
Fall 2006 review

COP 4342, Fall 2006: Introduction

☞ History of Unix

☞ Shells: what they are and how they work

☞ Commands: built-in, aliases, and program inṽocat̃ions

☞ Tree-structured resources: processes and files

☞ Finding more information: man, info , and Google .

COP 4342

Fall 2006 review

History of Unix

☞ Unix is now more than 30 years old, began in 1969
(The Evolution of the Unix Time-sharing System,
Ritchie at http://cm.bell-labs.com/cm/cs/who/dmr/hist.html)

COP 4342

Fall 2006 review

Introduction to Unix

☞ Started at AT&T’s Bell Labs, originally derived from
MULTICS. Original hardware was a DEC PDP-7, and
the filesystem was hierarchical but did not have path
names (i.e., there was no equivalent to name such
as /etc/hosts , it would just be hosts ; directory
information was kept in a special file called dd)

COP 4342

Fall 2006 review

☞ Rather than a product from a manufacturer, Unix
began as collaboration with these goals:

➳ Simplicity
➳ Multi-user support
➳ Portability
➳ Universities could get source code easily
➳ Users shared ideas, programs, bug fixes

COP 4342

Fall 2006 review

Introduction to Unix

➳ The development of early Unix was user-driven
rather than corporate-driven

➳ Note that Liñux and the BSDs (FreeB̃SD, OpenB̃SD,
NetB̃SD) now flour̃ish in simĩ̃lar “open source”
enṽironm̃ents (http: /̃/www. f̃reebsd .̃org, http: /̃/www. õpenbsd. õrg,
http: /̃/www. ñetbsd. õrg)

➳ The first meeting of the Unix User Group was in
May, 1974; this group would late become the Usenix
Association

COP 4342

Fall 2006 review

Old Unix

☞ Processes were very different

COP 4342

Fall 2006 review

Old Unix

☞ Originally

➳ Parent first closed all of its open files
➳ Then it linked to the executable and opened it
➳ Then the parent copied a bootstrap to the top of

memory and jumped into the bootstrap

COP 4342

Fall 2006 review

Old Unix

➳ The bootstrap copied the code for the new process
over the parent’s code and then jumped into it

➳ When the child did an exit, it first copied in the
parent process code into its code area, and then
jumped back into the parent code at the beginning

COP 4342

Fall 2006 review

Old Unix

☞ Today the parent does:

➳ fork(2) (to create a new child process)
➳ exec*(2) (to have the child process start

executing a new program)
➳ wait*(2) (to wait on the child (or at least

check on its status if non-blocking))

COP 4342

Fall 2006 review

Unix Today

☞ Linux: a complete Unix-compatible operating
system

➳ Runs on huge array of hardware, from IBM’s
biggest machines down to commodity routers such
as the Linksys WRT54G (which you can even
hack, see Linux on Linksys Wi-Fi Routers at Linux
Journal (http://www.linuxjournal.com/article/7322)).

➳ Based on Linux Torvalds’ kernel (he is still in
charge of kernel development, though now many

COP 4342

Fall 2006 review

people work on the kernel)
➳ The Linux distribution on the linprog machines

is Scientific Linux; it includes a full development
environment, X-Windows, NFS, office environment
products (word processors, spreadsheets, etc), C,
C++, Fortran, several mail systems (exim, postfix,
and sendmail) and whole lot more (a full install is 5
gigabytes)

➳ Linux is mostly POSIX.1 compliant (for a good
FAQ on POSIX, see http://www.opengroup.org/austin/papers/posix faq.html)

COP 4342

Fall 2006 review

Command Line versus Graphical Interface

☞ Typing is faster than mousing

☞ Graphics are computationally expensive, terminal
handling is computationally inexpensive

☞ Easy to automate command lines, especially by
utilizing histories

☞ Unix tools are designed to act as filters

COP 4342

Fall 2006 review

The Layers of Unix

☞ Kernel → Provides access to system resources,
both virtual and physical

☞ Shell → Provides a means to start other processes
via keyboard input and screen output

☞ Tools → The vast array of programs that you can
run to accomplish tasks

COP 4342

Fall 2006 review

Some definitions

☞ “executable” → A file that can be “executed” by
creating a new process. There are two basic
types of executables: binary executables, which
natively run on hardware, and “script” executables
which first invoke an interpreter. Script executables
generally are human-readable (though, for instance,
Zend PHP scripts can be pre-compiled into a crude
intermediate representation.)

COP 4342

Fall 2006 review

☞ process → An activation of a program. A process
creates an entry in the process table (however,
in Linux, a thread, which is retains the execution
context of the caller, also goes into the process
table.)

☞ daemon → Generally a persistent process (or at
least the child of a persistent process) that is usually
intended to provide some sort of service.

COP 4342

Fall 2006 review

Some definitions

☞ user shell → Provides an environment that accepts
keyboard input and provides screen output in order
to allow a user to execute programs.

☞ “built-in” command→ A “built-in” command does not
cause the execution of a new process; often, it is
used to change the state of a shell itself.

☞ alias → An alias expands to another command

COP 4342

Fall 2006 review

☞ variable → A way to reference state in a shell

☞ flag → A way to specify options on the command
line, generally via either a single dash or a double
dash

COP 4342

Fall 2006 review

Characteristics of Filters

☞ Should read from stdin and write to stdout by default
(though some older utilities require explicit flags).

☞ Generally, filters should not read configuration files
but should instead take their input from stdin and look
at the command line for options via command line
“flags”.

☞ The output from one filter ideally should be easily
readable by another filter.

COP 4342

Fall 2006 review

Well-known shells

☞ bash

☞ sh

☞ csh

☞ ksh

☞ tcsh

☞ zsh

COP 4342

Fall 2006 review

Unix Files

☞ Unix files normally follow the paradigm of a “byte-
stream”

☞ Filenames may consist of most characters except
the NUL byte and “/”

☞ They are case sensitive

☞ Periods are generally used for any filename
extensions

COP 4342

Fall 2006 review

☞ Filenames that start with a period are treated
somewhat differently

☞ Unix does not generally make automatic backups of
files

COP 4342

Fall 2006 review

Some popular extensions

☞ .c .h → C files

☞ .pl .pm → Perl files

☞ .py → Python files

☞ .cpp .c++ .CC → C++ files

☞ .s → assembly files

☞ .o → object file

COP 4342

Fall 2006 review

☞ .gz → gzipped file

☞ .rpm → rpm file

COP 4342

Fall 2006 review

Wildcards and globbing

☞ “*” matches any string

☞ “?” matches any one character

☞ “[]” lets you specify a character class

☞ Note: you can use “[][]” to specify match “]” or “[”

COP 4342

Fall 2006 review

Filesytems

☞ Directories which are tree-structured

☞ Directories are just special files that contain pointers
to other files (including other directories)

☞ / is the root of a filesystem

☞ CWD or “Current Working Directory” is the default
directory for a process

COP 4342

Fall 2006 review

Filesytem paths

☞ In Unix, we use / to distinguish elements in a path

☞ Absolute paths start with / and start at the root

☞ Relative paths start with any other character and
are interpreted as relative to the current working
directory

COP 4342

Fall 2006 review

More on paths

☞ “.” is a special path (actually in the filesystem) that
points at the current directory

☞ “..” is a special path (actually in the filesystem) that
points at the parent directory

☞ “ /” is often understood by a shell as the home
directory of the current user

☞ “ username/” is often understood by a shells as the

COP 4342

Fall 2006 review

home directory of “username”

COP 4342

Fall 2006 review

Listing files

☞ ls → show all of the non-dot files as a simple
multicolumn listing

☞ ls -l → show a detailed listing, one line per file

☞ ls -a → include the dot files

☞ ls -d DIRNAME → just show the information
about the directory and not its contents

COP 4342

Fall 2006 review

☞ ls NAME NAME ... → show the named files (if
they exist)

COP 4342

Fall 2006 review

File permissions, user classes

☞ owner → Each file in the filesystem has an uid
associated with it called the owner

☞ group → Each file in the filesystem also a gid
associated with it called the group

☞ others → Refers to all others users

COP 4342

Fall 2006 review

File permissions, rwx

☞ r → permission to read a file

☞ w→ permission to write to a file

☞ x → permission to execute a file

COP 4342

Fall 2006 review

Changing permissions with chmod

☞ Octal notation : chmod 4755 /bin/ls

☞ Symbolic notation : chmod og+w /etc/hosts

COP 4342

Fall 2006 review

Removing files

☞ rm FILENAME removes the named files

☞ rm -r DIRNAME removes a directory, even if it has
some contents

☞ rm -f NAME removes a file (if possible) without
complaining or query

☞ rm -i NAME queries any and all removals before
they are committed

COP 4342

Fall 2006 review

☞ rmdir DIRNAME removes directory iff it is empty

☞ Recovering files after deletion is generally very
hard (if not impossible) and if the filesystem is not
quiescent, it becomes increasingly difficult to do

COP 4342

Fall 2006 review

Manipulating files with cp and mv

☞ cp FILE1 FILE2 copies a file

☞ cp -r DIR1 DIR2 copies a directory; creates
DIR2 if it doesn’t exist otherwise puts the new copy
inside of DIR2

☞ cp -a DIR1 DIR2 like -r, but also does a very
good job of preserving ownership, permissions, soft
links and so forth

COP 4342

Fall 2006 review

☞ mv NAME1 NAME2moves a file directory

COP 4342

Fall 2006 review

Standard i/o

☞ Each process that starts on the system starts with
three active file descriptors: 0, 1, and 2

☞ 0 → is standard input, and is where a process by
default expects to read input

☞ 1 → is standard output, and is where a process by
default will write output

☞ 2 → is standard error, and is where a process by

COP 4342

Fall 2006 review

default sends error messages

COP 4342

Fall 2006 review

Redirection

☞ You can use and < to provide simple redirection

☞ You can be explicit in bash and provide the actual
file descriptor number

☞ For instance, in bash you can do “ls whatever 2
/dev/null” will make any error message disappear like
the -f option in rm.

☞ You can use to append to a file

COP 4342

Fall 2006 review

Displaying files

☞ cat → Lets you see the contents with no paging

☞ more → Pages output

☞ less → Also pages output, will let you go
backwards even with piped input

☞ head → Just show the first lines of a file

☞ tail → Just show the end lines of a file

COP 4342

Fall 2006 review

Piping

☞ A pipe “” simply lets you join the output of one
program to the input of another

☞ The “tee” program lets you split the output of one
program to go to the input of a program and to stdout

COP 4342

Fall 2006 review

Finding more information

☞ The manprogram is a great place to start.

☞ The info program puts you in an emacs session.

☞ Google is your friend.

COP 4342

Fall 2006 review

Processes

☞ Executables can be executed as processes

☞ Keyboard control of jobs

☞ ps , top , pstree

☞ kill doesn’t kill, it sends signals

☞ cron , anacron

COP 4342

Fall 2006 review

Executables can be executed as
processes

☞ A process has an entry in the process table, and is
initially loaded from a file in the filesystem

☞ An executable is a file in the filesystem which

➳ Has the appropriate “x” flag(s) set
➳ Either begins with a line of the form #!/SOME/OTHER/EXECUTABLE

or is in a binary format such as ELF or COFF

COP 4342

Fall 2006 review

“Foreground” versus “Background”

☞ A process that is in the “foreground” of a shell
means that the shell is waiting for the process to
finish before accepting more input.

☞ A process that is in the “background” of a shell
means that the shell will accept other commands
while the process is executing. Generally, a
“background” process can be brought to the
“foreground”.

COP 4342

Fall 2006 review

Shell communication with processes

☞ If a process is in the foreground, then by default
when a ctrl-c is pressed and then mapped by stty to
send a signal SIGINT, that SIGINT will be propagated
to the foreground process. By default when a ctrl-z
is pressed and then mapped by stty to send a signal
SIGSTOP to the foreground process suspending the
process. From there, you can either terminate it,
put it in the background, or unsuspend it back to the
foreground.

COP 4342

Fall 2006 review

☞ If a process is in the background, you can use kill
to explicitly send signals.

COP 4342

Fall 2006 review

Shell job control

☞ You can place many processes simultaneously in
the background; most shells will keep track of these
and allow you to also access them via logical pids.

☞ You can either use ctrl-z / bg for a process that is in
the foreground, or use a terminal “&” when you start
the process.

COP 4342

Fall 2006 review

Shell job control continued

☞ You can use jobs to keep up with which jobs you
have running.

☞ You can use fg %N to bring job N back to the
foreground.

COP 4342

Fall 2006 review

ps

☞ You can also use ps to look at various portions of
the process table.

☞ My favorites are ps alxwww and ps -elf .

☞ You pick and choose whatever format you like for
output with the ps -o --sort option. For example,
ps -e -opid,uid,cmd --sort=uid

☞ You can also show threads with the ps -m option.

COP 4342

Fall 2006 review

kill

☞ Sending signals:

➳ kill -KILL pid → “unstoppable” kill (aka
kill -9 pid)

➳ kill -TERM pid → terminate, usually much
cleaner

➳ kill -HUP pid → either reload or terminate,
usually clean if termination

➳ kill -STOP pid → suspend a process
➳ kill -CONT pid → restart a suspended process

COP 4342

Fall 2006 review

☞ kill is generally a built-in, but there is also usually
a kill program. The program version will not usually
work with logical pids (unless your shell happens to
translate logical pids to real pids before invoking kill,
or the kill program is written such that it reparses the
command line. For example, try /usr/bin/kill
-STOP %1).

COP 4342

Fall 2006 review

top

☞ The program top gives you a dynamic view of the
process table.

☞ You can make it run faster with the “s” command.

☞ You can do “snapshots” with the -b (batch) option
and the -i iterations option.

COP 4342

Fall 2006 review

pstree

☞ Shows processes as a tree. Some options are:

➳ -c → Disable compaction.
➳ -G → Try to make graphical line drawing rather

than just character
➳ -Hpid → Try to highlight a particular process and

its ancestors
➳ -p → Show pids

☞ You can limit output to a user (specified by a user

COP 4342

Fall 2006 review

name) or to pid (specified by pid number)

COP 4342

Fall 2006 review

cron

☞ You can run programs at arbitrary times with cron

➳ Use crontab -e to edit your crontab (you can
set EDITOR to specify an editor)

➳ The five time fields are minute, hour, dayOfMonth,
month, dayOfWeek where Sunday=0 for dayOfWeek

COP 4342

Fall 2006 review

Shell Programming Topics

☞ Creating Shell Scripts

☞ Globbing

☞ Aliases, Variables/Arguments, and Expressions

COP 4342

Fall 2006 review

Shell Programming Topics

☞ Shells, data, and debugging

☞ Structuring control flow

☞ Exit status

COP 4342

Fall 2006 review

Shell Programming Topics

☞ Not (just) globbing: regular expressions

➳ grep, awk, perl all use regular expressions

COP 4342

Fall 2006 review

Advantages of shell scripts

☞ Can very easily automate a group of tasks,
especially those with i/o that are related

☞ Can very easily leverage powerful Unix tools

COP 4342

Fall 2006 review

Disadvantages of shell scripts

➳ Shell scripts execute slowly.

➳ Advanced programming techniques aren’t a feature
of shell programming. Abstraction and encapsulation
are poorly supported.

COP 4342

Fall 2006 review

What shell to use

☞ For programming, most people have preferred sh
and its derivatives such as bash .

☞ We will use bash for programming, although we will
also talk about csh when appropriate in command
shells.

COP 4342

Fall 2006 review

What shell to use

☞ In the past, many people have preferred csh and
tcsh as command line shells; however, it appears
that bash is now preferred since its support for
command line editing is quite strong and it also is
quite useful for shell programming.

COP 4342

Fall 2006 review

What shell to use

☞ There is also program busybox which is also
worth knowing about. It is a shell — and
a lot more. The binary itself includes many
other programs such as head, tail, ps, top,
find, crontab, and tar as built-ins.

COP 4342

Fall 2006 review

Finding more information

☞ man bash

☞ man {alias, bg, bind, break, builtin, cd,
command, compgen, ... }

☞ info bash

☞ Google bash

COP 4342

Fall 2006 review

Creating a script

☞ By convention, we use an extension of .sh for shell
scripts.

☞ The first line needs to be

#!/bin/bash
#!/bin/sh
#!/bin/csh
#!/sbin/bash

COP 4342

Fall 2006 review

Creating a script

☞ Now you should put some comments:

2006 09 06 -- original version by rdl
2006 09 07 -- updated ‘‘text’’ by rdl
#
this shell program is used to confabulate the obfuscated
#

COP 4342

Fall 2006 review

Using echo

☞ The program (and builtin) echo is useful for sending
a given string or strings to stdout.
[langley@sophie 2006-Fall]$ echo a b c
a b c
[langley@sophie 2006-Fall]$ echo "a b c"
a b c
[langley@sophie 2006-Fall]$ echo "$SHELL a b c"
/bin/bash a b c
[langley@sophie 2006-Fall]$ echo $SHELL a b c
/bin/bash a b c
[langley@sophie 2006-Fall]$ echo ’$SHELL a b c’
$SHELL a b c

COP 4342

Fall 2006 review

Shell variables

☞ Do not have to be declared: just use them. (If
you want to, you can declare them with declare ;
generally only useful to make variables read-only.)

☞ Can be assigned a value, or can just have a blank
value

☞ Can dereferenced with a “$”

COP 4342

Fall 2006 review

Shell variables

Examples:

[langley@sophie 2006-Fall]$ a=b
[langley@sophie 2006-Fall]$ b=$a
[langley@sophie 2006-Fall]$ echo "a = $a , b = $b"
a = b , b = b

COP 4342

Fall 2006 review

read ing values from the command line

From the man page for bash :

‘‘One line is read from the standard input, . . . and the
first word is assigned to the first name, the second word to the
second name, and so on, with leftover words and their interven-
ing separators assigned to the last name. If there are fewer
words read from the input stream than names, the remaining names
are assigned empty values. The characters in IFS are used to
split the line into words.’’

COP 4342

Fall 2006 review

read example

[langley@sophie 2006-Fall]$ read a b c d e f
apple beta cherry delta eta figs and more
[langley@sophie 2006-Fall]$ echo "$a -- $b -- $c -- $d -- $e -- $f"
apple -- beta -- cherry -- delta -- eta -- figs and more

COP 4342

Fall 2006 review

read example

It is also good to note that you can also specify that
items are to go into an array rather than just individually
named variables with the -a ARRAYNAMEoption.

For example:

[langley@sophie 2006-Fall]$ read -a arr
a b c d e f g h
[langley@sophie 2006-Fall]$ for i in 0 1 2 3 4 5 6 7
> do
> echo ${arr[$i]} # note the odd syntax to deref!
> done
a

COP 4342

Fall 2006 review

b
c
d
e
f
g
h

COP 4342

Fall 2006 review

Command line parameters

☞ When you call a shell script, command line
parameters are automatically setup with $1, $2, etc...
[langley@sophie 2006-Fall]$./Script1.sh abc def ghi
first 3 args: ’abc’ ’def’ ’ghi’

☞ $0 refers to the name of the command (the first item)

COP 4342

Fall 2006 review

More on command line arguments

☞ $# refers to the number of command line
arguments.

☞ $@ refers to the all of the command lines arguments
in one string.

Example:

[langley@sophie 2006-Fall]$./Script2.sh abc def ghi jkl
There are 4 arguments: abc def ghi jkl

COP 4342

Fall 2006 review

Debugging tips

☞ The options -x and -v are very helpful. You can
either add them to the initial #! line, or you can call
the shell at the command line:

☞ bash -xv Script1.sh abc def

Example:

[langley@sophie 2006-Fall]$ bash -xv Script1.sh ls asd asdf asdf
#!/bin/bash

COP 4342

Fall 2006 review

2006 09 06 -- Small test script

echo "first 3 args: ’$1’ ’$2’ ’$3’"
+ echo ’first 3 args: ’\’’ls’\’’ ’\’’asd’\’’ ’\’’asdf’\’’’
first 3 args: ’ls’ ’asd’ ’asdf’
echo "cmd: ’$0’"
+ echo ’cmd: ’\’’Script1.sh’\’’’
cmd: ’Script1.sh’
[langley@sophie 2006-Fall]$ bash -x Script1.sh ls asd asdf asdf
+ echo ’first 3 args: ’\’’ls’\’’ ’\’’asd’\’’ ’\’’asdf’\’’’
first 3 args: ’ls’ ’asd’ ’asdf’
+ echo ’cmd: ’\’’Script1.sh’\’’’
cmd: ’Script1.sh’

COP 4342

Fall 2006 review

Testing

☞ You can test with square brackets:
$ [$ -e /etc/hosts $] $

☞ You can also test with test :
test -e /etc/hosts

COP 4342

Fall 2006 review

Testing

Example:

[langley@sophie 2006-Fall]$ if test -e /etc/hosts
> then
> echo exists
> fi
exists
[langley@sophie 2006-Fall]$ if [-e /etc/hosts]
> then
> echo exists
> fi
exists

COP 4342

Fall 2006 review

File testing conditions

You can readily check various file status items:

[-d DIR] # True if directory DIR exists.
[-e SOMETHING] # True if file or directory SOMETHING exists.
[-f FILE] # True if regular file FILE exists.
[-r SOMETHING] # True if file or directory SOMETHING exists and is readable.
[-s SOMETHING] # True if file or directory SOMETHING exists and

has a size greater than zero.
[-x SOMETHING] # True if file or directory SOMETHING exists and

is ‘‘executable’’ by the current userid.

