
Spring 2007 A detailed look at using parsing tools

Taking a closer look at parsing

As Unix tools, bison and flex shine most strongly
perhaps when used for the very common task of
parsing configuration files.

1

Spring 2007 A detailed look at using parsing tools

Taking a closer look at parsing

Another benefit of using the bison is that, while
bison itself only supports C and C++, it is possible to
use the same production rules to drive other systems
such as the Perl module “Yapp” (Yet Another Perl
Parser compiler).

Let’s look at using bison for parsing a specific
configuration file.

2

Spring 2007 A detailed look at using parsing tools

An example problem

Let’s say that you want to create a program that
moves data from one database to another on an
ongoing basis (this is often called “replication.”) In
particular, it would be desirable to have such replication
available between different types of databases, such
MySQL, Postgresql, Oracle, and SQLite.

3

Spring 2007 A detailed look at using parsing tools

An example problem

You want this program to be flexible in how it works,
so it makes sense to have a detailed configuration file
associated with the data movement.

4

Spring 2007 A detailed look at using parsing tools

An example problem

The three main things you want to define for each
replication activity are: data identifying the source of
information to be replicated, data identifying the target
of where this data is to be replicated, and perhaps
some configuration information specifying such things
as the frequency of the transfer.

5

Spring 2007 A detailed look at using parsing tools

Creating a configuration specification
syntax

Let’s start with the overall idea of replication. This
type of definition often works well with a stanza format,
so let’s propose a stanza system something like:

6

Spring 2007 A detailed look at using parsing tools

First iteration

replication "ab-to-xy"
{

some sort of general information

now information about our source of data
source "ab"
{
}

and information about our target
target "xy"
{
}

}

7

Spring 2007 A detailed look at using parsing tools

Adding more detail

First, let’s look at the general information.

It might be worth having such things as having some
type of timing information; also, specifying logging
activity might be a good idea. Let’s try this syntax:

interval = 5 ; # should we just assume seconds?
do_logging = 1 ; # 1 = yes, 0 = no
log_identifier = "ab to xy transfer" ;

8

Spring 2007 A detailed look at using parsing tools

How does that look?

replication "ab-to-xy"
{

some sort of general information
interval = 5 ; # should we just assume seconds?
do_logging = 1 ; # 1 = yes, 0 = no
log_identifier = "ab to xy transfer" ;

now information about our source of data
source "ab"
{
}

and information about our target
target "xy"

9

Spring 2007 A detailed look at using parsing tools

{
}

}

10

Spring 2007 A detailed look at using parsing tools

Source information

Okay, let’s think about the source of data. There are
some basic things that we need to know. What’s the
database type? Do we need to authenticate? If so,
what’s the authentication information?

11

Spring 2007 A detailed look at using parsing tools

Source information

type = postgresql ;
authentication_needed = 1 ;
authentication_type = password ;
username = username ;
password = "password" ;
database = "databasename" ;
all_tables = 0 ;
tables = [table1 table2 table3 table4] ;

12

Spring 2007 A detailed look at using parsing tools

Target information

Now, what kind of information do we on the target
side? How about something along the lines of:

type = sqlite ;
authentication_needed = 0 ;
database = "databasename" ;

13

Spring 2007 A detailed look at using parsing tools

Putting it all together

replication "ab-to-xy"
{

some sort of general information
interval = 5 ; # should we just assume seconds?
do_logging = 1 ; # 1 = yes, 0 = no
log_identifier = "ab to xy transfer" ;

now information about our source of data
source "ab"
{

type = postgresql ;
authentication_needed = 1 ;
authentication_type = password ;
username = username ;
password = "password" ;
database = "databasename" ;
all_tables = 0 ;

14

Spring 2007 A detailed look at using parsing tools

tables = [table1 table2 table3 table4] ;
}

and information about our target
target "xy"
{
type = sqlite ;
authentication_needed = 0 ;
database = "databasename" ;

}
}

15

Spring 2007 A detailed look at using parsing tools

Now specifying a grammar for all of that

So what would we like to reflect? I think we
should keep the idea of multiple replication definitions
in a single configuration file open, so let’s allow that
possibility.

