expressions

The display command is very similar to the print command, but
the value is displayed after each step or continue command.
display[/FMT] EXPRESSION

Unix Tools: Program Development 3



Undisplaying expression values

You can use the undisplay command to stop displaying
expressions.

Unix Tools: Program Development 3



Printing a stack trace

You can print a trace of the activation records of the stack of
functions called up until this point.

The trace shows the names of the routines called, the values of
the arguments passed to each routine, and the line number last
executed in that routine.

The general form is
where [N]
If N is positive, then only the last N activation records are shown.
If N is negative, then only the first N activation records are
shown.

Unix Tools: Program Development 3



Switching context in the stack

You can up or down in the stack with up [N] and down [N].

Unix Tools: Program Development 3



Changing state in your program execution

You can modify the values of variables while executing in order to
avoid making code changes just for the sake of debugging.
For instance,
set i = 10 # set the variable i to the value 10
set a[i] = 4 # set a[i] to 4

Unix Tools: Program Development 3



Making impromptu calls to functions

You can call simply invoke a function from the gdb prompt. This can
be very useful to call debugging routines that print the values of
complex structures that might be difficult to parse with just the gdb
print command.
call FUNCTION(ARGS)

Unix Tools: Program Development 3



Other useful features

One of the most useful things that you can do is to simply run a
program that is segfaulting and see where the problem is occurring.
Or if you have a core file from a segfaulted program, you can specify
to read its state with gdb PROGNAME CORENAME.
You can CTL-C when you are in a program that is in an endless loop
and actually find out where the loop is.

Unix Tools: Program Development 3



Command shortcuts

You can create and use aliases, or use the fact that commands only
need as many letters as make the command unique (and you can use
TAB for completion).

Unix Tools: Program Development 3