COP 4342

Fall 2006 review

Numeric testing conditions

You can readily check various numeric values:

[0 -eq 1] # equality
[1 -ne 1] # inequality
[1 -lt 1] # less than
[1 -gt 1] # greater than
[1 -le 1] # less than or equal
[1 -ge 0] # great than or equal

COP 4342

Fall 2006 review

String testing conditions

You can readily check various numeric values:

[-z STRING] # is the string STRING zero length?
[-n STRING] # is the string STRING non-zero length?
[STR1 == STR2] # ‘‘bash’’ equality; POSIX prefers ‘‘=’’
[STR1 != STR2] # inequality
[STR1 < STR2] # less than
[STR1 > STR2] # greater than

Note that it is a very good idea to “” quote any
string variables; otherwise, the corresponding blank
in if [$var1 != ‘‘today’’] becomes if [

COP 4342

Fall 2006 review

!= ‘‘today’’] !

COP 4342

Fall 2006 review

exit

☞ You can explicitly exit a shell with exit , which can
take an argument which will give the exit status of the
process. (If you don’t specify the optional value, the
exit status for the whole shell will take the value of
the last command to execute.)
[langley@sophie 2006-Fall]$ bash
[langley@sophie 2006-Fall]$ exit 3
exit
[langley@sophie 2006-Fall]$ echo $?
3

COP 4342

Fall 2006 review

if / then

☞ We can write if / then statements like:
if condition
then

[... statements ...]
fi

COP 4342

Fall 2006 review

Quoting

☞ Single quotes stop any globbing or variable
expansion within them, and create a single token
(i.e., whitespace within the quotes is not treated as
a separator character.)

☞ Double quotes allow globbing and variable expansion
within them, and create a single token (i.e.,
whitespace within the quotes is not treated as a
separator character.)

COP 4342

Fall 2006 review

☞ You can use the backslash to quote any single
character.

COP 4342

Fall 2006 review

Quoting examples

animal=’’horse’’
echo $animal #prints: horse
echo ’$animal’ #prints: $animal
echo ‘‘$animal’’ #prints: horse
cost=2000
echo ’cost: $cost’ #prints: cost: $cost
echo ‘‘chost: $cost’’ #prints: cost: 2000
echo ‘‘cost: \$cost’’ #prints: cost: $cost
echo ‘‘cost: \$$cost’’ #prints: cost: $2000

COP 4342

Fall 2006 review

Multiple conditions

[$1 -eq $2] && [-e /etc/hosts]
[$1 -eq $2] || [-d /etc]

COP 4342

Fall 2006 review

General if/then/else

if condition
then

[... statements ...]
elif condition
then

[... statements ...]
[... more elifs ...]
else

[... statements ...]
fi

COP 4342

Fall 2006 review

If example

#!/bin/bash
2006 09 08 - demonstrate if / then / else
if ["x$1" != "x"] && [-f "$1"]
then

echo -n "Remove $1 (n)? "
read answer
if [$answer == "y"] || [$answer == "Y"] || [$answer == "yes"]
then

echo "Would remove"
else

echo "Would NOT remove"
fi

else
echo "Please specify a regular file"

fi

COP 4342

Fall 2006 review

If example

#!/bin/bash
2006 09 08 - demonstrate if / then / else
if ["x$1" == "x"]
then

echo "Please specify a regular filename!"
exit 1

elif [! -f "$1"]
then

echo "$1 is not a regular file!"
exit 1

else
echo -n "Remove $1 (n)? "
read answer
if [$answer == "y"] || [$answer == "Y"] || [$answer == "yes"]
then

COP 4342

Fall 2006 review

echo "Would remove"
else

echo "Would NOT remove"
fi

fi

COP 4342

Fall 2006 review

The case statement

case WORD in PATTERN1) COMMANDS ;; PATTERN2)

COMMANDS ;; ... esac

The idea here is that WORD is tested against the
various PATTERNs listed, in order. The first match then
executes the associated COMMANDs.

COP 4342

Fall 2006 review

Case example

#!/bin/bash
2006 09 08 - case example
case $1 in

"yes")
echo "Thanks!"
exit 0
;;

"no")
echo "Okay!"
exit 1
;;

*)
echo "Please use either ’yes’ or ’no’ (case-sensitive)"
;;

esac;

COP 4342

Fall 2006 review

While/until loops

while list; do list; done;

until list; do list; done;

while executes the do list as long as the last
command in the list returns 0. until executes until
the last command in the list returns 0.

COP 4342

Fall 2006 review

while example

#!/bin/bash
2006 06 08 -- rdl
echo -n "Now ’finish’ ? "
read cmd
while test $cmd != "finish"
do

rm NONEXIST
echo "Status of \$? == $?"
echo -n "Now ’finish’ ? "
read cmd

done

COP 4342

Fall 2006 review

until example

#!/bin/bash
2006 06 08 -- rdl
echo -n "Now ’finish’ ? "
read cmd
until test $cmd == "finish"
do

rm NONEXIST
echo "Status of \$? == $?"
echo -n "Now ’finish’ ? "
read cmd

done

COP 4342

Fall 2006 review

Shifting the arguments

You can “shift” the argument list, eliminating the
current $1 and replacing it with the current $2, and so
forth:

COP 4342

Fall 2006 review

Shifting the arguments

#!/bin/bash
while [$# -gt 0]
do

echo "$# --> arguments == ’$@’"
shift;

done

COP 4342

Fall 2006 review

Shifting the arguments

[langley@sophie 2006-Fall]$./Script8.sh a b c d e f g h
8 --> arguments == ’a b c d e f g h’
7 --> arguments == ’b c d e f g h’
6 --> arguments == ’c d e f g h’
5 --> arguments == ’d e f g h’
4 --> arguments == ’e f g h’
3 --> arguments == ’f g h’
2 --> arguments == ’g h’
1 --> arguments == ’h’
[langley@sophie 2006-Fall]$

COP 4342

Fall 2006 review

exit

We have already talked about exit , but to reiterate
some points about exit:

☞ An exit status of zero should indicate success. It
is a good idea to use an explicit exit NUM in scripts.

☞ An exit status that is non-zero should indicate
failure.

☞ C programs use exit(NUM) to return a status.

COP 4342

Fall 2006 review

exit example

#/bin/bash
2006 09 08 -- rdl Script9.sh
if ./Script10.sh
then

echo -n "Enter filename: "
read filename
echo "You entered ’$filename’"

else
echo "Okay, no filename needed."

fi

COP 4342

Fall 2006 review

exit example

#/bin/bash
2006 09 08 -- rdl Script9.sh
while /bin/true
do

echo -n "Should I ask for a filename? "
read answer
case $answer in

"no")
exit 1
;;

"yes")
exit 0
;;

*)
;;

COP 4342

Fall 2006 review

esac
done

COP 4342

Fall 2006 review

Regular expressions

Regular expressions are a convenient way to
describe a sequence of characters, and regular
expressions are part of such programs as emacs, awk,
and perl .

COP 4342

Fall 2006 review

Regular expressions: operations

Concatenation: just place items adjacent, such ab ,
xyz , or somechars

COP 4342

Fall 2006 review

Regular expressions: operations

Repetition: we use “* ” to indicate repetition zero or
more times:

a*b == b, ab, aab, aaab, ...

COP 4342

Fall 2006 review

Regular expressions: operations

Special case of repetition: we can specify one or
more times with +:

a+b == ab, aab, aaab, ...

COP 4342

Fall 2006 review

Regular expressions: characters and
classes

The dot “.” can indicate any character, such as

a.b == a1b, a2b, a3b, ...

COP 4342

Fall 2006 review

Regular expressions: characters and
classes

To specify a class of characters, you can use the []
syntax:

[abc] == a, b, c

[a-d] == a, b, c, d

[â-z] == NOT a lower case character

[0-9] == 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

COP 4342

Fall 2006 review

Anchoring

You can “anchor” an expression to either the
beginning of a string or its end, or both. Use t̂o indicate
the beginning of a line, and $ to indicate the end:

âbc$ matches a line that consists exactly of abc

abc$ matches a line that ends in abc

âbc maches a lines that begins with abc

COP 4342

Fall 2006 review

Alternation and grouping

You can specify a group with round brackets “(“ and
“)”.

You can specify alternatives with a vertical “”

(abc)|(def) matches either abc or def

COP 4342

Fall 2006 review

Note on grouping

It also possible in many instances possible to make
a reference to whatever matched a group in round
brackets.

COP 4342

Fall 2006 review

Check chapter 32 for more on regular
expressions

32.20 has a good summary of metacharacters for
different programs.

32.21 has a reference with many useful examples

COP 4342

Fall 2006 review

Using grep/egrep

You can use the grep program to find strings in files.
The “-i” option makes the search case-insensitive. If no
file or files are specified, then grep looks to stdin for
input. grep also adds “?” as a special character that
matches 0 or 1 instance of any character.

COP 4342

Fall 2006 review

Examples with grep/egrep

egrep [Ll]angley * # finds instances of ‘‘langley’’ or
‘‘Langley’’ in all files in the
current working directory

egrep -i she?p * # finds case-insensitive instances of
shep and she.p

egrep -c /bin/bash * # shows filename and
number of matches

COP 4342

Fall 2006 review

Popular options with grep/egrep

☞ -i → case-insensitive

☞ -c → display count of matching lines rather all
matching lines

☞ -v → invert the matching

☞ -H → always show filenames

☞ -h → always suppress filenames

COP 4342

Fall 2006 review

☞ -l → just show the filenames that have one or more
matches

COP 4342

Fall 2006 review

wc

You can use the wc program to count characters,
words, and lines:

wc -l * # count the number of lines in all files
wc -w * # count the number of words in all files
wc -c * # count the number of characters in all files
wc -lw * # count the number of words and lines in all files
wc * # count words, characters, and lines in all files

COP 4342

Fall 2006 review

touch

Touch is usually a program, but it can be a shell built-
in such as with busybox .

The touch program by default changes the access
and modification times for the files listed as arguments.
If the file does not exist, it is created as a zero length
file (unless you use the -c option.)

You can also set either or both of the times to
arbitrary values, such as with the -t, -d, -B, and
-F options.

COP 4342

Fall 2006 review

Backquotes and textual substitution

If you surround a command with backquotes, the
standard output of the command is substituted for the
quoted material.

For instance,

[langley@sophie 2006-Fall]$ echo ‘ls 0*tex‘
01-introduction.tex 02-processes.tex 03-shells1.tex 03-shells2.tex 04-shells3.tex
[langley@sophie 2006-Fall]$ echo ‘egrep -l Langley *‘
03-shells2.tex Syllabus-Fall.html Syllabus-Fall.html.1 Syllabus Summer.html
[langley@sophie 2006-Fall]$ now=‘date‘
[langley@sophie 2006-Fall]$ echo $now
Mon Sep 11 09:55:09 EDT 2006

COP 4342

Fall 2006 review

Backquotes and textual substitution

if [‘wc -l < /etc/hosts‘ -lt 10]; then echo "lt"; fi
use ‘‘<’’ to prevent filename from

COP 4342

Fall 2006 review

xargs

xargs COMMAND -n N [INITIAL-ARGUMENTS]

xargs reads from stdin to obtain arguments for the
COMMAND. You may specify initial arguments with the
COMMAND. If you specify -n N , then only up to N
arguments are given to any invocation of COMMAND.
For instance,

[langley@sophie 2006-Fall]$ cat /etc/hosts | xargs -n 1 ping -c 1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.075 ms

COP 4342

Fall 2006 review

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.075/0.075/0.075/0.000 ms, pipe 2
PING localhost.localdomain (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0 ttl=64 time=0.060 ms

--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.060/0.060/0.060/0.000 ms, pipe 2
PING localhost.localdomain (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0 ttl=64 time=0.071 ms

COP 4342

Fall 2006 review

The for statement

for name in LIST0 ; do LIST1 ; done
for name ; do LIST1 ; done # useful for scripts
for ((EXPR1 ; EXPR2 ; EXPR3)) ; do LIST1 ; done

In the last form, EXPR? are evaluated as arithmetic
expressions.

COP 4342

Fall 2006 review

The for statement

[langley@sophie 2006-Fall]$ for ((ip = 0 ; ip < 5 ; ip = ip+1)) do echo $ip ; done
0
1
2
3
4

COP 4342

Fall 2006 review

The for statement

for i in ‘cat /etc/hosts‘
do

ping -c 1 $i
done

COP 4342

Fall 2006 review

break and continue statements

break terminates the current loop immediately
and goes on to the next statement after the loop.
continue starts the next iteration of a loop.

COP 4342

Fall 2006 review

break and continue statements

For example,

for name in *
do

if [-f ‘‘$name’’]
then

echo ‘‘skipping $name’’
continue

else
echo ‘‘process $name’’

fi
done

COP 4342

Fall 2006 review

expr

You can use expr to evaluate arithmetic statements,
some regular expression matching, and some string
manipulation. (You can also use either bc or dc for
more complex arithmetic expressions.)

COP 4342

Fall 2006 review

expr

files=10
dirs=‘expr $files + 5‘
limit=15
if [‘expr $files + $dirs‘ < $limit’’]
then

echo ‘‘okay’’
else

echo ‘‘too many!’’
fi

COP 4342

Fall 2006 review

awk

One of the more powerful programs found on Unix
machines is awk, and its updated versions, nawk and
gawk.

It is most useful for handling text information that
is separated into a series of uniform records. The
most common one that it handles is records of one
line, divided by either column numbers or by a field
separator. For instance, handling the password file is a
snap with awk.

COP 4342

Fall 2006 review

awk

The password file on a Unix machine looks
something like:

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

COP 4342

Fall 2006 review

awk

You can quickly get a list of usernames into a single
string variable with:

[langley@sophie 2006-Fall]$ usernames=‘awk -F: ’{print $1}’ /etc/passwd‘
[langley@sophie 2006-Fall]$ echo $usernames
root bin daemon adm lp sync shutdown halt mail
[langley@sophie 2006-Fall]$ usernames=‘awk ’{print $1}’ FS=: /etc/passwd‘
[langley@sophie 2006-Fall]$ echo $usernames
root bin daemon adm lp sync shutdown halt mail

COP 4342

Fall 2006 review

awk

Fundamentally, awk scripts consist of a series of
pairs:

PATTERN{ ACTION }

COP 4342

Fall 2006 review

awk

where the PATTERN can be a

☞ /regular expression/

☞ relational expression

☞ pattern-matching expression

☞ BEGIN or END

COP 4342

Fall 2006 review

awk

By default, the record separator is a newline so awk
works on a line-by-line basis by default.

If no PATTERN is specified, then the ACTION is
always taken for each record.

If no ACTION specified, then the each records that
matches a pattern is written to stdout.

COP 4342

Fall 2006 review

awk

You can specify that an ACTION can take place
before any records are read with the keyword BEGIN
for the PATTERN.

You can specify that an ACTION can take place
after all records are read with the keyword ENDfor the
PATTERN.

With PATTERNs, you can also negate (with !) them,
logically “and” two PATTERNs (with &&), and logically
“or” two PATTERNs (with).

COP 4342

Fall 2006 review

awk

Some examples of regular expressions in awk:

[langley@sophie 2006-Fall]$ awk ’/[Ll]angley/ {print $0}’ /etc/passwd
langley:x:500:500:Randolph Langley:/home/langley:/bin/bash
[langley@sophie 2006-Fall]$ awk ’/ˆ#/’ /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.

COP 4342

Fall 2006 review

awk

☞ $0 refers to the whole record, $N refers to the Nth
field in a record

☞ NF refers to the number of fields in a record
(example, awk -F: ’END print NF’ /etc/passwd
tells you that there are seven fields used in the
password file.)

☞ NR refers to which record (by default, line) you are
currently at.

COP 4342

Fall 2006 review

awk

Some examples of relational expressions:

$1 == ‘‘lane’’ # does the first field equal the string ‘‘lane’’?
$1 == $7 # are fields one and seven equal?
NR > 1000 # have we processed more than 1000 records?
NF > 10 # does this record have more than 10 fields?
NF > 5 && $1 = ‘‘me’’ # compound test
/if/&&/up/ # does the record contain both strings if and up?

COP 4342

Fall 2006 review

awk

You can also check a given field against a regular
expression:

$1 ˜ /D[Rr]\./ # does the first field contain a Dr. or DR.?
$1 !˜ /#/ # does the first field have a # in it?

COP 4342

Fall 2006 review

awk

ACTIONs are specified with { }. You can use
semicolons to separate statements with the braces
(although newlines work also). Popular statements are
print , if {} else {}, and system .

awk is very powerful! Henry Spencer wrote an
assembler in awk.

COP 4342

Fall 2006 review

awk example scripts

{ print $1, $2 } # print the first two fields of each record

$0 !˜ /ˆ$/ # print all non-empty lines

$2 > 0 && $2 < 10 { print $2 } # print field 2 if it is 0 < $2 < 10

BEGIN {FS=’’:’’
sum = 0} # sum field 3 and print the sum
{sum += $3}
END {print sum}

COP 4342

Fall 2006 review

The tr utility

Allows you to delete, replace, or “squeeze”
characters from standard input. The -d option deletes
the characters specified in the first argument; -s
squeeze removes all repetitions of characters in the
first argument with a single instance of the character.
The normal mode is to substitute characters from
the first argument with characters from the second
argument.

COP 4342

Fall 2006 review

The tr utility

[langley@sophie 2006-Fall]$ cat /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
128.186.120.8 sophie.cs.fsu.edu
127.0.0.1 a.as-us.falkag.net
127.0.0.1 clk.atdmt.com
[langley@sophie 2006-Fall]$ cat /etc/hosts | tr ’a-z’ ’A-Z’
DO NOT REMOVE THE FOLLOWING LINE, OR VARIOUS PROGRAMS
THAT REQUIRE NETWORK FUNCTIONALITY WILL FAIL.
127.0.0.1 LOCALHOST.LOCALDOMAIN LOCALHOST
128.186.120.8 SOPHIE.CS.FSU.EDU
127.0.0.1 A.AS-US.FALKAG.NET
127.0.0.1 CLK.ATDMT.COM

COP 4342

Fall 2006 review

More tr examples

tr ’&’ ’#’ translate ampersands to hash

tr -s ’\t’ squeeze consecutive tabs to one tab

COP 4342

Fall 2006 review

More tr examples

[langley@sophie 2006-Fall]$ cat /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
128.186.120.8 sophie.cs.fsu.edu
127.0.0.1 a.as-us.falkag.net
127.0.0.1 clk.atdmt.com
[langley@sophie 2006-Fall]$ tr -s ’\t’ < /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
128.186.120.8 sophie.cs.fsu.edu
127.0.0.1 a.as-us.falkag.net
127.0.0.1 clk.atdmt.com

COP 4342

Fall 2006 review

More tr examples

tr -d ’\015’ delete carriage returns from a DOS file

COP 4342

Fall 2006 review

basename

basename lets you remove leading directory strings.
It can also remove suffixes simply by specifying the
suffix as a second argument.

[langley@sophie 2006-Fall]$ basename ‘pwd‘
2006-Fall
[langley@sophie 2006-Fall]$ var1=/etc/inetd.conf
[langley@sophie 2006-Fall]$ basename $var1 .conf
inetd

COP 4342

Fall 2006 review

dirname

dirname does the opposite function of basename :
it returns the leading path components from a directory
name.

[langley@sophie 2006-Fall]$ echo ‘pwd‘
/mnt-tmp/Lexar/fsucs/cop-4342/2006-Fall
[langley@sophie 2006-Fall]$ dirname ‘pwd‘
/mnt-tmp/Lexar/fsucs/cop-4342
[langley@sophie 2006-Fall]$ dirname 05-shells4.tex
.
[langley@sophie 2006-Fall]$ dirname ‘pwd‘/xyz
/mnt-tmp/Lexar/fsucs/cop-4342/2006-Fall

COP 4342

Fall 2006 review

sort

For all of the files listed, sort will sort the
concatenated lines of those files to stdout. The most
useful options are -f , which means to fold case, -n
to sort numerically rather alphabetically, -u to remove
duplicates (“u” is short for “unique”), and -r to reverse
the order of the sort.

You can specify particular fields to sort by specifying
a field separator (whitespace is the default) with the -t
option, and then using -k to specify particular fields.

COP 4342

Fall 2006 review

sort examples

[langley@sophie 2006-Fall]$ sort /etc/passwd
adm:x:3:4:adm:/var/adm:/sbin/nologin
amanda:x:33:6:Amanda user:/var/lib/amanda:/bin/bash
apache:x:48:48:Apache:/var/www:/sbin/nologin
bin:x:1:1:bin:/bin:/sbin/nologin
canna:x:39:39:Canna Service User:/var/lib/canna:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
desktop:x:80:80:desktop:/var/lib/menu/kde:/sbin/nologin

COP 4342

Fall 2006 review

sort examples

[langley@sophie 2006-Fall]$ sort -r /etc/passwd
xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin
wnn:x:49:49:Wnn Input Server:/var/lib/wnn:/sbin/nologin
webalizer:x:67:67:Webalizer:/var/www/usage:/sbin/nologin
vmail:x:502:502::/home/vmail:/sbin/nologin
vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
user1:x:505:505::/home/user1:/bin/bash
test:x:503:503::/home/test:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync

COP 4342

Fall 2006 review

sort examples

[langley@sophie 2006-Fall]$ sort -k3,3n -t: /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

COP 4342

Fall 2006 review

sort examples

[langley@sophie 2006-Fall]$ sort -k4,4n -k3,3n -t: /etc/passwd
root:x:0:0:root:/root:/bin/bash
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
operator:x:11:0:operator:/root:/sbin/nologin
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin

COP 4342

Fall 2006 review

groff and gtbl

☞ There are a lot of great packages out there, such as
graphviz . A handy one is groff , a derivative of
the ancient troff and nroff families. (“roff” comes
from “runoff”; man pages are traditionally written in
nroff format.)