replication_declarations : | replication_declarations replication_declaration
;

replication_declaration : REPLICATION
STRING
LEFTBRACE
variable_declarations
source_declaration

16

Spring 2007 A detailed look at using parsing tools

target_declaration
RIGHTBRACE
;

17

Spring 2007 A detailed look at using parsing tools

... variable declarations ...

variable_declarations : | variable_declarations simple_declaration
;

18

Spring 2007 A detailed look at using parsing tools

... source declarations ...

source_declaration : SOURCE
STRING
LEFTBRACE
variable_declarations
RIGHTBRACE
;

19

Spring 2007 A detailed look at using parsing tools

... target declarations ...

target_declaration : SOURCE
STRING
LEFTBRACE
variable_declarations
RIGHTBRACE
;

20

Spring 2007 A detailed look at using parsing tools

... simple variable declarations ...

simple_declaration : NAME
EQUAL
value
SEMICOLON
;

value : STRING | NUMBER | NAME | list
;

21

Spring 2007 A detailed look at using parsing tools

... and for some final bits ...

list : LEFTBRACKET elements RIGHTBRACKET
;

elements : element additional ;

additional : | element additional ;

element : STRING | NAME ;

22

Spring 2007 A detailed look at using parsing tools

Finally... !

%{
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <linux/unistd.h>
%}
%token NAME STRING EQUAL SEMICOLON REPLICATION LEFTBRACE RIGHTBRACE SOURCE TARGET RIGHTBRACKET COMMA LEFTBRACKET
%%
replication_declarations : |

replication_declarations replication_declaration
;

replication_declaration : REPLICATION
STRING
LEFTBRACE
variable_declarations
source_declaration

23

Spring 2007 A detailed look at using parsing tools

target_declaration
RIGHTBRACE
;

variable_declarations : | variable_declarations simple_declaration
;

source_declaration : SOURCE
STRING
LEFTBRACE
variable_declarations
RIGHTBRACE
;

target_declaration : SOURCE
STRING
LEFTBRACE
variable_declarations
RIGHTBRACE
;

simple_declaration : NAME
EQUAL
value
SEMICOLON
;

value : STRING | NAME | list
;

24

Spring 2007 A detailed look at using parsing tools

list : LEFTBRACKET elements RIGHTBRACKET
;

elements : element additional ;
additional : | element additional ;
element : STRING | NAME ;
%%
char *configuration_file = "replication.conf";
int main(int argc, char **argv)
{

printf("Found %d arguments...\n",argc);

// parse config file
char opt;
extern char *optarg;

while((opt = getopt(argc,argv,"c:C:")) != -1)
{

switch(opt)
{
case ’c’:
case ’C’:
configuration_file = optarg;
break;

}

25

Spring 2007 A detailed look at using parsing tools

}

// read in configuration
FILE *f = fopen(configuration_file,"r");
if(f)
{

yyrestart(f);
yyparse();

}
else
{

printf("Couldn’t open %s!\n",configuration_file);
exit(1);

}

}

26

Spring 2007 A detailed look at using parsing tools

Additional ideas

In addition to the actual work behind parsing, I like to
add a few bits to help: (1) add some provision to tell the
user where the parser has failed and (2) do something
to allow at least some version of comments.

27

Spring 2007 A detailed look at using parsing tools

Additional ideas

int yyerror(){printf("Configuration file error at line %d -- %s.\n",
yy_private_lines,
yy_private_error_guess); exit(1);}

[. . .]

#.*\n { /* consume comments */ }
\n { yy_private_lines++; }
\/\/.*\n { yy_private_lines++; /* consume comments */ }
. { yy_private_error_guess = "syntax error"; yyerror(); }

28

Spring 2007 A detailed look at using parsing tools

Additional ideas

Then I like to add lines like these, so that the user
can easily find syntactical errors:

replication_declaration :
{yy_private_error_guess = "Expecting keyword ’replication’";}
REPLICATION
{yy_private_error_guess = "Expecting string";}
STRING
{yy_private_error_guess = "Expecting ’{’";}
LEFTBRACE

29