☞ You can use gtbl with groff to quickly make nice
PostScript tables.

gtbl some.tr | groff > /tmp/some.ps

COP 4342

Fall 2006 review

groff and gtbl

.sp 10 # skip 10 lines

.ps 14 # point size 14 pt

.TS # table start
center box tab(/); # center the table in the page, put it in a box, and make the delim a "/"
c c c c # center the first line
r r r r . # right justify the rest
.sp .2v # skip down 2/10s of a line
Last / First / Age / Zipcode # column headers
.sp .1v # skip down 1/10 of a line
_ # horizontal rule
_ # horizontal rule
.sp .3v # skip down 3/10s of a line
Gordon/Flash/91/91191 # record one
.sp .2v # skip down
Jones/Carol/20/32399 # record two

COP 4342

Fall 2006 review

.sp .2v # skip down
Miller/Bob/23/32499 # record three
.sp .2v # skip down
Yagi/Akihito/22/32111 # record four
.sp .1v # skip down
.TE # table end

COP 4342

Fall 2006 review

fmt

Another great little utility is fmt which lets you
quickly reformat a document.

You can use -w to control the width. fmt also prefers
to see two spaces after a question mark, period, or
exclamation point to indicate the end of a sentence.

COP 4342

Fall 2006 review

fmt example

[langley@sophie 2006-Fall]$ cat lincoln.txt Four
score and seven years ago our fathers brought forth on
this continent, a new nation, conceived in Liberty, and
dedicated to the proposition that all men are created
equal.

Now we are engaged in a great civil war, testing
whether that nation, or any nation so conceived and
so dedicated, can long endure. We are met on a great
battle-field of that war. We have come to dedicate a

COP 4342

Fall 2006 review

portion of that field, as a final resting place for those
who here gave their lives that that nation might live. It
is altogether fitting and proper that we should do this.

COP 4342

Fall 2006 review

fmt example

[langley@sophie 2006-Fall]$ fmt lincoln.txt
Four score and seven years ago our fathers brought forth on this
continent, a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation,
or any nation so conceived and so dedicated, can long endure. We are met
on a great battle-field of that war. We have come to dedicate a portion
of that field, as a final resting place for those who here gave their
lives that that nation might live. It is altogether fitting and proper
that we should do this.

COP 4342

Fall 2006 review

fmt example

[langley@sophie 2006-Fall]$ fmt -w 20 lincoln.txt
Four score and
seven years ago our
fathers brought
forth on this
continent, a new
nation, conceived
in Liberty, and
dedicated to the
proposition that
all men are created
equal.

COP 4342

Fall 2006 review

cut

☞ cut allows you to extract columnar portions of a file.
The columns can be specified either by a delimiter
(the default delimiter is the tab character.)

☞ You can specify a delimiter with the -d option.

☞ You must specify either at least one field number
with -f , a byte number with -b , or a character
number with -c . With ordinary ASCII text, -b and -c

COP 4342

Fall 2006 review

mean the same thing, but if we ever get multi-byte
characters handled correctly, it shouldn’t.

COP 4342

Fall 2006 review

cut examples

[langley@sophie 2006-Fall]$ cut -c 1 /etc/hosts
#
#
1
1
1
1

COP 4342

Fall 2006 review

cut examples

[langley@sophie 2006-Fall]$ cut -b 1 /etc/hosts
#
#
1
1
1
1

COP 4342

Fall 2006 review

cut examples

[langley@sophie 2006-Fall]$ cut -f1 /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1
128.186.120.8
127.0.0.1
127.0.0.1

COP 4342

Fall 2006 review

cut examples

[langley@sophie 2006-Fall]$ cut -c1-10 /etc/hosts
Do not r
that req
127.0.0.1
128.186.12
127.0.0.1
127.0.0.1

[langley@sophie 2006-Fall]$ cut -d: -f1,5 /etc/passwd
netdump:Network Crash Dump user
sshd:Privilege-separated SSH
rpc:Portmapper RPC user
rpcuser:RPC Service User
nfsnobody:Anonymous NFS User

COP 4342

Fall 2006 review

paste

paste lets you put two or more files together as
columns. By default, the columns will be joined with a
tab character, but you can use the -d option to specify
a different delimiter.

COP 4342

Fall 2006 review

paste example

prompt% cut -f1 /etc/hosts > /tmp/f1
prompt% cut -d: -f5 /etc/passwd /tmp/f2
prompt% paste -d: /tmp/f1 /tmp/f2
Do not remove the following line, or various programs:root
that require network functionality will fail.:bin
127.0.0.1:daemon
128.186.120.8:adm
127.0.0.1:lp
127.0.0.1:sync

COP 4342

Fall 2006 review

head and tail

☞ These programs, as mentioned before, allow you to
excerpt the initial or the final lines of a file.

☞ Used in combination, you can isolate an arbitrary
range of lines.

☞ You can also use the -f option with tail to monitor
a file for changes.

☞ By default, if you specify multiple files, you get a nice

COP 4342

Fall 2006 review

little header to distinguish them.

COP 4342

Fall 2006 review

head and tail examples

head /etc/passwd # print the first 10 lines of passwd
tail -20 /etc/passwd # print the last 20 lines of passwd
head -15 /etc/passwd | tail -5 # print lines 10 - 15 of passwd
tail -f /var/log/messages # monitor the log ‘‘messages’’ file

COP 4342

Fall 2006 review

sed

Chapter 34 of UPT has a good section on sed .

sed is a “stream editor.” It can edit files in place.

You can specify multiple sed scripts with -e .

COP 4342

Fall 2006 review

sed examples

[langley@sophie 2006-Fall]$ sed "s/1/9/" < /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.
927.0.0.1 localhost.localdomain localhost
928.186.120.8 sophie.cs.fsu.edu
927.0.0.1 a.as-us.falkag.net
927.0.0.1 clk.atdmt.com

COP 4342

Fall 2006 review

sed examples

[langley@sophie 2006-Fall]$ sed -e "s/1/9/" -e "s/a/A/g" < /etc/hosts
Do not remove the following line, or vArious progrAms
thAt require network functionAlity will fAil.
927.0.0.1 locAlhost.locAldomAin locAlhost
928.186.120.8 sophie.cs.fsu.edu
927.0.0.1 A.As-us.fAlkAg.net
927.0.0.1 clk.Atdmt.com

COP 4342

Fall 2006 review

Setting up your environment

☞ Environment variables – these variables are passed
to child processes

☞ Aliases – modify the meaning of “commands”

☞ History – a record of your shell commands

☞ Command completion – lets you save keystrokes

COP 4342

Fall 2006 review

Environmental variables

☞ Environmental variables are passed to child
processes at invocation. (The child process can of
course ignore them if it likes.)

☞ Children cannot modify parent’s environmental
variables – any modification by a child process are
local to the child and any children it might create.

COP 4342

Fall 2006 review

Environmental variables

☞ The traditional C “main” is usually defined
something like:

int main(int argc, char *argv[], char *envp[])

COP 4342

Fall 2006 review

Setting environmental variables

CSH/TCSH: setenv VARIABLE VALUE

BASH: export VARIABLE=VALUE

old SH: VARIABLE=VALUE ; export VARIABLE

Note: there are a few special variables such as path
and home that CSH/TCSH autosynchronizes between
the two values.

COP 4342

Fall 2006 review

Setting environmental variables

[langley@sophie 2006-Fall]$export VAR1=value
[langley@sophie 2006-Fall]$ bash
[langley@sophie 2006-Fall]$ echo $VAR1
value
[langley@sophie 2006-Fall]$ exit
exit
[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ echo $VAR1
value

COP 4342

Fall 2006 review

Setting environmental variables

[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ setenv VAR2 bigvalue
[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ echo $VAR2
bigvalue
[langley@sophie 2006-Fall]$ exit
[langley@sophie 2006-Fall]$ exit
[langley@sophie 2006-Fall]$ bash
[langley@sophie 2006-Fall]$ echo $VAR2
bigvalue

COP 4342

Fall 2006 review

Unsetting environmental variables

CSH/TCSH: unsetenv VAR

SH/BASH: unset VAR

You can also leave it as local variable in bask with
export -n VAR .

COP 4342

Fall 2006 review

Unsetting environmental variables

[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ setenv VAR99 testvar
[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ echo $VAR99
testvar
[langley@sophie 2006-Fall]$ unsetenv VAR99
[langley@sophie 2006-Fall]$ echo $VAR99
VAR99: Undefined variable.
[langley@sophie 2006-Fall]$ exit
[langley@sophie 2006-Fall]$ exit
[langley@sophie 2006-Fall]$ echo $VAR99
testvar

COP 4342

Fall 2006 review

Unsetting environmental variables

[langley@sophie 2006-Fall]$ export VAR50=test
[langley@sophie 2006-Fall]$ bash
[langley@sophie 2006-Fall]$ echo $VAR50
test
[langley@sophie 2006-Fall]$ unset VAR50
[langley@sophie 2006-Fall]$ echo $VAR50

[langley@sophie 2006-Fall]$ exit
exit
[langley@sophie 2006-Fall]$ echo $VAR50
test
[langley@sophie 2006-Fall]$ export -n VAR50
[langley@sophie 2006-Fall]$ echo $VAR50
test
[langley@sophie 2006-Fall]$ bash

COP 4342

Fall 2006 review

[langley@sophie 2006-Fall]$ echo $VAR50

COP 4342

Fall 2006 review

Displaying your environment

BASH: env, printenv, set, declare -x, typeset
-x

CSH: env, printenv, setenv

COP 4342

Fall 2006 review

Predefined environmental variables

What is “predefined” is not so much the value of the
variable as its name and its normal use.

☞ PATH: a list of directories to visit. They are delimited
with “:”. Note that csh/tcsh “autosynchronize” this
variable.

☞ EDITOR : the default editor to start when you run a
program that involves editing a file, such as crontab
-e .

COP 4342

Fall 2006 review

☞ PRINTER : the default printer to send to.

☞ PWD: your present working directory.

☞ HOME: your home directory.

☞ SHELL : the path to your current shell. (Be cautious
with this one: in some shells, it is instead shell).

☞ USER: your username.

☞ TERM: your terminal type.

☞ DISPLAY : used by programs to find the X server to

COP 4342

Fall 2006 review

display their windows.

COP 4342

Fall 2006 review

Aliases

An alias allows you to abbreviate a command. For
instance, instead of using /bin/ls -al , you might
abbreviate it to ll with:

SH/BASH: alias ll=‘‘/bin/ls -al’’

CSH/TCSH: alias ll ‘‘/bin/ls -al’’

COP 4342

Fall 2006 review

Removing aliases

You can remove an alias with unalias .

Example:

unalias ll

COP 4342

Fall 2006 review

which, whatis, whereis, locate

The program (or built-in) which simply gives you
the path to the named executable as it would be
interpreted by your shell invoking that executable, and
is created by examining your path.

The program locate looks in a database for all
accessible files in the filesystem that contain the
substring you specify. You can also specify a regular
expression, such as

locate -r ’ab.*ls’

COP 4342

Fall 2006 review

The program whatis will give you the description
line from the man page for the command you specify.
(N.B.: You can also search the man page descriptions
with man -k keyword .)

The program whereis will give you both the path to
the executable named and the page to its manpage.

COP 4342

Fall 2006 review

Setting your prompt

SH/BASH: PS1=’% ’

CSH/TCSH: set prompt=’% ’

COP 4342

Fall 2006 review

“Sourcing” commands

Because ordinarily running a shell script means first
forking a child process and then exec-ing the script in
that child shell, it is not possible to modify the current
shell’s environmental variables from just running a
script.

Instead, we do what is called “sourcing” the script,
which means simply executing its commands (such as
setting environmental variables) inside the current shell
process.

COP 4342

Fall 2006 review

CSH/TCSH: source FILE

SH/BASH: . FILE

N.B.: modern versions of bash also support the
source built-in.

COP 4342

Fall 2006 review

.login , .profile

When you login, your user shell is started with -l .
For sh/bash, this means that shell will source your
.profile file; for csh/tcsh, this means sourcing your
.login file.

Typically, you would want your environmental
variables in that file, and any other one-time
commands that you want to do when logging in, such
as checking for new email.

COP 4342

Fall 2006 review

Shell .*rc files

For each shell that you start, generally a series
of “run command” files, abbreviated as “rc” will be
sourced. In these you can set up aliases and variables
that you want for every shell (including those that are
not interactive, such as those running under a crontab.)

BASH: .bashrc

CSH: .cshrc

There is also a .tschrc for tcsh . History, sh did

COP 4342

Fall 2006 review

not look for configuration files except when invoked as
a login shell.

COP 4342

Fall 2006 review

.*rc files in general

In general, many program use .*rc files. Some will
ask you to setup the file; some will create it for you.
Some want a whole directory.

☞ .gvimrc

☞ .procmailrc

☞ .gtkrc

☞ .xfigrc

COP 4342

Fall 2006 review

☞ .acrorc

COP 4342

Fall 2006 review

.gvimrc

☞ Set the background

☞ Set the size and type of the font

☞ Set the size of the window in characters

☞ Turn on or off syntax highlighting

COP 4342

Fall 2006 review

.procmailrc

The syntax is quite obscure, but you can apply
arbitrary rules to your incoming email via your
.procmailrc file.

COP 4342

Fall 2006 review

.procmailrc example

DOMAIN="<$1>"
RECIPIENT="<$2>"
WHATSIT="<$3>"
VERBOSE=on
LOGFILE=/tmp/procmail2.log
LOGABSTRACT=all
ROOTHOMEDIR=/home/vmail-users
ROOTINBOXDIR=/var/spool/vbox

:0
* RECIPIENT ?? ()\/[ˆ<]*@
* MATCH ?? ()\/.*[ˆ@]
{

USER=$MATCH
}

COP 4342

Fall 2006 review

:0 a
* DOMAIN ?? ()\/[ˆ<].*[ˆ>]
{

DOMAINNOBRACKET=$MATCH
}

:0 a
${ROOTINBOXDIR}/${DOMAINNOBRACKET}/${USER}

COP 4342

Fall 2006 review

Shell history

You can modify the number of lines kept in your
history:

bash: HISTSIZE=SOMENUMBER

csh/tcsh: set history=SOMENUMBER

Your shell history lets you do many things:
search commands that you ran in the past, re-
execute commands, modify them, or save them off
(bash lets you do the latter automatically in your

COP 4342

Fall 2006 review

.bash history file.)

COP 4342

Fall 2006 review

Command history substitution

☞ !! → repeat last command

☞ âb̂ → repeat last command, but change a to b

☞ !-N → repeat the command N back in your history

☞ history → display the history

☞ history N → display the last N lines of history

☞ !N → repeat command N

COP 4342

Fall 2006 review

☞ !STRING → repeat the last command that started
with STRING.

COP 4342

Fall 2006 review

Using previous command arguments

☞ !$ → refers to the last argument of the previous
command

☞ !caret → refers to the first argument of the
previous command

☞ !* → refers to the all of the arguments of the
previous command

☞ !:n* → refers to the arguments N through the last

COP 4342

Fall 2006 review

argument of the previous command

COP 4342

Fall 2006 review

Command line manipulation

You can use the arrow keys to move through your
history, and back and forth on command lines.

With bash, you can use the default emacs key-
bindings for thing such as end-of-line (ctrl-e) and
beginning-of-line (ctrl-b).

COP 4342

Fall 2006 review

Complete word function

If you are in the first word of a command, you can
find all the matching commands up to that point with a
TAB character.

If you are else in the line, you can use the TAB
character to show all matching filenames in the current
working directory, or if you have started an absolute
path, then matching items down the path.

COP 4342

Fall 2006 review

Perl

☞ Introduction

☞ Scalars

☞ Lists and arrays

☞ Control structures

☞ I/O

☞ Associative arrays/hashes

COP 4342

Fall 2006 review

☞ Regular expressions

☞ Subroutines and objects

☞ Dealing with files

☞ Directory and file manipulation

COP 4342

Fall 2006 review

Perl history

PERL stands for “Practical Extraction and Report
Language” (although there is the alternative “Pathologically
Eclectic Rubbish Lister”.)

It was created by Larry Wall and became known in
the 1990s.

It was available both from ucbvax and via Usenet.

Perl is released under the Artistic License and under
the GNU General Public and License.

COP 4342

Fall 2006 review

Perl’s Artistic License

6. The scripts and library files supplied as input
to or produced as output from the programs of this
Package do not automatically fall under the copyright
of this Package, but belong to whomever generated
them, and may be sold commercially, and may be
aggregated with this Package. If such scripts or library
files are aggregated with this Package via the so-
called “undump” or “unexec” methods of producing a
binary executable image, then distribution of such an

COP 4342

Fall 2006 review

image shall neither be construed as a distribution of
this Package nor shall it fall under the restrictions of
Paragraphs 3 and 4, provided that you do not represent
such an executable image as a Standard Version of
this Package.

7. C subroutines (or comparably compiled
subroutines in other languages) supplied by you and
linked into this Package in order to emulate subroutines
and variables of the language defined by this Package
shall not be considered part of this Package, but are
the equivalent of input as in Paragraph 6, provided

COP 4342

Fall 2006 review

these subroutines do not change the language in any
way that would cause it to fail the regression tests for
the language.

COP 4342

Fall 2006 review

Advantages of Perl

☞ Perl 5 is a pleasant language to program in.

☞ It fills a niche between shell scripts and conventional
languages.

☞ It is very appropriate for system administration
scripts.

☞ It is very useful for text processing.

COP 4342

Fall 2006 review

☞ It is a high level language with nice support for
objects. A Perl program often will take far less space
than the equivalent C or C++ program.

COP 4342

Fall 2006 review

Perl is Interpreted

☞ Perl is first “compiled” into bytecodes; those
bytecodes are then interpreted. Ruby, Python, and
Java all do essentially the same thing.

☞ This is faster than shell interpretation, particularly
when you get into some sort of loop. It is still slower
than standard compilation.

☞ On the machine I tested, an empty loop in bash
for 1 million iterations takes 34 seconds; 1 million

COP 4342

Fall 2006 review

iterations of an empty loop in Perl takes 0.47
seconds. 1 million iterations of empty loop in C run
in 0.001 to 0.003 seconds.

COP 4342

Fall 2006 review

A Perl Program

#!/usr/bin/perl -w
2006 09 18 - rdl
use strict;
print ‘‘Hello, World!\n’’;
exit 0;

The first line indicates that we are to actually execute
“/usr/bin/perl”. (The “-w” indicates “please whine”.)
The second line is a comment. The third line
makes it mandatory to declare variables. (Notice that
statements are terminated with semicolons.) The 4th

COP 4342

Fall 2006 review

line does our Hello World, and 5th line terminates the
program.

COP 4342

Fall 2006 review

Basic concepts

☞ There is no explicit “main”, but you can have
subroutines.

☞ Features are taken from a large variety of
languages, but especially shells and C.

☞ It is very easy to write short programs that pack a
lot of punch.

COP 4342

Fall 2006 review

Similarities to C

☞ Many operators

☞ Many control structures

☞ Supports formatted i/o

☞ Can access command line arguments

☞ Supports access to i/o streams, including stdin,
stdout, and stderr.

COP 4342

Fall 2006 review

Similarities to shell programming

☞ Comment syntax of #

☞ $variables

☞ Interpolation of variables inside of quoting.

☞ Support command line arguments.

☞ Implicit conversion between strings and numbers.

COP 4342

Fall 2006 review

☞ Support for regular expressions.

☞ Some control structures.

☞ Many specific operators similar to shell commands
and Unix command syntax.

COP 4342

Fall 2006 review

Scalars

Scalars represent a single value:

my $var1 = ‘‘some string’’;

my $var2 = 23;

Scalars are strings, integers, or floating point
numbers.

There are also “magic” scalars which appear in Perl
code. The most common one is $, which means the

COP 4342

Fall 2006 review

“default” variable, such as when you just do a print
with no argument, or are looping over the contents of a
list. The “current” item would be referred to by $.

COP 4342

Fall 2006 review

Numbers

Both integers and floating point numbers are actually
stored as double precision values —unless you invoke
the “use integer” pragma:

#!/usr/bin/perl -w
Script19.pl
2006-09-18 - rdl. Illustrate use of "use integer"
use strict;
use integer;
my $w = 100;
my $x = 3;
print "w / x = " . $w/$x . "\n";
[langley@sophie 2006-Fall]$./Script19.pl
w / x = 33

COP 4342

Fall 2006 review

Floating point literals

☞ Floating point literals are similar to those of C.

☞ All three of these literals represent the same value:
12345.6789
123456789e-4
123.456789E2

COP 4342

Fall 2006 review

Integer decimal literals

☞ Similar to C:
0 -99 1001

☞ Can use underscore as visual separator:
2_333_444_555_666

COP 4342

Fall 2006 review

Other integral literals

☞ Hexadecimal:
0xff12 0x991b

☞ Octal:
0125 07611

☞ Binary:
0b101011

COP 4342

Fall 2006 review

C-like operators

Operator Meaning

= Assignment
+ - * / % Arithmetic
& << >> Bitwise
< >≤ ≥ Relational
&& ! Logical
+= -= *= Binary assignment
++ – Increment/Decrement
? : Ternary
,

COP 4342

Fall 2006 review

Operators not similar to C operators

Operator Meaning

* Exponentiation
¡=¿ Numeric comparison
x String repetition
. String concatenation
eq ne lt gt ge le String relations
cmp String comparison
=¿ Like comma but forces first left word to be string

COP 4342

Fall 2006 review

Strings

Strings are a base type in Perl.

Strings can be either quoted to allow interpolation
(both metacharacters and variables), or quoted so as
not to be. Double quotes will allow this, single quotes
prevent interpolation.

COP 4342

Fall 2006 review

Single quoted strings using ’

Single quoted strings are not subject to most
interpolation.

However, there are two to be aware of: (1) Use
\’ to indicate a literal single quote inside of a single
quoted string that was defined with ’. (You can avoid
this by using the q// syntax.) (2) Use \\ to insert a
backslash; other \SOMECHAR are not interpolated
inside of single quoted strings.

COP 4342

Fall 2006 review

Double quoted strings

You can specify special characters in double quoted
strings easily:

print "this is an end of line \n";

print "there are \t tabs \t embedded \t here \n";

print "embedding double quotes \" are easy \n";

print "that costs \$1000 \n";

COP 4342

Fall 2006 review

print "the variable \$variable ";

COP 4342

Fall 2006 review

String operators

☞ The period “.” is used to indicate string
concatenation.

☞ The “x ” operator is used to indicate string repetition:

‘‘abc ’’ x 4 → ‘‘abc abc abc abc ’’

COP 4342

Fall 2006 review

Implicit conversions atwixt numbers and
strings

Perl will silently convert numbers and strings where
appropriate.

For instance:

"5" x "10" → "5555555555"

"2" + "2" → 4

"2 + 2" . 4 → "2 + 24"

COP 4342

Fall 2006 review

Scalars

☞ Ordinary scalar variables begin with $

☞ They correspond to the regular expression $[a-zA-
Z][a-zA-Z0-9]*

☞ Scalar can hold integers, strings, or floating point
numbers.

COP 4342

Fall 2006 review

Declaring scalars

☞ I recommend you use the pragma use strict;
– and if you do so, then you will have to explicitly
declare all of your variables before using them. Use
my to declare your variables.

☞ You can declare and initialize one or more variables
with my:
my $a;
my ($a,$b);
my $a = ‘‘value’’;
my ($a,$b) = (‘‘a’’, ‘‘b’’);

COP 4342

Fall 2006 review

☞ Variable declarations can occur almost anywhere

COP 4342

Fall 2006 review

Variable interpolation

You can use the special form ${variablename }
when you are trying to have a variable name
interpreted when it is surrounded by non-whitespace:

[langley@sophie 2006-Fall]$ perl
$a = 12;
print "abc${a}abc\n";
abc12abc

COP 4342

Fall 2006 review

Undef value

A variable has the special value undef when it is
first created (it can also be set with the special function
under() and can be tested with the special function
defined()).

An undef variable is treated as zero if it is used
numerically.

An undef variable is treated as an empty string if it
is used as a string value.

COP 4342

Fall 2006 review

The print operator

☞ The print operator can print a list of expressions,
such as strings, variables, or a combination of
operands and operators.

☞ By default, it prints to stdout.

☞ The general form is print [expression [,
expression]*];

COP 4342

Fall 2006 review

The line input operator <STDIN>

☞ You can use <STDIN>to read a single of input:

$a = <STDIN>

☞ You can test for end of input with defined($a) .

COP 4342

Fall 2006 review

The chomp function

You can remove the newline from a string with
chomp:

$line = <STDIN>;
chomp($line);

chomp($line = <STDIN>);

COP 4342

Fall 2006 review

The chomp function

[langley@sophie 2006-Fall]$ perl
chomp($line = <STDIN>);
print $line;
abcdefghijik
abcdefghijik[langley@sophie 2006-Fall]$

COP 4342

Fall 2006 review

String relational operators

The string relational operators are eq, ne, gt,
lt, ge, and le .

Examples:

100 lt 2
"x" le "y"

COP 4342

Fall 2006 review

String length

You can use the length function to give the number
of characters in a string.

COP 4342

Fall 2006 review

Scalar values “typecast” to boolean
values

Many of Perl’s control structures look for a boolean
value. Perl doesn’t have an explicit “boolean” type,
so instead we use the following “typecasting” rules for
scalar values:

☞ If a scalar is a number, then 0 is treated as false,
and any other value is treated as true.

☞ If a scalar is a string, then “0” and the empty string

COP 4342

Fall 2006 review

are treated as false, and any other value as true.

☞ If a scalar is not defined, it is treated as false.

COP 4342

Fall 2006 review

If elsif else

Note that both elsif and else are optional, but
curly brackets are never optional, even if the block
contains one statement.

if(COND)
{
}

[elsif
{
}]*

[else
{
}]

COP 4342

Fall 2006 review

if-elsif-else examples

if example:

if($answer == 12)
{

print "Right -- one year has twelve months!\n";
}

COP 4342

Fall 2006 review

if-elsif-else examples

if/else example:

if($answer == 12)
{

print "Right -- one year has twelve months!\n";
}
else
{

print "No, one year has twelve months!\n";
}

COP 4342

Fall 2006 review

if-elsif-else examples

if-elsif-else example:

if($answer < 12)
{

print "Need more months!\n";
}
elsif($answer > 12)
{

print "Too many months!\n";
}
else
{

print "Right -- one year has twelve months!\n";
}

COP 4342

Fall 2006 review

if-elsif-else examples

if-elsif-elsif example:

if($a eq "struct")
{
}
elsif($a eq "const")
{
}
elsif($a ne "virtual")
{
}

COP 4342

Fall 2006 review

defined() function

You can test to see if a variable has a defined value
with defined() :

if(!defined($a))
{

print "Use of undefined value is not wise!";
}

COP 4342

Fall 2006 review

The while construction

while(<boolean>)
{

<statement list>
}

As with if-elsif-else , the curly brackets are not
optional.

COP 4342

Fall 2006 review

while examples

while(<STDIN>)
{

print;
}

[You might note that we are using the implicit variable
$ in this code fragment.]

COP 4342

Fall 2006 review

until control structure

until(<boolean>)
{

<statement list>
}

The until construction is the opposite of the
while construction since it executes the <statement
list> until the <boolean> test becomes true.

COP 4342

Fall 2006 review

until example

#!/usr/bin/perl -w
2006 09 20 -- rdl script22.pl
use strict;
my $line;
until(! ($line=<STDIN>))
{

print $line;
}

COP 4342

Fall 2006 review

for control structure

for(<init>; <boolean test>; <increment>)
{

<statement list>
}

Very similar to the C construction. The curly brackets
again are not optional.

COP 4342

Fall 2006 review

for example

for($i = 0; $i<10; $i++)
{

print "\$i * \$i = " . $i*$i . "\n";
}

COP 4342

Fall 2006 review

Lists and Arrays

☞ A list in Perl is an ordered collection of scalars.

☞ An array in Perl is a variable that contains an
ordered collection of scalars.

COP 4342

Fall 2006 review

List literals

☞ Can represent a list of scalar values

☞ General form:

(<scalar1>, <scalar2>, ...)

COP 4342

Fall 2006 review

List literals

☞ Examples:
(0, 1, 5) # a list of three scalars that are numbers
(’abc’, ’def’) # a list of two scalars that are strings
(1, ’abc’, 3) # can mix values
($a, $b) # can have values determined at runtime
() # empty list

COP 4342

Fall 2006 review

Using qw syntax

You can also use the “quoted words” syntax to
specify list literals:

(’apples’, ’oranges’, ’bananas’)
qw/ apples oranges bananas /
qw! apples oranges bananas !
qw(apples oranges bananas)
qw< apples oranges bananas >

COP 4342

Fall 2006 review

List literals, cont’d

☞ You can use the range operator “..” to create list
elements.

☞ Examples:
(0..5) #
(0.1 .. 5.1) # same since truncated (not {\tt floor()}!)
(5..0) # evals to empty list
(1,0..5,’x’ x 10) # can use with other types...
($m..$n) # can use runtime limits

COP 4342

Fall 2006 review

Array variables

☞ Arrays are declared with the “@” character.
my @a;
my @a = (’a’, ’b’, ’c’);

☞ Notice that you don’t have to declare an array’s size.

COP 4342

Fall 2006 review

Arrays and scalars

☞ Arrays and scalars are in separate name spaces, so
you can have two different variables $a and @a.

☞ Mnemonically, “$” does look like “S”, and “a” does
resemble “@”.

COP 4342

Fall 2006 review

Accessing array elements

☞ Accessing array elements in Perl is syntactically
similar to C.

☞ Perhaps somewhat counterintuitively, you use
$a[<num>] to specify a scalar element of an array
named @a.

☞ The index <num> is evaluated as a numeric
expression.

COP 4342

Fall 2006 review

☞ By default, the first index in an array is 0.

COP 4342

Fall 2006 review

Examples of arracy access

$a[0] = 1; # assign numeric constant
$a[1] = "string"; # assign string constant
print $m[$a]; # access via variable
$a[$c] = $b[$d]; # copy elements
$a[$i] = $b[$i]; #
$a[$i+$j] = 0; # expressions are okay
$a[$i]++; # increment element

COP 4342

Fall 2006 review

Assign list literals

You can assign a list literal to an array or to a list of
scalars:

($a, $b, $c) = (1, 2, 3); # $a = 1, $b = 2, $c = 3
($m, $n) = ($n, $m); # works!
@nums = (1..10); # $nums[0]=1, $nums[1]=2, ...
($x,$y,$z) = (1,2) # $x=1, $y=2, $z is undef
@t = (); # t is defined with no elements
($a[1],$a[0])=($a[0],$a[1]); # swap works!
@kudomono = (’apple’,’orange’); # list with 2 elements
@kudomono = qw/ apple orange /; # ditto

COP 4342

Fall 2006 review

Array-wide access

Sometimes you can do an operation on an entire
array. Use the @array name:

@x = @y; # copy array y to x
@y = 1..1000; # parentheses are not requisite
@lines = <STDIN> # very useful!
print @lines; # works in Perl 5, not 4

COP 4342

Fall 2006 review

Printing entire arrays

☞ If an array is simply printed, it comes out something
like
@a = (’a’,’b’,’c’,’d’);
print @a;
abcd

☞ If an array is interpolated in a string, you get spaces:
@a = (’a’,’b’,’c’,’d’); print ”@a”; a b c d

COP 4342

Fall 2006 review

Arrays in a scalar context

Generally, if you specify an array in a scalar context,
the value returned is the number of elements in the
array.

@array1 = (’a’, 3, ’b’, 4, ’c’, 5); # assign array1 the values of list
@array2 = @array1; # assign array2 the values of array1
$m = @array2; # $m now has value 6
$n = $m + @array1 # $n now has value 12

COP 4342

Fall 2006 review

Using a scalar in an array context

If you assign an array a scalar value, that array will
be just a one element array:

$m = 1;
@arr = $m; # @arr == (1);
@yup = "apple"; # @yup == ("apple");
@arr = (undef); # @arr == (undef);
@arr = (); # @arr is now empty, not an array with one undef value!

COP 4342

Fall 2006 review

Size of arrays

Perl arrays can be any size up to the amount of
memory available for the process. The number of
elements can vary during execution.

my @fruit; # has zero elements
$fruit[0] = "apple"; # now has one element
$fruit[1] = "orange"; # now has two elements
$fruit[99] = ’plum’; # now has 100 elements, most of which are undef

COP 4342

Fall 2006 review

Last element index

Perl has a special scalar form $#arrayname that
returns a scalar value that is equal to the index of the
last element in the array.

for($i = 0; $i<=$#arr1; $i++)
{

print "$arr1[$i]\n";
}

COP 4342

Fall 2006 review

Last element index use

You can also use this special scalar form to truncate
an array:

@arr = (1..100); # arr has 100 elements...
$#arr = 9; # now it has 10
print "@arr";
1 2 3 4 5 6 7 8 9 10

COP 4342

Fall 2006 review

Using negative array indices

A negative array index is treated as being relative to
the end of the array:

@arr = 1..100;
print $arr[-1]; # similar to using $arr[$#arr]
100
print $arr[-2];
99

COP 4342

Fall 2006 review

Arrays as stacks

☞ Arrays can be used as stacks, and Perl has built-
ins that are useful for manipulating arrays as stacks:
push, pop, shift, and unshift.

☞ push takes two arguments: an array to push onto,
and what is to pushed on. If the new element is an
array, then the elements of that array are appended
to the original array as scalars.

☞ A push puts the new element(s) at the end of the

COP 4342

Fall 2006 review

original array.

☞ A pop removes the last element from the array
specified.

COP 4342

Fall 2006 review

Examples of push and pop

push @nums, $i;
push @ans, "yes";
push @a, 1..5;
push @a, @b; # appends the elements of b to a
push @a, (1, 3, 5);
pop @a;
push(@a,pop(@b)); # moves the last element of b to end of a
@a = (); @b = (); push(@b,pop(@a)) # b now has one undef value

COP 4342

Fall 2006 review

shift and unshift

☞ shift removes the first element from an array

☞ unshift inserts an element at the beginning of an
array

COP 4342

Fall 2006 review

Examples of shift and unshift

@a = 1..10;
unshift @a,99; # now @a == (99,1,2,3,4,5,6,7,8,9)
unshift @a,(’a’,’b’) # now @a == (’a’,’b’,99,1,2,3,4,5,6,7,8,9)
$x = shift @a; # now $x == ’a’

COP 4342

Fall 2006 review

foreach control structure

You can use foreach to process each element of
an array or list.

It follows the form:

foreach $SCAlAR (@ARRAY or LIST)
{

<statement list>
}

(You can also map for similar processing.)

COP 4342

Fall 2006 review

foreach examples

foreach $a (@a)
{

print "$a\n";
}
map {print "$_\n";} @a;

foreach $item (qw/ apple pear lemon /)
{

push @fruits,$item;
}
map {push @fruits, $_} qw/ apple pear lemon/;

COP 4342

Fall 2006 review

The default variable $

$ is the default variable (and is used in the previous
map() examples). It is used as a default when at
various times, such as when reading input, writing
output, and in the foreach and mapconstructions.

COP 4342

Fall 2006 review

The default variable $

while(<STDIN>)
{

print;
}

$sum = 0;
foreach(@arr)
{

$sum += $_;
}

map { $sum += $_} @arr;

COP 4342

Fall 2006 review

Input from the “diamond” operator

Reading from <> causes a program to read from the
files specified on the command line or stdin if no files
are specified.

COP 4342

Fall 2006 review

Example of diamond operator

#!/usr/bin/perl -w
2006 09 22 - rdl script23.pl
while(<>)
{

print;
}

You can either use ./Script23.pl < /etc/hosts
or ./Script23.pl /etc/hosts /etc/resolv.conf .

COP 4342

Fall 2006 review

The @ARGVarray

There is a builtin array called @ARGVwhich contains
the command lines arguments passed in by the calling
program.

Note that $ARGV[0] is the first argument, not the
name of the Perl program being invoked

COP 4342

Fall 2006 review

Using @ARGV

#!/usr/bin/perl -w
2006 09 25 - rdl Script24.pl
do the equivalent of a shell’s echo:
use strict;
my $a;
while($a = shift @ARGV)
{

print "$a ";
}
print "\n";

COP 4342

Fall 2006 review

Using @ARGV

#!/usr/bin/perl -w
2005 09 25 - rdl Script25.pl
count the number of arguments
use strict;
my $count = 0;
map { $count++ } @ARGV;
print "$count\n";

COP 4342

Fall 2006 review

Loop control operators

Perl has three interesting operators to affect looping:
next, last, and redo.

☞ next → start the next iteration of a loop
immediately

☞ last → terminate the loop immediately

☞ redo → restart this iteration (very rare in practice)

COP 4342

Fall 2006 review

The next operator

The next operator starts the next iteration of a loop
immediately, much as continue does in C.

COP 4342

Fall 2006 review

The next operator

#!/usr/bin/perl -w
2006 09 25 - rdl Script26.pl
sum the positive elements of an array to demonstrate next
use strict;
my $sum = 0;
my @arr1 = -10..10;
foreach(@arr1)
{

if($_ < 0)
{

next;
}
$sum += $_;

}
print $sum;

COP 4342

Fall 2006 review

The last operator

#!/usr/bin/perl -w
2006 09 25 - rdl Script27.pl
read up to 100 items, print their sum
use strict;
my $sum = 0;
my $count = 0;
while(<STDIN>)
{

$sum += $_;
$count++;
if($count == 100)
{

last;
}

}
print "\$count == $count, \$sum == $sum \n";

COP 4342

Fall 2006 review

The redo operator

The rarely used redo operator goes back to the
beginning a loop block, but it does not do any retest of
boolean conditions, it does not execute any increment-
type code, and it does not change any positions within
arrays or lists.

COP 4342

Fall 2006 review

The redo operator

#!/usr/bin/perl -w
2006 09 25 - rdl Script29.pl
demonstrate the redo operator
use strict;
my @strings = qw/ apple plum pear peach strawberry /;
my $answer;
foreach(@strings)
{

print "Do you wish to print ’$_’? ";
chomp($answer = uc(<>));
if($answer eq "YES")
{

print "PRINTING $_ ...\n";
next;

}

COP 4342

Fall 2006 review

if($answer ne "NO")
{

print "I don’t understand your answer ’$answer’! Please use either ’yes’ or ’no’!\n";
redo;

}
}

COP 4342

Fall 2006 review

The reverse function

If used to return a list, then it reverses the input list.

If used to return a scalar, then it first concatenates
the elements of the input list and then reverses all of
the characters in that string.

Also, you can reverse a hash, by which the
returned hash has the keys and values swapped from
the original hash. (Duplicate value → key in the
original hash are chosen randomly for the new key →

COP 4342

Fall 2006 review

value .)

COP 4342

Fall 2006 review

Examples of reverse

#!/usr/bin/perl -w
2006 09 25 - rdl Script30.pl
demonstrate the reverse function
use strict;
my @strings = qw/ apple plum pear peach strawberry /;
print "\@strings = @strings\n";
my @reverse_list = reverse(@strings);
my $reverse_string = reverse(@strings);
print "\@reverse_list = @reverse_list\n";
print "\$reverse_string = $reverse_string\n";

COP 4342

Fall 2006 review

Example of reverse for hash

#!/usr/bin/perl -w
2006 09 25 - rdl Script31.pl
demonstrate the reverse operator
use strict;
my %strings = (’a-key’ , ’a-value’, ’b-key’, ’b-value’, ’c-key’, ’c-value’);
print "\%strings = ";
map {print " (\$key = $_ , \$value = $strings{$_}) "} (sort keys %strings);
print " \n";
my %reverse_hash = reverse(%strings);
print "\%reverse_hash = ";
map {print " (\$key = $_ , \$value = $reverse_hash{$_}) "} (sort keys %reverse_hash);
print " \n ";

COP 4342

Fall 2006 review

Example of reverse for hash with
duplicate

#!/usr/bin/perl -w
2006 09 25 - rdl Script33.pl
demonstrate the reverse operator for hash with duplicate values
use strict;
my %strings = (’a-key’ , ’x-value’, ’b-key’, ’x-value’, ’c-key’, ’x-value’);
print "\%strings = ";
map {print " (\$key = $_ , \$value = $strings{$_}) "} (sort keys %strings);
print " \n";
my %reverse_hash = reverse(%strings);
print "\%reverse_hash = ";
map {print " (\$key = $_ , \$value = $reverse_hash{$_}) "} (sort keys %reverse_hash);
print " \n ";

COP 4342

Fall 2006 review

Examples of reverse

#!/usr/bin/perl -w
2006 09 25 - rdl Script32.pl
demonstrate the reverse operator
use strict;
my $test = reverse(qw/ 10 11 12 /);
print "\$test = $test\n";

COP 4342

Fall 2006 review

The sort function

The sort function is only defined to work on lists,
and will only return sensible items in a list context. By
default, sort sorts lexically.

COP 4342

Fall 2006 review

The sort function

Example of lexical sorting
@list = 1..100;
@list = sort @list;
print "@list ";
1 10 100 11 12 13 14 15 16 17 18 19 2 20
21 22 23 24 25 26 27 28 29 3 30 31 32 33
34 35 36 37 38 39 4 40 41 42 43 44 45 46
47 48 49 5 50 51 52 53 54 55 56 57 58 59
6 60 61 62 63 64 65 66 67 68 69 7 70 71 72

COP 4342

Fall 2006 review

73 74 75 76 77 78 79 8 80 81 82 83 84 85
86 87 88 89 9 90 91 92 93 94 95 96 97 98
99

COP 4342

Fall 2006 review

The sort function

You can define an arbitrary sort function. Our earlier
mention of the <=> operator comes in handy now:

Example of numerical sorting
@list = 1..100;
@list = sort { $a <=> $b } @list;
print "@list ";
@list = 1..100;
@list = sort { $a <=> $b } @list;
print "@list";

COP 4342

Fall 2006 review

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89 90 91 92 93 94 95 96 97 98 99 100

COP 4342

Fall 2006 review

The sort function

The $a and $b in the function block are actually
package global variables, and should not be declared
by you as my variables.

COP 4342

Fall 2006 review

The sort function

You can also use the cmp operator quite effectively
in these type of anonymous sort functions:

@words = qw/ apples Pears bananas Strawberries cantaloupe grapes Blueberries /;
@words_alpha = sort @words;
@words_noncase = sort { uc($a) cmp uc($b) } @words;
print "\@words_alpha = @words_alpha\n";
print "\@words_noncase = @words_noncase\n";
yields:
@words_alpha = Blueberries Pears Strawberries apples bananas cantaloupe grapes
@words_noncase = apples bananas Blueberries cantaloupe grapes Pears Strawberries

COP 4342

Fall 2006 review

Hashes

We have already used a few examples of hashes.
Let’s go over exactly what is happening with them:

☞ A hash is similar to an array in that it has an
index and in that it may take an arbitrary number of
elements.

☞ An index for a hash is a string, not a number as in
an array.

COP 4342

Fall 2006 review

☞ Hashes are also known as “associative arrays.”

☞ The elements of a hash have no particular order.

☞ A hash contains key-value pairs; the keys will be
unique, and the values are not necessarily so.

COP 4342

Fall 2006 review

Hash declarations

☞ Hashes are identified by the % character.

☞ The name space for hashes is separate from that of
scalar variables and arrays.

COP 4342

Fall 2006 review

Hash element access

☞ One uses the syntax $hash {$key } to access the
value associated with key $key in hash %hash.

☞ Perl expects to see a string as the key, and will
silently convert scalars to a string, and will convert
arrays silently.

COP 4342

Fall 2006 review

Examples

$names[12101] = ’James’;
$names[12101] = ’Bob’; # overwrites value ’James’
$name = $names[12101]; # retrieve value ’Bob’;
$name = $names[11111]; # undefined value returns undef

%hash = (’1’, ’1-value’, ’a’, ’a-value’, ’b’, ’b-value’);
@array = (’a’);
print $hash{@array};
yields
1-value

COP 4342

Fall 2006 review

Examples

%names = (1, ’Bob’, 2, ’James’);
foreach(sort(keys(%names)))
{

print "$_ --> $names{$_}\n";
}
yields
1 --> Bob
2 --> James

map { print "$_ --> $names{$_}\n"; } sort(keys(%names));
yields
1 --> Bob
2 --> James

COP 4342

Fall 2006 review

Referring to a hash as a whole

As might have been gleaned from before, you can
use the % character to refer a hash as a whole.

%new_hash = %old_hash;
%fruit_colors = (’apple’ , ’red’ , ’banana’ , ’yellow’);
%fruit_colors = (’apple’ => ’red’ , ’banana’ => ’yellow’);

print "%fruit_colors\n"; # only prints ’%fruit_colors’, not keys or values
@fruit_colors = %fruit_colors;
print "@fruit_colors\n"; # now you get output...
yields
banana yellow apple red

COP 4342

Fall 2006 review

The keys and values functions

You can extract just the hash keys into an array with
the keys function.

You can extract just the hash values into an array
with the values function.

%fruit_colors = (’apple’ => ’red’ , ’banana’ => ’yellow’);
@keys = keys(%fruit_colors);
@values = values(%fruit_colors);
print "\@keys = ’@keys’ , \@values = ’@values’\n";
yields
@keys = ’banana apple’ , @values = ’yellow red’

COP 4342

Fall 2006 review

The each function

Perl has a “stateful” function each that allows you
to iterate through the keys or the key-value pairs of a
hash.

%fruit_colors = (’apple’ => ’red’ , ’banana’ => ’yellow’);
while(($key, $value) = each(%fruit_colors))
{

print "$key --> $value\n";
}

COP 4342

Fall 2006 review

The each function

Note: if you need to reset the iterator referred
to by each , you can just make a call to either
keys(%fruit colors) or values(%fruit colors)
– so don’t do that accidentally!

%fruit_colors = (’apple’ => ’red’ , ’banana’ => ’yellow’);
while(($key, $value) = each(%fruit_colors))
{

print "$key --> $value\n";
...
@k = keys(%fruit_colors); # resets iterator!!!

}
yields loop!

COP 4342

Fall 2006 review

banana --> yellow
banana --> yellow
banana --> yellow
banana --> yellow
banana --> yellow

....

COP 4342

Fall 2006 review

The exists function

You can check if a key exists in hash with the
exists function:

if(exists($hash{’SOMEVALUE’})
{
}

COP 4342

Fall 2006 review

The delete function

You can remove a key-value pair from a hash with
delete :

delete($hash{’SOMEVALUE’});

COP 4342

Fall 2006 review

printf

☞ printf in Perl is very similar to that of C.

☞ printf is most useful when when printing scalars.
Its first (non-filehandle) argument is the format string,
and any other arguments are treated as a list of
scalars:
printf "%s %s %s %s", ("abc", "def") , ("ghi", "jkl");
yields
abc def ghi jkl

COP 4342

Fall 2006 review

printf

☞ Some of the common format attributes are

➳ %[-][N]s → format a string scalar, N indicates
maximum characters expected for justification, -
indicates to left-justify rather than default right-justify.

➳ %[-|0][N]d → format a numerical scalar as
integer, N indicates maximum expected for justification,
“-” indicates to left-justify, “0” indicates zero-fill (using
both “-” and “0” results in left-justify, no zero-fill.)

➳ %[-|0]N.Mf → format a numerical scalar as

COP 4342

Fall 2006 review

floating point. “N” gives the total length of the output,
and “M” give places after the decimal. After the
decimal is usually zero-filled out (you can toggle this
off by putting “0” before “M”.) “0” before N will zero-fill
the left-hand side; “-” will left-justify the expression.

COP 4342

Fall 2006 review

Examples of printf()

printf "%7d\n", 123;
yields

123

printf "%10s %-10s\n","abc","def";
yields

abc def

COP 4342

Fall 2006 review

Examples of printf()

printf "%10.5f %010.5f %-10.5f\n",12.1,12.1,12.1;
yields

12.10000 0012.10000 12.10000

$a = 10;
printf "%0${a}d\n", $a;
yields
0000000010

COP 4342

Fall 2006 review

Perl regular expressions

☞ Much information can be found at man perlre .

☞ Perl builds support for regular expressions as a part
of the language like awk but to a greater degree.
Most languages instead simply give access to a
library of regular expressions (C, PHP, Javascript,
and C++, for instance, all go this route.)

☞ Perl regular expressions can be used in conditionals,

COP 4342

Fall 2006 review

where if you find a match then it evaluates to true,
and if no match, false.
$_ = "howdy and hello are common";
if(/hello/)
{

print "Hello was found!\n";
}
else
{

print "Hello was NOT found\n";
}
yields
Hello was found!

COP 4342

Fall 2006 review

What do Perl patterns consist of?

☞ Literal characters to be matched directly

☞ “.” (period, full stop) matches any one character
(except newline unless coerced to do so)

☞ “*” (asterisk) matches the preceding item zero or
more times

☞ “+” (plus) matches the preceding item one or more
times

COP 4342

Fall 2006 review

☞ “?” (question mark) matches the preceding item
zero or one time

☞ “(” and “)” (parentheses) are used for grouping

☞ “” (pipe) expresses alternation

☞ “[” and “]” (square brackets) express a range, match
one character in that range

COP 4342

Fall 2006 review

Examples of Perl patterns

/abc/ Matches “abc”
/a.c/ Matches “a” followed by any character (except newline) and then a “c”
/ab?c/ Matches “ac” or “abc”
/ab*c/ Matches “a” followed by zero or more “b” and then a “c”
/ab cd/ Matches “abd” or “acd”
/a(b c)+d Matches “a” followed by one or more “b” or “c”, and then a “d”
/a[bcd]e/ Matches “abe”, “ace”, or “ade”
/a[a-zA-Z0-9]c/ Matches “a” followed one alphanumeric followed by “c”
/a[∧a-zA-Z]/ Matches “a” followed by anything other than alphabetic character

COP 4342

Fall 2006 review

Character class shortcuts

You can use the following as shortcuts to represent
character classes:

\d A digit (i.e., 0-9)
\w A word character (i.e., [0-9a-zA-Z])
\s A whitespace character (i.e., [\f \t \n])
\D Not a digit (i.e., [∧0-9])
\W Not a word (i.e., [∧0-9a-zA-Z])
\S Not whitespace

COP 4342

Fall 2006 review

General quantification

You can specify numbers of repetitions using a curly
bracket syntax:

a{1,3} # ‘‘a’’, ‘‘aa’’, or ‘‘aaa’’
a{2} # ‘‘aa’’
a{2,} # two or more ‘‘a’’

COP 4342

Fall 2006 review

Anchors

Perl regular expression syntax lets you work with
context by defining a number of “anchors”: \A, ∧, \Z,
$, \b.

/\ba/ Matches if “a” appears at the beginning of a word
/\Aa$/ Matches if “a” appears at the end of a line
/\Aa\Z/ Matches if a line is exactly “a”
/∧Aa$/ Matches if a line is exactly “a”

COP 4342

Fall 2006 review

Remembering substring matches

☞ Parentheses are also used to remember substring
matches.

☞ Backreferences can be used within the pattern to
refer to already matched bits.

☞ Memory variables can be used after the pattern has
been matched against.

COP 4342

Fall 2006 review

Backreferences

☞ A backreference looks like \1, \2, etc.

☞ It refers to an already matched memory reference.

☞ Count the left parentheses to determine the back
reference number.

COP 4342

Fall 2006 review

Backreference examples

/(a|b)\1/ # match ‘‘aa’’ or ‘‘bb’’
/((a|b)c)\1/ # match ‘‘acac’’ or ‘‘bcbc’’
/((a|b)c)\2/ # match ‘‘aba’’ or ‘‘bcb’’
/(.)\1/ # match any doubled characters except newline
/\b(\w+)\s+\b\1\s/ # match any doubled words
/([’"])(.*)\1/ # match strings enclosed by single or double quotes

COP 4342

Fall 2006 review

Remember, perl matching is by default
greedy

For example, consider the last backreference
example:

$_ = "asfasdf ’asdlfkjasdf ’ werklwerj’";
if(/([’"])(.*)\1/)
{

print "matches $2\n";
}
yields
matches asdlfkjasdf ’ werklwerj

COP 4342

Fall 2006 review

Memory variables

☞ A memory variable has the form $1, $2, etc.

☞ It indicates a match from a grouping operator,
just as back reference does, but after the regular
expression has been executed.
$_ = " the larder ";
if(/\s+(\w+)\s+/)
{

print "match = ’$1’\n";
}
yields
match = ’the’

COP 4342

Fall 2006 review

Regular expression “binding” operators

Up to this point, we have considered only operations
against $.

Any scalar can be tested against with the =˜ and !˜
operators.

"STRING" =˜ /PATTERN/;

"STRING" !˜ /PATTERN/;

COP 4342

Fall 2006 review

Examples

$line = "not an exit line";
if($line !˜ /ˆexit$/)
{

print "$line\n";
}
yields
not an exit line

skip over blank lines...
if($line =˜ /$ˆ/)
{

next;
}\

COP 4342

Fall 2006 review

Automatic match variables

You don’t have to necessarily use explicit backreferences
and memory variables. Perl also gives you three
default variables that can be used after the application
of any regular expression; they refer to the portion of
the string matched by the whole regular expression.

$‘ refers to the portion of the string before the match
$& refers to the match itself
$’ refers to the portion of the string after the match

COP 4342

Fall 2006 review

Example of automatic match variables

$_ = "this is a test";
/is/;
print "before: < $‘ > \n";
print "after: < $’ > \n";
print "match: < $& > \n";
yields
before: < th >
after: < is a test >
match: < is >

COP 4342

Fall 2006 review

Example of automatic match variables

#!/usr/bin/perl -w
2006 09 27 - rdl Script34.pl // change = to =:
use strict;
while(<>)
{

/=/;
print "$‘=:$’\n";

}

COP 4342

Fall 2006 review

Other delimiters: Using the “m”

You can use other delimiters (some are paired
items) rather than just a slash, but you must use the
“m” to indicate this. (See man perlop for a good
discussion.)

For instance:

m/.../ m {... } m[...] m(...)
m!...! m,..., m ∧... ∧ m#...#

COP 4342

Fall 2006 review

Example

not so readable way to look for a URL reference
if ($s =˜ /http:\/\//)

better
if ($s =˜ mˆhttp://ˆ)

COP 4342

Fall 2006 review

Option modifiers

There are a number of modifiers that you can apply
to your regular expression pattern:

Modifier Description
________ ___________

i case insensitive
s treat string as a single line
g find all occurrences

COP 4342

Fall 2006 review

Regular expressions and case
insensitivity

As previously mentioned, you can make matching
case insensitive with the i flag:

/\b[Uu][Nn][Ii][Xx]\b/; # explicitly giving case folding

/\bunix\b/i; # using ‘‘i’’ flag to fold code

COP 4342

Fall 2006 review

Really matching any character with “.”

As mentioned before, usually the “.” (dot, period,
full stop) matches any character except newline. You
make it match newline with the s flag:

/"(.|\n)*"/; # match any quoted string, even with newlines embedded

/"(.*)"/s; # same meaning, using ‘‘s’’ flag

N.B. – I like to use the flags ///six; as a personal
default set of flags with Perl regular expressions.

COP 4342

Fall 2006 review

Going global with the ‘‘g’’ flag

You can make your matching global with the g
flag. For ordinary matches, this means making them
stateful: Perl will remember where you left off with each
reinvocation of the match unless you change the value
of the variable, which will reset the match.

COP 4342

Fall 2006 review

Going global with the ‘‘g’’ flag

#!/usr/bin/perl -w
2006 09 29 - rdl Script36.pl
shows the //g as stateful...
while(<>)
{

while(/[A-Z]{2,}/g)
{

print "$&\n" if (defined($&));
}

}

COP 4342

Fall 2006 review

Interpolating variables in patterns

You can even specify a variable inside of a pattern
– but you want to make sure that it gives a legitimate
regular expression.

COP 4342

Fall 2006 review

Interpolating variables in patterns

my $var1 = "[A-Z]*";
if("AB" =˜ /$var1/)
{

print "$&";
}
else
{

print "nopers";
}
yields
AB

COP 4342

Fall 2006 review

Regular expressions and substitution

☞ The s/.../.../ form can be used to make substitutions
in the specified string.

☞ If paired delimiters are used, then you have to use
two pairs of the delimiters.

☞ g after the last delimiter indicates to replace more
than just the first occurrence.

☞ The substitution can be bound to a string using =˜ .

COP 4342

Fall 2006 review

Otherwise it makes the substitutions in $_ .

☞ The operation returns the number of replacements
performed, which can be more than one with the ’g’
option.

COP 4342

Fall 2006 review

Examples

#!/usr/bin/perl -w
2006 09 29 - rdl Script37.pl
shows s///g... by removing acronyms
use strict;
while(<>)
{

s/([A-Z]{2,})//g;
print;

}

COP 4342

Fall 2006 review

Examples

s/\bfigure (\d+)/Figure $1/ # capitalize references to figures
s{//(.*)}{/*$1*/} # use old style C comments
s!\bif(!if (! # put a blank between if and (
s(!)(.) # tone down that message
s[!][.]g # replace all occurrences of ’!’ with ’.’

COP 4342

Fall 2006 review

Case shifting

You can use \U and \L to change follows them to
upper and lower case:

COP 4342

Fall 2006 review

Case shifting

$text = " the acm and the ieee are the best! ";
$text =˜ s/acm|ieee/\U$&/g;
print "$text\n";
yields

the ACM and the IEEE are the best!

COP 4342

Fall 2006 review

Case shifting

$text = "CDA 1001 and COP 3101

are good classes, but COP 4342 is better!";
$text =˜ s/\b(COP|CDA) \d+/\L$&/g;
print "$text\n";
yields
cda 1001 and cop 3101

are good classes, but cop 4342 is better!

COP 4342

Fall 2006 review

Using tr/// (also known as y///)

☞ In Perl you can also convert one set of characters
to another using the tr/.../.../ form. (Or if you
like, you can use y/// .)

☞ Much like the program tr , you specify two lists of
characters, the first to be substituted, and the second
what to substitute.

COP 4342

Fall 2006 review

☞ tr returns the number of items substituted (or
deleted.)

☞ The modifer d deletes characters not replaced.

☞ The modifer s “squashes” any repeated characters.

COP 4342

Fall 2006 review

Examples (from the perlop man page)

$ARGV[1] =˜ tr/A-Z/a-z/; # canonicalize to lower case
$cnt = tr/*/*/; # count the stars in $_
$cnt = $sky =˜ tr/*/*/; # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_

COP 4342

Fall 2006 review

More examples

get rid of redundant blanks in $_
tr/ //s;

replace [and { with (in $text
$text =˜ tr/[{/(/;

COP 4342

Fall 2006 review

Using split

The split function breaks up a string according
to a specified separator pattern and generates a list of
the substrings.

COP 4342

Fall 2006 review

Using substring

For example:

$line = " This sentence contains five words. ";
@fields = split / /, $line;
map { print "$count --> $fields[$count]\n"; $count++; } @fields;
yields

-->
1 --> This
2 --> sentence
3 --> contains
4 --> five
5 --> words.

COP 4342

Fall 2006 review

Using the join function

The join function does the reverse of the split
function: it takes a list and converts to a string.

However, it is different in that it doesn’t take a pattern
as its first argument, it just takes a string:

@fields = qw/ apples pears cantaloupes cherries /;
$line = join "<-->", @fields;
print "$line\n";
yields
apples<-->pears<-->cantaloupes<-->cherries

COP 4342

Fall 2006 review

Filehandles

[Also see man perlfaq5 for more detail on this
subject.]

A filehandle is an I/O connection between your
process and some device or file. Perl output is
buffered.

Perl has three predefined filehandles: STDIN,
STDOUT, and STDERR.

COP 4342

Fall 2006 review

Filehandles

Unlike other variables, you don’t declare filehandles.
The convention is to use all uppercase letters for
filehandle names. (Especially important if you deal with
anonymous filehandles!)

The open operator takes two arguments, a filehandle
name and a connection (e.g. filename). The
connection can start with ”< , > , or ”>> to indicate
read, write, and append access.

COP 4342

Fall 2006 review

Examples

open IN, in.dat ; # open in.dat for input
open IN2, <$file ; # open filename in $file for input
open OUT, >out.dat ; # open out.dat for output
open LOG, >>log.txt ; # open log.txt to append output

COP 4342

Fall 2006 review

Closing filehandles

The close operator closes a filehandle. This
causes any remaining output data associated with this
filehandle to be flushed to the file.

Perl automatically closes filehandles at the end of a
process, or if you reopen it.

COP 4342

Fall 2006 review

Examples

close IN; # closes the IN filehandle
close OUT; # closes the OUT filehandle
close LOG; # closes the LOG filehandle

COP 4342

Fall 2006 review

Testing open

You can check the status of opening a file by
examining the result of the open operation. It returns a
true value if it succeeded, and a false one if it failed.

if (!open OUT, >out.dat) {
die Could not open out.dat. ;

}

COP 4342

Fall 2006 review

Using a filehandle

Open IN, <in.dat ;
Open OUT, >out.dat ;
$i = 1;
while ($line = <IN>) {

printf OUT %d: $line , $i;
}

Note that a comma is not used after the filehandle in
a print or printf statement.

COP 4342

Fall 2006 review

Reopening a filehandle

You can reopen a standard filename. This allows
you to perform input or output in a normal fashion, but
to redirect the I/O from/to a file within the Perl program.

COP 4342

Fall 2006 review

Examples of reopening a filehandle

redirect standard output to out.txt
open STDOUT, >out.txt ;
printf Hello world!\n ;
redirect standard error to append to log.txt
open STDERR, >>log.txt ;

COP 4342

Fall 2006 review

File testing

Like BASH, file tests exist in Perl (source: man
perlfunc):

-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.
-x File is executable by effective uid/gid.
-o File is owned by effective uid.

-R File is readable by real uid/gid.
-W File is writable by real uid/gid.
-X File is executable by real uid/gid.
-O File is owned by real uid.

COP 4342

Fall 2006 review

-e File exists.
-z File has zero size (is empty).
-s File has nonzero size (returns size in bytes).

-f File is a plain file.
-d File is a directory.
-l File is a symbolic link.
-p File is a named pipe (FIFO), or Filehandle is a pipe.

-S File is a socket.
-b File is a block special file.
-c File is a character special file.
-t Filehandle is opened to a tty.

-u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.

-T File is an ASCII text file (heuristic guess).

COP 4342

Fall 2006 review

-B File is a "binary" file (opposite of -T).

-M Script start time minus file modification time, in days.
-A Same for access time.
-C Same for inode change time (Unix, may differ for other platforms)

COP 4342

Fall 2006 review

Using file status

You can use file status like this, for instance, as pre-
test:

while (<>) {
chomp;
next unless -f $_; # ignore specials
#...

}

COP 4342

Fall 2006 review

Using file status

Or you can use them as a post-test:

if(! open(FH, $fn))
{

if(! -e "$fn")
{

die "File $fn doesn’t exist.";
}
if(! -r "$fn")
{

die "File $fn isn’t readable.";
}
if(-d "$fn")
{

die "$fn is a directory, not a regular file.";

COP 4342

Fall 2006 review

}
die "$fn could not be opened.";

}

COP 4342

Fall 2006 review

Subroutines in Perl

You can declare subroutines in Perl with sub , and
call them with the & syntax:

my @list = qw(/etc/hosts /etc/resolv.conf /etc/init.d);
map (&filecheck , @list) ;

sub filecheck
{

if(-f "$_")
{

print "$_ is a regular file\n";
}
else
{

COP 4342

Fall 2006 review

print "$_ is not a regular file\n";
}

}

COP 4342

Fall 2006 review

Subroutine arguments

To send arguments to a subroutine, just use a list
after the subroutine invocation, just as you do with built-
in functions in Perl.

Arguments are received in the @_array:

#!/usr/bin/perl -w
2006 10 04 - rdl Script39.pl
shows subroutine argument lists
use strict;
my $val = max(10,20,30,40,11,99);
print "max = $val\n";

COP 4342

Fall 2006 review

sub max
{

print "Using $_[0] as first value...\n";
my $memory = shift(@_);
foreach(@_)
{

if($_ > $memory)
{

$memory = $_;
}

}
return $memory;

}

COP 4342

Fall 2006 review

Using my variables in subroutines

You can locally define variables for a subroutine with
my:

sub func
{

my $ct = @_;
...;

}

The variable $ct is defined only within the
subroutine func .

COP 4342

Fall 2006 review

sort() and map()

The built-ins functions sort() and map() can
accept a subroutine rather than just an anonymous
block:

@list = qw/ 1 100 11 10 /;
@default = sort(@list);
@mysort = sort {&mysort} @list;
print "default sort: @default\n";
print "mysort: @mysort\n";
sub mysort
{

return $a <=> $b;
}

COP 4342

Fall 2006 review

yields
default sort: 1 10 100 11
mysort: 1 10 11 100

As you can see, sort() sends along two special,
predefined variables, $a and $b .

COP 4342

Fall 2006 review

cmp and friends

As discussed earlier, <=> returns a result of -1,0,1
if the left hand value is respectively numerically less
than, equal to, or greater than the right hand value.

cmp returns the same, but uses lexical rather
numerical ordering.

COP 4342

Fall 2006 review

grep

A very similar operator is grep , which only returns a
list of the items that matched an expression (sort and
map should always return a list exactly as long as the
input list.)

For example:

@out = grep {$_ % 2} qw/1 2 3 4 5 6 7 8 9 10/;
print "@out\n";
yields
1 3 5 7 9

Notice that the block item should return 0 for non-

COP 4342

Fall 2006 review

matching items.

COP 4342

Fall 2006 review

Directory operations

chdir $DIRNAME; # change directory to $DIRNAME

glob $PATTERN; # return a list of matching patterns
example:
@list = glob "*.pl";
print "@list \n";
Script16.pl Script18.pl Script19.pl Script20.pl Script21.pl [...]

COP 4342

Fall 2006 review

Manipulating files and directories

unlink $FN1, $FN2, ...; # remove a hard or soft link to files

rename $FN1, $FN2; # rename $FN1 to new name $FN2

mkdir $DN1; # create directory with umask default permissions

rmdir $DN1, $DN2, ...; # remove directories

chmod perms, $FDN1; # change permissions

COP 4342

Fall 2006 review

Traversing a directory with opendir and
readdir

You can pull in the contents of a directory with
opendir and readdir:

opendir(DH,"/tmp");
@filenams = readdir(DH);
closedir(DH);
print "@filenams\n";
yields
.s.PGSQL.5432.lock .. mapping-root ssh-WCWcZf4199 xses-langley.joHONt . OSL_PIPE_500_SingleOfficeIPC_36797680ef98b40ff1a5752ef8e2fca .X0-lock gconfd-langley keyring-mB9Mau .X11-unix .ICE-unix .gdm_socket .font-unix xyz .s.PGSQL.5432 orbit-langley xyz1 mapping-langley

COP 4342

Fall 2006 review

Calling other processes

In Perl, you have four convenient ways to call
(sub)processes: the backtick function, the system()
function, fork() /exec() , and open() .

The backtick function is the most convenient one for
handling most output from subprocesses. For example

@lines = ‘head -10 /etc/hosts‘;
print "@lines\n";

You can do this type of output very similarly with

COP 4342

Fall 2006 review

open , but open also allows you do conveniently send
input to subprocesses.

exec() lets you change the present process to
another executable; generally, this is done with a
fork() to create a new child subprocess first.

The system() subroutine is a short-cut way of
writing fork /exec . Handling input and output, just as
with fork/exec , is not particularly convenient.

COP 4342

Fall 2006 review

Program development

☞ emacs (and vi)

☞ flex and bison

☞ makefiles

☞ source level debugging

☞ diff

☞ rcs and subversion

COP 4342

Fall 2006 review

☞ gprof

☞ glade

COP 4342

Fall 2006 review

emacs

emacs is a superior text-based program development
environment over vi , and it is easy to install.

Why use emacs? The way that emacs %

☞ While not “standard”, as is vi , it is very common
and it is generally very easy to install these days.

☞ It is completely programmable. In fact, it takes the
idea of programming to a much higher level in that it

COP 4342

Fall 2006 review

maps arbitrary sequences of keystrokes to arbitrary
functions.

☞ emacs lisp is a pleasant programming language. If
you like other languages, other versions of emacs
support: MacLisp, scheme , guile , Common Lisp,
ObjectCaml, even teco .

☞ emacs has also been called “Eight Megabytes And
Continuously Swapping.” Despite that moniker, it is
actually reasonably efficient.

COP 4342

Fall 2006 review

The tutorial

Most of the verbatim material here is taken
“verbatim” from the Emacs Tutorial. You can use
ctrl-h t to display this tutorial in emacs:

The following commands are useful for viewing screenfuls:
C-v Move forward one screenful
M-v Move backward one screenful
C-l Clear screen and redisplay all the text,

moving the text around the cursor
to the center of the screen.

COP 4342

Fall 2006 review

More of the tutorial

Previous line, C-p
:
:

Backward, C-b Current cursor position Forward, C-f
:
:

Next line, C-n

>> Move the cursor to the line in the middle of that diagram
using C-n or C-p. Then type C-l to see the whole diagram
centered in the screen.

COP 4342

Fall 2006 review

A quick summary of most useful “move
around” commands

C-f Move forward a character
C-b Move backward a character
M-f Move forward a word
M-b Move backward a word
C-n Move to next line
C-p Move to previous line
C-a Move to beginning of line
C-e Move to end of line
M-a Move back to beginning of sentence
M-e Move forward to end of sentence
M-< Move to top of the buffer
M-> Move to bottom of the buffer

COP 4342

Fall 2006 review

The basic portions of an emacs window

The mode line has several parts: the first
indicates your coding system (use c-h C to find more
information about your current one.

It then has some status information: a %%indicate
that the buffer is read-only, ** indicate that the buffer
is modified,

COP 4342

Fall 2006 review

The menu bar

If you like menu bars, you can access the one in
emacs with m-‘ .

COP 4342

Fall 2006 review

Creating windows

You can split your current window vertically with
c-x 2 .

You can split your current window horizontally with
c-x 3 .

You can jump around windows with c-o . You can
even scroll another buffer with c-m-v

You can c-x 1 to get rid off all but one window.

COP 4342

Fall 2006 review

Buffer control

You can list your current buffers with c-x c-b . You
can even use c-x o to leap into that buffer and then
use the “o” key to go directly to that buffer, or the “k’
key to mark the buffer for removal (does not affect the
file), and the “x” to do the marked removals.

You can also use c-x b to switch buffers.

Finally, c-x s will let you save all modified buffers.

COP 4342

Fall 2006 review

Automating emacs

You can record simple macros in emacs with c-x (
and c-x) .

To play the macro, use c-x e

You can give an argument to a function with
c-u NUM; giving one to a keyboard macro invocation
causes that macro to be called that many times.

COP 4342

Fall 2006 review

vi UPT 17.1

☞ “vi” stands for the VIsual editor.

☞ Newest forms such as vim and gvim are much
more featureful than the original barebones editor.

☞ It’s “standard” on all Unix machines, and a great way
to get emacs going!

☞ While it doesn’t make automatic backups of files
edited, it also doesn’t leave tilde files all over the

COP 4342

Fall 2006 review

place.

☞ It is generally quite efficient.

COP 4342

Fall 2006 review

Calling vi

The vi editor is invoked by issuing the command in
the following form. The -r option is for recovering a file
where the system crashed during a previous editing
session. The -t option is to indicate the position within
a file the editing should start.

vi [-t tag] [-r] filename

COP 4342

Fall 2006 review

Modes in vi

☞ It has has three main modes:

➳ character input mode: where text can be entered
➠ insert, append, replace, add lines

➳ window mode: where regular commands can be
issued
➠ basic cursor motions
➠ screen control
➠ word commands
➠ deletions

COP 4342

Fall 2006 review

➠ control commands
➠ miscellaneous commands

➳ line mode: where ex or ed commands can be
issued

COP 4342

Fall 2006 review

Character input/output

After invoking vi , the user is in the window
command mode.

There are a few different commands to enter
character input mode.

At that point, a user types in any desired text. The
user then uses the ESCkey to return back to command
mode.

COP 4342

Fall 2006 review

Commands to enter Character Input Mode

a append text after the cursor position
A append text at the end of line
i insert text before the cursor position
I insert text before the first nonblank character in the line
o add text after the current line
O add text before the current line (letter O)
rchr replace the current character with ‘‘chr’’
R replace text starting at the cursor position

COP 4342

Fall 2006 review

Basic cursor motion

h go back one character
j go down one line
k go up one line
l go forward one character (space also works)
0 go to the beginning of the line (zero)
$ go to the end of the line
H go to the top line on the screen
L go to the last line on the screen

COP 4342

Fall 2006 review

Word movement

w position the cursor at the beginning of the next word
b position the cursor at the beginning of the last word
e position the cursor at the end of the current word

COP 4342

Fall 2006 review

Screen control

ˆU scroll up one half page
ˆD scroll down one half page
ˆB scroll up one page
ˆF scroll down one page
ˆL redisplay the page

COP 4342

Fall 2006 review

Deletions

dd delete the current line
D delete text from the cursor to the end of the line
x delete character at the cursor
X delete character preceding the cursor
dw delete characters from the cursor to the end of the word

COP 4342

Fall 2006 review

Searching

/pattern search forward for "pattern"
/ search forward for last "pattern"
?pattern search backward for "pattern"
? search backward for last "pattern"
n re-perform the last / or ? command

COP 4342

Fall 2006 review

Miscellaneous

u undo previous command
U restore entire line
Y save current line into buffer
p put saved buffer after cursor position
P put saved buffer before cursor position
J join current line with following line
% position cursor over matching "(", ")", "{", or "}"
ZZ save file and exit (same as :wq)

COP 4342

Fall 2006 review

Repetition

You can specify how many times a command is to
be performed:

3dd delete 3 lines
4w advance 4 words
7x delete 7 characters
5n perform last search 5 times

COP 4342

Fall 2006 review

Working with tags

The ctags and etags programs let you take in a
set of source files as input and creates a tags /TAGS
file as output.

The tags file contains for each function and macro

☞ Object name

☞ File in which the object is defined.

☞ Pattern describing the location of the object.

COP 4342

Fall 2006 review

The output of etags is also useful with emacs.

COP 4342

Fall 2006 review

Using a tags file

You can use the -t option when invoking vi to find
a particular function.

vi -t main
vi -t max

COP 4342

Fall 2006 review

gvim

There is a graphical version of vi called gvim .

COP 4342

Fall 2006 review

Multi-level undo in vim (not vi , though)

Can use the u command to undo multiple changes,
as opposed to vi , which can only undo the last
change. Each time you enter u , the previous change
is undone.

COP 4342

Fall 2006 review

Source level debugging

☞ Source level debugging is a nice help when
debugging execution problems.

☞ To enable source level debugging with gcc/g++, you
should use the -g option.

COP 4342

Fall 2006 review

Source level debugging

☞ The symbol table information includes the correspondence
between

➳ statements in the source and locations of instructions
in the executable

➳ variables in the source and locations in the data
areas of the executable

COP 4342

Fall 2006 review

GDB: the Gnu debugger

☞ GDB is a line oriented debugger where actions are
initiated by typing in commands at a prompt.

☞ It can be invoked for executables created by gcc and
g++.

COP 4342

Fall 2006 review

GDB: the Gnu debugger

☞ General capabilities

☞ Starting and exiting your program from the
debugger.

☞ Pausing and continuing execution of your program
while in the debugger.

☞ Examining the state of your program.
☞ Changing the state of your program.

COP 4342

Fall 2006 review

Starting and stopping GDB

☞ You can start gdb along these lines

gdb YOURPROGRAM [core|pid]

☞ If you don’t specify a core file or a process id, then
you can start a new execution of YOURPROGRAM
with the run command.

COP 4342

Fall 2006 review

Starting and stopping GDB

☞ You can specify whatever arguments you like after
run , including i/o redirection.

run 123 > /tmp/out

☞ You can exit gdb with the quit command.

COP 4342

Fall 2006 review

Stopping and continuing execution of
your program in gdb

☞ You can set and remove breakpoints.

☞ You can also step through execution, and as well
simply continue it.

COP 4342

Fall 2006 review

Setting and removing breakpoints

☞ You can set a breakpoint to stop either when a
certain location in the source is reached, or when a
condition occurs.

☞ The general form is
break [SOMEFUNCTION|SOMELINENUM] [if SOMECONDITIION]

☞ Specifying just break will set a breakpoint at your
current location.

COP 4342

Fall 2006 review

☞ You can remove a breakpoint with

delete BREAKPOINT

COP 4342

Fall 2006 review

Examples

(gdb) break sets a breakpoint at the current line

(gdb) break 50 sets a breakpoint at line 50 of the current file

(gdb) break main sets a breakpoint at routine main()

(gdb) break 10 if i == 66 break execution at line 10 if the variable i
has the value 10

(gdb) delete 3 remove the 3rd breakpoint

(gdb) delete deletes all breakpoints

COP 4342

Fall 2006 review

Stepping through execution

☞ You can step to the next statement, or you can step
into a function.

☞ The general form is
step [N] # also, "s [N]" is generally defined as "step [N]" for most versions of gdb

where N indicates the number of steps to take,
defaulting to 1 if not specified. Execution will
not continue through a breakpoint (or program
termination.)

COP 4342

Fall 2006 review

Nexting through execution

Often, you don’t want to step into a function. You
can use the next command to simply go to the
next statement rather than step ping into a function
specified on the current line.

next [N] # also, "n [N]" is generally defined as the same

COP 4342

Fall 2006 review

Continuing execution

You can continue execution up to the next breakpoint
found, or program termination.

cont [N] # also, "c [N]" is generally defined as the same

N here specifies skip the first N-1 breakpoints.

COP 4342

Fall 2006 review

Continuing execution until the end of a
loop

You can use the until command to execute your
program until it reaches a source line greater than the
one that you are currently on. If you are not at a jump
back, this is the same as the next command. If you
are at a back jump such as in a looping construct, then
this will let you execute until the point that you have
exited the loop.

COP 4342

Fall 2006 review

Examining the state of your program

☞ Listing source code.

☞ Printing the values of expressions.

☞ Displaying the values of expressions.

☞ Printing a stack trace.

☞ Switching context in a trace.

COP 4342

Fall 2006 review

Listing source code

You can list source code a specified line or function.

The general form is

list [[FILENAME:]LINENUM[,LINENUM]]|[[FILENAME:]FUNCTIONNAME]

If you don’t specify anything, then you will get 10
lines from the current program location, or 10 more
lines if you have already listed the current program
location.

COP 4342

Fall 2006 review

Listing source code examples

(gdb) list # list 10 lines from the current location

(gdb) list 72 # list lines 67-76 (the 10 lines around line 72

(gdb) list calc.c:55 # list lines 50-59 of the file calc.c

(gdb) list 80,95 # list lines 80..95 of the current file

(gdb) list somefunc # list the function somefunc

(gdb) list cal.c:january # list the january function in cal.c

COP 4342

Fall 2006 review

Printing the values of expressions

You can print the value of expressions involving
variables based on the state of the execution of the
process. You can also specify to some degree the
formatting of those expressions, such as asking for
hexadecimal or octal values.

print[/FMT] EXPRESSION

The FMT can be ’o’ for octal, ’x’ for hexadecimal, ’d’
for signed decimal, ’f’ for float, ’u’ for unsigned decimal,

COP 4342

Fall 2006 review

’t’ for binary, and ’a’ for address. If no EXPRESSION is
given, the last one is used.

COP 4342

Fall 2006 review

Example print commands

print i # prints the value of the variable i
print a[i] # prints the value of a[i]
print/t a[i] # prints a[i] in binary
print a[i]-x # prints the value of a[i] - x
print a # prints the values in array a
print p # prints the value of the pointer p
print *p # prints the value pointed to by p
p i # prints the value of i

COP 4342

Fall 2006 review

Displaying the values of expressions

The display command is very similar to the print
command, but the value is displayed after each step
or continue command.

display[/FMT] EXPRESSION

COP 4342

Fall 2006 review

Undisplaying expression values

You can use the undisplay command to stop
displaying expressions.

COP 4342

Fall 2006 review

Printing a stack trace

☞ You can print a trace of the activation records of the
stack of functions called up until this point.

☞ The trace shows the names of the routines called,
the values of the arguments passed to each routine,
and the line number last executed in that routine.

☞ The general form is

where [N]

COP 4342

Fall 2006 review

If N is positive, then only the last N activation records
are shown. If N is negative, then only the first N
activation records are shown.

COP 4342

Fall 2006 review

Switching context in the stack

You can up or down in the stack with up [N] and
down [N] .

COP 4342

Fall 2006 review

Changing state in your program execution

You can modify the values of variables while
executing in order to avoid making code changes just
for the sake of debugging.

For instance,

set i = 10 # set the variable i to the value 10
set a[i] = 4 # set a[i] to 4

COP 4342

Fall 2006 review

Making impromptu calls to functions

You can call simply invoke a function from the gdb
prompt. This can be very useful to call debugging
routines that print the values of complex structures
that might be difficult to parse with just the gdb print
command.

call FUNCTION(ARGS)

COP 4342

Fall 2006 review

Other useful features

One of the most useful things that you can do is to
simply run a program that is segfaulting and see where
the problem is occurring. Or if you have a core file from
a segfaulted program, you can specify to read its state
with gdb PROGNAME CORENAME.

You can CTL-C when you are in a program that is in
an endless loop and actually find out where the loop is.

COP 4342

Fall 2006 review

Command shortcuts

You can create and use aliases, or use the fact
that commands only need as many letters as make
the command unique (and you can use TAB for
completion).

COP 4342

Fall 2006 review

Flex and lexical analysis

From the area of compilers, we get a host of tools to
convert text files into programs. The first part of that
process is often called lexical analysis, particularly for
such languages as C.

A good tool for creating lexical analyzers is flex .
It takes a specification file and creates an analyzer,
usually called lex.yy.c .

COP 4342

Fall 2006 review

Lexical analysis terms

☞ A token is a group of characters having collective
meaning.

☞ A lexeme is an actual character sequence forming a
specific instance of a token, such as num.

☞ A pattern is a rule expressed as a regular
expression and describing how a particular token can
be formed. For example, [A-Za-z][A-Za-z_0-9]*
is a rule.

COP 4342

Fall 2006 review

☞ Characters between tokens are called whitespace;
these include spaces, tabs, newlines, and formfeeds.
Many people also count comments as whitespace,
though since some tools such as lint/splint look
at comments, this conflation is not perfect.

COP 4342

Fall 2006 review

Attributes for tokens

Tokens can have attributes that can be passed back
to the calling function.

Constants could have the value of the constant, for
instance.

Identifiers might have a pointer to a location where
information is kept about the identifier.

COP 4342

Fall 2006 review

Some general approaches to lexical
analysis

Use a lexical analyzer generator tool, such as flex .

Write a one-off lexical analyzer in a traditional
programming language.

Write a one-off lexical analyzer in assembly
language.

COP 4342

Fall 2006 review

Flex - our lexical analyzer generator

Is linked with its library (libfl.a) using -lfl as a
compile-time option.

Can be called as yylex() .

It is easy to interface with bison/yacc .

COP 4342

Fall 2006 review

l file → lex → lex.yy.c

lex.yy.c and → gcc → lexical analyzer

other files

input stream → lexical analyzer → actions taken

when rules applied

COP 4342

Fall 2006 review

Flex specifications

Lex source:

{ definitions }
%%
{ rules }
%%
{ user subroutines }

COP 4342

Fall 2006 review

Definitions

☞ Declarations of ordinary C variables and constants.

☞ flex definitions

COP 4342

Fall 2006 review

Rules

The form of rules are:

regularexpression action

The actions are C/C++ code.

COP 4342

Fall 2006 review

Flex regular expressions

s string s literally

\c character c literally, where c would normally be a lex operator

[s] character class

ˆ indicates beginning of line

[ˆs] characters not in character class

[s-t] range of characters

s? s occurs zero or one time

COP 4342

Fall 2006 review

Flex regular expressions, continued

. any character except newline

s* zero or more occurrences of s

s+ one or more occurrences of s

r|s r or s

(s) grouping

$ end of line

s/r s iff followed by r (not recommended) (r is *NOT* consumed)

s{m,n} m through n occurrences of s

COP 4342

Fall 2006 review

Examples of regular expressions in flex

a* zero or more a’s

.* zero or more of any character except newline

.+ one or more characters

[a-z] a lowercase letter

[a-zA-Z] any alphabetic letter

[ˆa-zA-Z] any non-alphabetic character

a.b a followed by any character followed by b

rs|tu rs or tu

COP 4342

Fall 2006 review

a(b|c)d abd or acd

ˆstart beginning of line with then the literal characters start

END$ the characters END followed by an end-of-line.

COP 4342

Fall 2006 review

Flex actions

Actions are C source fragments. If it is compound, or
takes more than one line, enclose with braces (’{’ ’}’).

Example rules:

[a-z]+ printf("found word\n");
[A-Z][a-z]* { printf("found capitalized word:\n");

printf(" ’%s’\n",yytext);
}

COP 4342

Fall 2006 review

Flex definitions

The form is simply

name definition

The name is just a word beginning with a letter (or an
underscore, but I don’t recommend those for general
use) followed by zero or more letters, underscore, or
dash. The definition actually goes from the first non-
whitespace character to the end of line. You can refer
to it via {name} , which will expand to (definition) .

COP 4342

Fall 2006 review

(cite: this is largely from “man flex”.)

Tattoueba:

DIGIT [0-9]

Now if you have a rule that looks like

{DIGIT}*\.{DIGIT}+

that is the same as writing

([0-9])*\.([0-9])+

COP 4342

Fall 2006 review

An example Flex program

/* either indent or use %{ %} */
%{

int num_lines = 0;
int num_chars = 0;

%}
%%
\n ++num_lines; ++num_chars;
. ++num_chars;
%%
int main(int argc, char **argv)
{

yylex();
printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);
}

COP 4342

Fall 2006 review

Another example program

digits [0-9]
ltr [a-zA-Z]
alphanum [a-zA-Z0-9]
%%
(-|\+)*{digits}+ printf("found number: ’%s’\n", yytext);
{ltr}(_|{alphanum})* printf("found identifer: ’%s’\n", yytext);
’.’ printf("found character: {%s}\n", yytext);
. { /* absorb others */ }
%%
int main(int argc, char **argv)
{

yylex();
}

COP 4342

Fall 2006 review

Bison and parsing

From the area of compilers, we get a host of tools to
convert text files into programs. After lexical analysis,
the second part of that process when you are dealing
with traditional languages such as C is syntax analysis,
which also known as parsing.

A good tool for creating parsers is bison . It takes
a specification file and creates an syntax analyzer,
previously called y.tab.c by yacc and now is
generally just FILENAME.tab.c .

COP 4342

Fall 2006 review

Parsing terms

☞ Production rules define a parser. Informally, these
can be expressed in BNF/EBNF form.

☞ Production rules are made up a left hand side with a
non-terminal, and righthand side made up terminals
and non-terminals.

☞ A terminal “represents a class of syntactically
equivalent tokens” [Bison manual].

COP 4342

Fall 2006 review

Attributes for terminals and non-terminals

Terminals and non-terminals can have attributes.

Constants could have the value of the constant, for
instance.

Identifiers might have a pointer to a location where
information is kept about the identifier.

COP 4342

Fall 2006 review

Some general approaches to syntax
analysis

Use a compiler-compiler tool, such as bison .

Write a one-off recursive descent parser.

Write a one-off parser suited to your program.

COP 4342

Fall 2006 review

Bison - our lexical analyzer generator

Can be called as yyparse() .

It is easy to interface with flex/lex .

COP 4342

Fall 2006 review

y file → bison → y.tab.c (*.tab.c)

y.tab.c and → gcc → syntax analyzer

other files

input stream → syntax analyzer → actions taken

when rules applied

COP 4342

Fall 2006 review

Calling Bison

Here’s an example of calling Bison (which will be
very useful when compiling assign6):

Assign6-solution.out: Assign6-solution.y Assign6-solution.l
bison -d --debug --verbose Assign6-solution.y
flex Assign6-solution.l
cc -c lex.yy.c
cc -c Assign6-solution.tab.c
cc -o Assign6-solution.out Assign6-solution.tab.o lex.yy.o

The -d option specifies to output an explicit

COP 4342

Fall 2006 review

y.tab.h/*.tab.h file for flex. Specifying --debug
and --verbose (combined with enabling yydebug)
make it much easier to debug your parser!

COP 4342

Fall 2006 review

Bison specifications

Bison source:

{ definitions }
%%
{ rules }
%%
{ user subroutines }

COP 4342

Fall 2006 review

Definitions

☞ Declarations of ordinary C variables and constants.

☞ bison declarations.

COP 4342

Fall 2006 review

Rules

The general form for production rules is:

<non-terminal> : <sequence of terminals and non-terminals> {action} | ... ;

The actions are C/C++ code. Actions can appear
in the middle of the sequence of terminals and non-
terminals.

COP 4342

Fall 2006 review

Bison declarations

%token TOKEN create a TOKEN type

%union { } create a Union for llvals.

%right TOKEN create a TOKEN type that has right associativity

%left TOKEN create a TOKEN type that has left associativity

COP 4342

Fall 2006 review

Bison actions

Actions are C source fragments.

Example rules:

variableDeclaration : ID COLON ID SEMICOLON {
printf("emitting var %s of type %s\n",$3,$1);

} ;

The $3 and $1 refer to the values of the items 3 and
1 in the righthand side of the production rule.

COP 4342

Fall 2006 review

An example of Bison: first, its matching
flex file

%{
#include <stdlib.h>
#include <string.h>
#include "Assign6-solution.tab.h"
extern int linecount;
%}
%%
program return PROGRAM;
end return END;
variables return VARIABLES;
var return VAR;
functions return FUNCTIONS;
define return DEFINE;

COP 4342

Fall 2006 review

statements return STATEMENTS;
if return IF;
then return THEN;
else return ELSE;
while return WHILE;
, return COMMA;
"(" return LPARENTHESIS;
")" return RPARENTHESIS;
"{" return LBRACE;
"}" return RBRACE;
: return COLON;
; return SEMICOLON;
[a-zA-Z0-9]+ yylval = (int)strdup(yytext); return ID;
[\n] linecount++;
[\t]+

COP 4342

Fall 2006 review

An example Bison program

%{
#include <stdlib.h>
#include <stdio.h>
int linecount = 0;
void yyerror(char *s)
{

fprintf(stderr,"file is not okay -- problem at line %d\n",linecount);
exit(1);

}
int yywrap()
{

return 1;
}
%}
%token ID

COP 4342

Fall 2006 review

%token PROGRAM
%token END
%token VARIABLES
%token VAR
%token STATEMENTS
%token IF
%token THEN
%token ELSE
%token WHILE
%token LBRACE
%token RBRACE
%token COLON
%token SEMICOLON
%token FUNCTIONS
%token COMMA
%token DEFINE
%token LPARENTHESIS
%token RPARENTHESIS
%%
program : PROGRAM ID variablesSection functionsSection statementsSection END ;
variablesSection : VARIABLES LBRACE variableDeclarations RBRACE ;

COP 4342

Fall 2006 review

variableDeclarations : | variableDeclarations variableDeclaration ;
variableDeclaration : ID COLON ID SEMICOLON {printf("emitting var %s of type %s\n",$3,$1);} ;
functionsSection : FUNCTIONS LBRACE functionDeclarations RBRACE ;
functionDeclarations : | functionDeclarations functionDeclaration ;
functionDeclaration : DEFINE ID COLON ID LPARENTHESIS argsList RPARENTHESIS LBRACE statements RBRACE ;
statementsSection : STATEMENTS LBRACE statements RBRACE ;
statements : | statements statement ;
statement : VAR variableDeclaration | whileLoop | ifStruct | subroutineCall SEMICOLON ;
whileLoop : WHILE LPARENTHESIS subroutineCall RPARENTHESIS LBRACE statements RBRACE ;
ifStruct : IF LPARENTHESIS subroutineCall RPARENTHESIS LBRACE statements RBRACE ;

|
IF LPARENTHESIS subroutineCall RPARENTHESIS LBRACE statements RBRACE ELSE LBRACE statements RBRACE ;

subroutineCall : ID LPARENTHESIS callArgsList RPARENTHESIS ;
argsList : | argPair | argsList COMMA argPair ;
argPair : ID ID ;
callArgsList : | ID | callArgsList COMMA ID ;
%%
int main(int argc, char **argv)
{

// yydebug = 1;
yyparse();

COP 4342

Fall 2006 review

printf("input is okay\n");
}

COP 4342

Fall 2006 review

More tools: DDD

The Data Display Debugger (DDD) is a graphical
front-end for GDB and other command line debuggers.

From DDD you can execute all of the GDB
commands.

It also has a graphical interface which displays GDB
commands, shows source code, shows executions,
and allows to choose common options for commands.

COP 4342

Fall 2006 review

COP 4342

Fall 2006 review

DDD features

DDD shows four different windows:

☞ A data window to display variables.

☞ Source window to display source code.

☞ Machine code window to display disassembled
machine code

COP 4342

Fall 2006 review

DDD features

☞ GDB console where conventional gdb commands
can be typed.

DDD also has other panels which include common
commands that can be selected with the mouse.

COP 4342

Fall 2006 review

COP 4342

Fall 2006 review

Using the DDD Source Window

Can set a breakpoint by using the right mouse button
and positioning the cursor to the left of a source code
line.

Can instantly view the value of a variable by placing
the mouse over it (look at the very bottom of the
display.)

Can highlight a variable and select to print or display
its value by using the options at the top.

COP 4342

Fall 2006 review

Using the DDD Data Window

To have a variable with its value appear in the data
window as a display:

☞ A user can highlight a variable in the source window
and then click on the display button.

☞ A user can double click on a variable in the source
window.

COP 4342

Fall 2006 review

diff

The diff Unix utility compares two files and displays
the differences between the two files. The differences
are displayed with an ed-like notation indicating what
changes are needed to modify the first file to make it
similar to the second.

diff is very useful in shell scripts to detect
differences between expected output and actual
output.

COP 4342

Fall 2006 review

diff Output (UPT 11.1)

☞ Diff output consists of a list of changes.

☞ General form consists of a sequence of:
commands
lines

COP 4342

Fall 2006 review

diff Output (UPT 11.1)

☞ Commands are of the form (a for append, c for
change, and d for delete):
linenums [acd] linenums

☞ Lines from the first file are preceded by <. Lines
from the second file are preceded by >.

☞ diff -r can be recursively to compare whole
directories trees.

COP 4342

Fall 2006 review

diff Example

tmp1.txt:
cat
dog
mouse

tmp2.txt:
cat
mouse

tmp3.txt:
dog
mouse
cow

% diff tmp1.txt tmp2.txt
2d1
< dog
% diff tmp2.txt tmp3.txt
1d0
< cat
3a3
> cow

% diff tmp2.txt tmp3.txt
1c1
< cat

> dog
2a3
> cow

COP 4342

Fall 2006 review

Patch (UPT 20.9)

Patch is a Unix utility that takes diff output and
applies the commands to make the first file have
the same contents as the second file. Updates
to free software are often accomplished using patch.
Often the differences between versions of files is much
smaller than the files themselves.

COP 4342

Fall 2006 review

cmp

The cmp Unix utility just returns a status indicating if
the files differ.

Exit status Meaning
----------- -------

0 Files are identical
1 Files are different
2 An error occurred

The cmp utility is often used when comparing two
binary files since it is typically quicker than diff.

You can also specify -s to make cmp silent when it

COP 4342

Fall 2006 review

finds a difference (by default, it displays the byte and
line number where the first difference was found.)

COP 4342

Fall 2006 review

Configuration Management Systems

Definitely not the same as a Content Management
System!

Configuration Management Systems are however
quite similar to Content Management Systems
(CMSs):

☞ Configuration Management Systems always provide
a history mechanism, as do most CMSs.

☞ Provides controlled access by different users to

COP 4342

Fall 2006 review

shared files.

COP 4342

Fall 2006 review

Configuration Management Systems

☞ SCCS – Source Code Control System. This is now
deprecated. It kept the original files, and the deltas
to get to the current version(s) of code.

☞ RCS – Revision Control System. Still popular. It
keeps the most recent version(s) of files, and the
deltas to take you back to older version(s).

☞ CVS – Concurrent Version System. Quite popular.
Actually uses RCS underneath.

COP 4342

Fall 2006 review

☞ subversion – Also quite popular, and is a strong
competitor with CVS. Directories and file meta-data
are also kept under version control. Commits are
also truly atomic.

COP 4342

Fall 2006 review

gprof

The gprof Unix utility produces an execution profile
of the call graph of a program.

The profile is useful for finding out where most of
the time is spent during the execution of your program.

A gmon.out file will be produced as a side effect A
developer can use this information to tune the time-
consuming portions of a long-running program.

COP 4342

Fall 2006 review

gprof

You can have a program instrumented to collect data
that can be processed by gprof by using the -pg option
when compiling with gcc:

gcc -pg -c XYZ.c

A gmon.out file will be produced as a side effect of
running your program.

You can obtain the profile from the gmon.out file by
running the following command:

COP 4342

Fall 2006 review

gprof -b

COP 4342

Fall 2006 review

make

My description of the program make is that it

☞ takes a set of rules describing dependencies and

☞ describing creation of new files

in order to satisfy the requirements for the “creation” of
some target.

COP 4342

Fall 2006 review

make

Another description from Chapter 1 of the Gnu Make
manual:

The make utility automatically determines
which pieces of a large program need
to be recompiled, and issues commands
to recompile them.

COP 4342

Fall 2006 review

Invoking make

There are several options that are generally useful
with make:

-f MAKEFILE # specify an alternative makefile to the defaults of
’GNUmakefile’, ’Makefile’, or ’makefile’

-k # continue for other targets even after an error

-i # completely ignore errors

-d # print debugging information

-j [N] # fork off children to handle tasks. If N is
specified, create no more than N children

COP 4342

Fall 2006 review

-C DIR # change directory to DIR before starting the make process

-s # silent mode, don’t echo commands

COP 4342

Fall 2006 review

Makefiles

Makefiles use rules to determine their actions. The
rules look like:

target: [prerequisites]
-TAB- action
-TAB- action
-TAB- ...

COP 4342

Fall 2006 review

Targets

Targets usually either specify a file that is to be made
via this rule or just identify the rules for execution (often
called a “phony” target.)

Targets may also be implicit.

COP 4342

Fall 2006 review

Prerequisites

These generally define the files that the target
depends on, and the general idea is that if any of those
have a modified (or creation) time later than the target,
then actions for the rule will be executed to create a
new version of the target (which you should try to make
sure has a new modified or created time.)

COP 4342

Fall 2006 review

Actions

These generally define the actions that are needed
to create the target from the prerequisites. These
actions are largely executions of discrete programs
such as gcc , make (yes, recursion is quite common),
ld , bison , flex , and so on. Rules must consist of
consecutive lines that start with a TAB character. Since
these are usually interpreted as shell commands,
you can do things such as multi-lines (but use the
backslash to make sure that the “single-linedness” of

COP 4342

Fall 2006 review

your construction is clear):

for name in dir1 dir2 dir3 \
do ; \

${MAKE} $name ; \
done

COP 4342

Fall 2006 review

Actions

There are also actual make conditionals which are
interpreted by make and not by the shell; these look
like

COP 4342

Fall 2006 review

ifeq (ARG1,ARG2)
...
endif

ifdef (ARG1)
...
endif

COP 4342

Fall 2006 review

Setting ordinary variables

You can use “=” and “?=” to set ordinary variables:

CFLAGS ?= -g -O3 # conditionally set ${CFLAGS} to
‘‘-g -O3’’ iff it is not
already defined

CC = /usr/bin/gcc ${CFLAGS} # unconditionally set ${CC} to
‘‘/usr/bin/cc’’

COP 4342

Fall 2006 review

Pattern rules

One of the nice things that you can do with make is
create “pattern rules”.

These are rules that let you abstract a pattern from
a set of similar rules, and use that pattern in lieu of
explicitly naming all of those rules.

For instance,

COP 4342

Fall 2006 review

%.o : %.c
cc -c $< -o $@ # $@ refers to the

target, $< refers to
the *first* (and only)
prerequisite

COP 4342

Fall 2006 review

Automatic variables

$@ # the target of the rule

$< # the first prerequisite

$ˆ # all of the prerequisites

$? # all of the prerequisites that are newer than the target file

$* # the ‘‘stem’’ only; essentially, this is the complement of the static portion
of the target definition... see Makefile-auto

COP 4342

Fall 2006 review

Example Makefiles

targets: 01-introduction-out.pdf 02-processes-out.pdf \
03-shells1-out.pdf 03-shells2-out.pdf 04-shells3-out.pdf \
05-shells4-out.pdf 06-environment-out.pdf 07-perl01-out.pdf \
08-perl02-out.pdf 09-perl03-out.pdf 10-perl04-out.pdf \
11-perl05-out.pdf 12-perl06-out.pdf 13-perl07-out.pdf \
14-programdevel-out.pdf 15-programdevel02-out.pdf \
16-programdevel03-out.pdf 17-programdevel04-out.pdf \
18-programdevel05-out.pdf 19-programdevel06-out.pdf \
20-programdevel07-out.pdf structure-out.pdf

%-out.pdf: %.tex
pdflatex $<
gij -jar pp4p.jar $*.pdf $*-out.pdf

COP 4342

Fall 2006 review

Example Makefiles

%.c:
echo $*

COP 4342

Fall 2006 review

make

My description of the program make is that it

☞ takes a set of rules describing dependencies and

☞ describing creation of new files

in order to satisfy the requirements for the “creation” of
some target.

COP 4342

Fall 2006 review

make

Another description from Chapter 1 of the Gnu Make
manual:

The make utility automatically determines
which pieces of a large program need
to be recompiled, and issues commands
to recompile them.

COP 4342

Fall 2006 review

Invoking make

There are several options that are generally useful
with make:

-f MAKEFILE # specify an alternative makefile to the defaults of
’GNUmakefile’, ’Makefile’, or ’makefile’

-k # continue for other targets even after an error

-i # completely ignore errors

-d # print debugging information

-j [N] # fork off children to handle tasks. If N is
specified, create no more than N children

COP 4342

Fall 2006 review

-C DIR # change directory to DIR before starting the make process

-s # silent mode, don’t echo commands

COP 4342

Fall 2006 review

Makefiles

Makefiles use rules to determine their actions. The
rules look like:

target: [prerequisites]
-TAB- action
-TAB- action
-TAB- ...

COP 4342

Fall 2006 review

Targets

Targets usually either specify a file that is to be made
via this rule or just identify the rules for execution (often
called a “phony” target.)

Targets may also be implicit.

COP 4342

Fall 2006 review

Prerequisites

These generally define the files that the target
depends on, and the general idea is that if any of those
have a modified (or creation) time later than the target,
then actions for the rule will be executed to create a
new version of the target (which you should try to make
sure has a new modified or created time.)

COP 4342

Fall 2006 review

Actions

These generally define the actions that are needed
to create the target from the prerequisites. These
actions are largely executions of discrete programs
such as gcc , make (yes, recursion is quite common),
ld , bison , flex , and so on. Rules must consist of
consecutive lines that start with a TAB character. Since
these are usually interpreted as shell commands,
you can do things such as multi-lines (but use the
backslash to make sure that the “single-linedness” of

COP 4342

Fall 2006 review

your construction is clear):

for name in dir1 dir2 dir3 \
do ; \

${MAKE} $name ; \
done

COP 4342

Fall 2006 review

Actions

There are also actual make conditionals which are
interpreted by make and not by the shell; these look
like

COP 4342

Fall 2006 review

ifeq (ARG1,ARG2)
...
endif

ifdef (ARG1)
...
endif

COP 4342

Fall 2006 review

Setting ordinary variables

You can use “=” and “?=” to set ordinary variables:

CFLAGS ?= -g -O3 # conditionally set ${CFLAGS} to
‘‘-g -O3’’ iff it is not
already defined

CC = /usr/bin/gcc ${CFLAGS} # unconditionally set ${CC} to
‘‘/usr/bin/cc’’

COP 4342

Fall 2006 review

Pattern rules

One of the nice things that you can do with make is
create “pattern rules”.

These are rules that let you abstract a pattern from
a set of similar rules, and use that pattern in lieu of
explicitly naming all of those rules.

For instance,

COP 4342

Fall 2006 review

%.o : %.c
cc -c $< -o $@ # $@ refers to the

target, $< refers to
the *first* (and only)
prerequisite

COP 4342

Fall 2006 review

Automatic variables

$@ # the target of the rule

$< # the first prerequisite

$ˆ # all of the prerequisites

$? # all of the prerequisites that are newer than the target file

$* # the ‘‘stem’’ only; essentially, this is the complement of the static portion
of the target definition... see Makefile-auto

COP 4342

Fall 2006 review

Example Makefiles

targets: 01-introduction-out.pdf 02-processes-out.pdf \
03-shells1-out.pdf 03-shells2-out.pdf 04-shells3-out.pdf \
05-shells4-out.pdf 06-environment-out.pdf 07-perl01-out.pdf \
08-perl02-out.pdf 09-perl03-out.pdf 10-perl04-out.pdf \
11-perl05-out.pdf 12-perl06-out.pdf 13-perl07-out.pdf \
14-programdevel-out.pdf 15-programdevel02-out.pdf \
16-programdevel03-out.pdf 17-programdevel04-out.pdf \
18-programdevel05-out.pdf 19-programdevel06-out.pdf \
20-programdevel07-out.pdf structure-out.pdf

%-out.pdf: %.tex
pdflatex $<
gij -jar pp4p.jar $*.pdf $*-out.pdf

COP 4342

Fall 2006 review

Example Makefiles

%.c:
echo $*

COP 4342

Fall 2006 review

File management

☞ gzip and gunzip

☞ tar

☞ find

☞ df and du

☞ od

☞ sftp and scp

COP 4342

Fall 2006 review

gzip and gunzip

☞ gzip compresses the files named on the command
line. After compressing them, it renames them with
.gz suffixes.

☞ General form:
gzip [FILE]*

☞ gunzip undoes compression created by gzip .

☞ General form:

COP 4342

Fall 2006 review

unzip [FILE]*

☞ Other programs that have been used for compression:
compact , compress , and zip/unzip .

☞ You can also use gzip/gunzip as filters with the
-c option, which redirects output to stdout.

☞ Finally, you can specify the level of compression; -1
gives the fastest compression but does not optimize
space, and -9 gives the slowest compression but the
best use of space.

COP 4342

Fall 2006 review

tar

tar is an old utility, and literally stands for “Tape
Archiver”. These days, it is used far more often to
handle file archives. It is very useful for creating
transportable files between systems, such as when
you want to mail a group of files to someone else.

COP 4342

Fall 2006 review

tar options

-c # create an archive
-x # extract from an archive
-t # shows files in an archive
-f # specify a file (the default is a tape device!). You can

specify stdout with ‘‘-’’ (or use -O)
-C # change directory
-v # work verbosely
-z # use gzip/gunzip; if used with -c, creates a gzip’d file; if used

with -x or -t, it uses gunzip to read the existing archive file
-p # preserve permissions when extracting

COP 4342

Fall 2006 review

Using tar

Typically, you will do something like this to create a
tar archive of an existing subdirectory:

tar cf DIRNAME.tar [DIRNAME]+
tar czf DIRNAME.tar.gz [DIRNAME]+
tar -c -f DIRNAME.tar [DIRNAME]+
tar -c -z -f DIRNAME.tgz [DIRNAME]+

COP 4342

Fall 2006 review

Using tar

Typically, you will do something like this to extract an
tar archive of an existing subdirectory:

tar xf DIRNAME.tar
tar xzf DIRNAME.tar.gz
tar -x -f DIRNAME.tar
tar -x -z -f DIRNAME.tgz

COP 4342

Fall 2006 review

find

One of the most useful tools with a recondite syntax
is find . It allows you to search a directory for files
matching some subset of a large number of possible
criteria.

find [PATH]+ CRITERIA

COP 4342

Fall 2006 review

find criteria

-name FILENAME # finds files which match FILENAME, which can contain
wildcards

-iname FILENAME # same as -name, but also case-insensitive
-size [+/-]N[bck] # very useful, it finds files by size. using ’b’ (or nothing)

indicates N is in blocks; using ’c’ indicates N is in bytes;
using ’k’ indicates N using kilobytes. Using ’+’ means that
the file is greater than N in size; using ’-’ means
that it is less than N in size; using neither means
the file is exactly size N.

-mtime [+/-]N # find files based on their last modification time, and N is
in days. +N means match files that have been modified in more
than N days; -N means match files that have been modified in
less than N days; N means match files that have been modified
exactly N days previous.

-ls # show files in {\tt ls} format rather than just the filename

COP 4342

Fall 2006 review

-printf # lets you specify arbitrary output formats
-exec COMMAND ; # lets you run COMMAND over every matching file
-okay COMMAND ; # same as -exec, but queries you for confirmation before executing

the command

COP 4342

Fall 2006 review

find logical operators

CRIT1 -a CRIT2 # match only if both criteria CRIT1 and CRIT2 hold
CRIT1 -o CRIT2 # match if either criteria CRIT1 or CRIT2 holds
!CRIT1 # match if criterion CRIT1 does not hold
\(EXPR \) # evaluate EXPR early

COP 4342

Fall 2006 review

find examples

find . # walk the current directory and its subdirectories

find /tmp -mtime +6 # find all files in /tmp that have not been
modified in 6 days

find /tmp -name core -exec rm {} \; # remove files named ’core’ from /tmp

find /tmp -name core -o name ’*.o’ -okay rm {} \;
query to remove files that are named ’core’ or end in ’.o’

find /tmp -iname ’*.sh’ -exec chmod +x {} \;
add execute permission to all files that end in ’.sh’,
’.SH’, ’.Sh’, or ’.sH’

COP 4342

Fall 2006 review

df and du

The df command displays information about
mounted filesystems. If you don’t specify any, then all
of the mounted filesystems are shown.

You don’t have to specify mount points; any file
inside of a filesystem is acceptable:

[2006-Fall]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 75766204 19014760 52902672 27% /
/dev/hda1 101089 40221 55649 42% /boot
none 251668 0 251668 0% /dev/shm

COP 4342

Fall 2006 review

/dev/sda1 981192 480508 450840 52% /mnt-tmp
[2006-Fall]$ df /boot/boot.b
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda1 101089 40221 55649 42% /boot

COP 4342

Fall 2006 review

df and du

The du command shows you the usage of disk
space. With no options, it walks your current directory
and shows you the space in blocks used by each
subdirectory. With -s , it just shows you a summary.
You can force du to display in 1k blocks with the -k
option.

[2006-Fall]$ du -sk .
8744 .
[2006-Fall]$ du midterm1
80 midterm1/Questions/Shell

COP 4342

Fall 2006 review

20 midterm1/Questions/Process
52 midterm1/Questions/Perl
20 midterm1/Questions/Emacs
20 midterm1/Questions/Awk
20 midterm1/Questions/General
980 midterm1/Questions
1636 midterm1

COP 4342

Fall 2006 review

od

The od (octal dump) program writes representations
of files to stdout. If ’-’ is specified, then it looks to stdin
for input.

For example, the default od output for the current pdf
file is:

[langley@sophie 2006-Fall]$ od 22-filemanagement.pdf
0000000 050045 043104 030455 031456 032412 030040 067440 065142
0000020 036012 020074 051457 027440 067507 067524 027440 020104
0000040 033133 030040 051040 020040 043057 072151 056440 037040
0000060 005076 067145 067544 065142 034412 030040 067440 065142

COP 4342

Fall 2006 review

0000100 036040 005074 046057 067145 072147 020150 030465 020064
0000120 020040 020040 020040 027412 064506 072154 071145 027440

...

COP 4342

Fall 2006 review

od and xxd

od is useful in several ways; for instance, you
can find control characters embedded in files that
an editor might not display in a reasonable fashion
(though emacs is pretty good at displaying embedded
characters.)

COP 4342

Fall 2006 review

Using od

[2006-Fall]$ od -a 22-filemanagement.pdf
0000000 % P D F - 1 . 3 nl 5 sp 0 sp o b j
0000020 nl < < sp / S sp / G o T o sp / D sp
0000040 [6 sp 0 sp R sp sp / F i t sp] sp >
0000060 > nl e n d o b j nl 9 sp 0 sp o b j
0000100 sp < < nl / L e n g t h sp 5 1 4 sp
0000120 sp sp sp sp sp sp nl / F i l t e r sp /

....

COP 4342

Fall 2006 review

Using od

[2006-Fall]$ od -c 22-filemanagement.pdf
0000000 % P D F - 1 . 3 \n 5 0 o b j
0000020 \n < < / S / G o T o / D
0000040 [6 0 R / F i t] >
0000060 > \n e n d o b j \n 9 0 o b j
0000100 < < \n / L e n g t h 5 1 4
0000120 \n / F i l t e r /

....

COP 4342

Fall 2006 review

Using xxd

The program xxd adds some functionality to od :
specifically, it can read a dump and recreate a binary
from it. This is very useful for “patching” a binary.

[2006-Fall]$ xxd Script12.sh
0000000: 2321 2f62 696e 2f62 6173 680a 0a23 2032 #!/bin/bash..# 2
0000010: 3030 3620 3039 2031 3120 2d20 7264 6c0a 006 09 11 - rdl.
0000020: 666f 7220 6e61 6d65 2069 6e20 2a0a 646f for name in *.do
0000030: 0a20 2069 6620 5b20 2d66 2022 246e 616d . if [-f "$nam
0000040: 6522 205d 0a20 2074 6865 6e0a 2020 2020 e"]. then.
0000050: 2065 6368 6f20 2273 6b69 7070 696e 6720 echo "skipping
0000060: 246e 616d 6522 0a20 2020 2020 636f 6e74 $name". cont
0000070: 696e 7565 0a20 2065 6c73 650a 2020 2020 inue. else.

COP 4342

Fall 2006 review

0000080: 2065 6368 6f20 2270 726f 6365 7373 2024 echo "process $
0000090: 6e61 6d65 220a 2020 6669 0a64 6f6e 650a name". fi.done.

[[... edit file to change 0000013 to ’37’ rather than ’36’ ...]]

[2006-Fall]$!! > /tmp/xyz
xxd Script12.sh > /tmp/xyz
[2006-Fall]$ xxd -r /tmp/xyz
#!/bin/bash

2007 09 11 - rdl
for name in *
do

if [-f "$name"]
then

echo "skipping $name"
continue

else
echo "process $name"

fi
done

COP 4342

Fall 2006 review

nm

The nm utility lets you print out the namelist of
symbols from object files.

This was very useful in finding where a particular
variable or function is defined.

[Historical note: Reading the namelist was also a
method used “wayback when” to access particular
areas of the kernel to make reports on such values as
uptime. Literally, the program would parse the namelist
of the kernel, find the reference to the variable that it

COP 4342

Fall 2006 review

wanted, and read that area of memory from /dev/kernel
to find the values it wanted.]

COP 4342

Fall 2006 review

strip

The strip utility removes optional symbol table,
debugging, and line number information from an object
file or an executable. strip will reduce the amount of
space used by object files and binaries.

COP 4342

Fall 2006 review

sftp

You can transfer files securely with the sftp
program.

sftp [USERNAME]@HOSTNAME

COP 4342

Fall 2006 review

Common sftp commands

ls [NAME] # show a directory entry for NAME if specified, other for
the present remove working directory

dir [NAME] # alias for ’ls’
! # start a subshell
!ls # show the local directory (via a subshell)
!COMMAND # run command in subshell
put LOCALFILE [REMOTEFILE] # put a local file on the remote machine; use a

the filename ’REMOTENAME’ if specified
get REMOTEFILE [LOCALFILE] # pull a remote file to the local machine; call

it LOCALNAME if specified
cd [DIR] # change directory on the remote side
lcd [DIR] # change directory on the local side
chmod PERM FILE # change permissions on remote file FILE
pwd # show the current remote directory
lpwd # show the local directory
mkdir DIR # create a new directory on the remote side

COP 4342

Fall 2006 review

scp

You can also noninteractivley transfer a file or
directory with scp :

[2006-Fall]$ scp /tmp/xyz langley@www.cs.fsu.edu:/tmp/xyz
-=-= AUTHORIZED USERS ONLY =-=-

You are attempting to log into a FSU Computer Science Department machine.
Please be advised by continuing that you agree to the terms of the
Computer Access and Usage Policy of the Department of Computer Science.

-=-= AUTHORIZED USERS ONLY =-=-
langley@www.cs.fsu.edu’s password: XXXXXXX
[2006-Fall]$ scp -r /etc langley@www.cs.fsu.edu:/tmp/backup-etc

COP 4342

Fall 2006 review

Document preparation in Unix

☞ TEXand LATEX

☞ graphviz

☞ xfig

☞ xv

☞ spell checkers

☞ printing

COP 4342

Fall 2006 review

Word Processors

Word processors, such as Microsoft’s Word R© and
OpenOffice’s Writer, use the WYSIWYG model:

☞ Word processors are interactive.

☞ Word processors are relatively easier to learn

☞ Word processors are very useful for those who need
to do simple documents occasionally.

COP 4342

Fall 2006 review

Text formatters

Text formatters, such as TEX/LATEX, use the model
of “markup”, where text is decorated with markup
commands and then processed by a program; output
can then be viewed.

Characteristics, then, of text formatting:

☞ It tends to be batch-oriented

☞ Generally better control over the output

COP 4342

Fall 2006 review

☞ Output generally looks better

☞ Much better for creating longer documents

☞ Much better for creating long-life documents

☞ Much better for creating series of related documents

☞ Having the source in text means that other text tools
can be applied to the source.

COP 4342

Fall 2006 review

TEXand LATEX

TEXwas invented in the late 1970s by Donald Knuth.
The first generally useful release was probably TeX82
in 1982, though the language wasn’t frozen until 1989.

It was created to make nice mathematical documents,
with emphasis on mathematical fonts since many of the
easily available ones for electronic production were not
high quality.

LATEXwas invented in 1985 by Leslie Lamport. It

COP 4342

Fall 2006 review

contains higher level support for many constructions
such as table of contents, citations, floating tables and
figures, and so forth.

COP 4342

Fall 2006 review

Generating a LATEXdocument

There are a variety of ways these days to generate
a LATEXdocument. The most general one is

*.tex file → latex → *.dvi file → dvips/dvipdf *.pdf

The simplest these days combines these two steps:
*.tex file → pdflatex *.pdf

The idea behind dvi files is that they were to be
“device independent”, and then output would go to
a special driver for whatever output device might be

COP 4342

Fall 2006 review

available, such as our ancient Imagen printers.

Of course, Adobe invented PostScript R© which
instituted what was to become an equally device
independent mechanism, at least to the level of fonts.
The “Portable Document Format” (pdf) then added
fonts to the output format. This was a bit of a muddle
for TEXsince its model was to create its own fonts with
the program Metafont, but these days, TEXalso can
read and use other font families seamlessly.

COP 4342

Fall 2006 review

Metafont and MetaPost

Fonts are created by the Metafont program, and
graphics can be created with MetaPost.

Generally, you won’t have to worry about this;
LATEXwill usually call Metafont seamlessly if it needs to
recreate a font.

COP 4342

Fall 2006 review

LATEXcommands

A LATEXfile must contain not only text but also markup
commands. Commands consist of a special single
characters or a words preceded by the backslash.

% indicates a comment ˜ represents a space
& is used in making tables $ is used to indicate math
{ starts an argument list } ends an argument list
_ precedes a subsript ˆ precedes a superscript
used in defining commands

Generally, these can be printed by preceding them
with a backslash, though the safest thing is to use

COP 4342

Fall 2006 review

SPECIAL.

COP 4342

Fall 2006 review

LATEXcomments

A comment begins with % and ends with the line.

This is similar to the C++ // or Ada -- comment.

COP 4342

Fall 2006 review

Document structure with the “Article”
class

\documentclass[12pt]{article} % specify class
\usepackage{fancyvrb} % preamble: use a package
\usepackage{graphics} % preamble: use a package
\begin{document} % start the actual document to layout
\title{} % title of the article
\author{} % author of the article
\date{\today} % you can specify a date, or use today’s
\maketitle % this displays the preceding
\tableofcontents % creates a table of contents
\begin{abstract} % start an abstract environment
\end{abstract} % end an abstract environment
\section{NAME}\label{} % start a section, create a label for it

...

COP 4342

Fall 2006 review

\section{NAME}\label{} % another section
\bibliography{} % generate a bibliography
\end{document} % finish the document

COP 4342

Fall 2006 review

LATEXdocument class

The document class defines the way that the
document will be formatted.

Popular classes include:

article % short articles such as journal papers
report % longer works broken into chapters
book % has chapters, treats odd and even pages differently
slides % a slide package
foils % another slide package
letter % used for writing letters
exam % used for making exams

COP 4342

Fall 2006 review

For instance, to specify an article with an 11 point
font, use

\documentclass[11pt]{article}

COP 4342

Fall 2006 review

LATEXpackages

TEXis a Turing-complete language, and numerous
packages have been created to support use of TEXand
LATEX.

You can access these packages with \usepackage{} .

For example,

\usepackage{graphics}
\usepackage{graphicx}

COP 4342

Fall 2006 review

Beginning the document

To end the preamble and actually start creating
displayable material (i.e., the “body” of your document),
you insert the \begin{document} command; to end
the document, you use \end{document} .

COP 4342

Fall 2006 review

Environments

Environments allow you to specially treat text that
environment uniformly. For instance, you might want
to enumerate some items. Rather than having to
write spacing and enumeration data for each item, you
simply point what the items are:

\begin{enumerate}
\item This is item 1.
\item This is item 2.
\end{enumerate}

COP 4342

Fall 2006 review

The LATEXarticle heading

The LATEXarticle header consists of the title, author,
and date.

The \title{TITLE TEXT} command is used to
store the text for the title.

The \author{AUTHORS} command is used to store
the author information. You can use \and to separate
multiple authors.

The \date command contains the date of the

COP 4342

Fall 2006 review

article. If not specified, the current date will be used.

COP 4342

Fall 2006 review

The LATEXarticle heading, cont’d

The \maketitle command causes the title, author,
and date information to be typeset into the article.

Depending on the style, the title might appear on its
own page, or on the first page.

For example,

\title{Introduction to \LaTeX}
\author{John Doe \\
Florida State University}
\date{October 10, 2006}
\maketitle

COP 4342

Fall 2006 review

Document spacing

The Wikipedia has a good description of TEX’s
input process at http://en.wikipedia.org/TeX. Here’s a
summary:

The system can be divided into four levels: in the first, characters
are read from the input file and assigned a category code (sometimes
called catcode, for short). Combinations of a backslash (really: any
character of category zero) followed by letters (characters of
category 11) or a single other character are replaced by a control
sequence token. In this sense this stage is like lexical analysis,
although it does not form numbers from digits. In the next stage,
expandable control sequences (such as conditionals or defined macros)

COP 4342

Fall 2006 review

are replaced by their replacement text. The input for the third stage
is then a stream of characters (including ones with special meaning)
and unexpandable control sequences (typically assignments and visual
commands). Here characters get assembled into a paragraph. TeX’s
paragraph breaking algorithm works by optimizing breakpoints over the
whole paragraph. The fourth stage breaks the vertical list of lines
and other material into pages.

COP 4342

Fall 2006 review

Document spacing

In addition to simple paragraph breaking and setting
in pages, LATEXhandles floating figures and tables quite
well.

Whitespace in the form of blanks and newlines
indicate the end of a word. Otherwise it isn’t significant.

New paragraphs can be indicated by at least one
blank line.

COP 4342

Fall 2006 review

LATEXabstract environment

Abstracts are created in LATEXwith the abstract
environment.

Example:

\begin{abstract}
This paper goes over the basics of \LaTeX.
\end{abstract}

COP 4342

Fall 2006 review

LATEXsectioning

A LATEXarticle is divided with the following commands:

\section{NAME}
\subsection{NAME}
\subsubsection{NAME}

Section numbers and titles are saved for a table of
contents if requested.

For example:

\section{The Art of \LaTeX}

COP 4342

Fall 2006 review

\subsection{\LaTeX’s Picture Environment}
\section{Font Fun in \LaTeX }

COP 4342

Fall 2006 review

Labels and References in L ATEX

Sections are often referred to by number within a
document. However, writers can and do decide to
reorder sections. LATEXallows writers to give internal
names to sections, and then to refer to those names to
avoid having to renumber internal references inside of
documents.

For example:

\section{The Paucity of Comment Markers}
\label{paucity}

COP 4342

Fall 2006 review

...
As mentioned in section \ref{paucity}, there are no suitable replacements...

COP 4342

Fall 2006 review

LATEX font styles

☞ Text shape: you can choose a text “shape” with
various “text” commands:
\textit{italics text}
\textsl{slanted text}
\textsc{small caps text}

italics text
slanted text
SMALL CAPS TEXT

COP 4342

Fall 2006 review

LATEX font styles

☞ Text weight: you can also choose text “weight” with
“text” commands:
\textmd{medium weight}\\
\textbf{boldface weight}\\

medium weight boldface weight

COP 4342

Fall 2006 review

LATEX font styles

☞ Text families: you can also choose text families with
“text” commands:
\textrm{Roman family}
\textsf{Sans serif family}
\texttt{Typewriter/teletype family}

Roman family
Sans serif family
Typewriter/teletype family

COP 4342

Fall 2006 review

LATEX font styles

☞ Also, you can use \usepackage{family} to
specify a font family:
\usepackage{avant}
\usepackage{bookman}
\usepackage{chancery}
\usepackage{charter}
\usepackage{courier}
\usepackage{newcent}
\usepackage{palatino}

COP 4342

Fall 2006 review

Font sizes

You can use the following commands to modify the
current font size:

\tiny
\scriptsize
\footnotesize
\normalsize
\large
\Large
\LARGE
\huge
\Huge

COP 4342

Fall 2006 review

LATEX tables

LATEX has two table-related environments: “table”
and “tabular”.

The floating “table” enviroment is used to specify
location and captioning.

The “tabular” environment is used to format the
actual table.

COP 4342

Fall 2006 review

LATEX tables

\begin{table}[t] %% top placement
\begin{tabular}{c|c|c} %% center everything
center & center & center \\
\hline %% doesn’t need a \\
center & center & center \\
center & center & center \\
\end{tabular}
\end{table}

COP 4342

Fall 2006 review

Table placement

You can suggest locations for tables, which are
“float”. You can use the following location suggestions,
and you may list them in order of your preference:

☞ h – “here”. Try to place the table where at this point
in the text.

☞ t – “top”. Try to place the table at the top of the
current page; if it doesn’t fit, try to place it at the top
of the next page.

COP 4342

Fall 2006 review

☞ b – “bottom”. Try to place the table at the bottom of
the current page; if it doesn’t fit, try to place it at the
bottom of the next page.

☞ p – “page”. Place the table on a separate page for
tables and figures.

COP 4342

Fall 2006 review

Formatting columns

The \begin{tabular}{FORMAT} command allows
you to specify column formatting.

l %% column is left-justified
c %% column is centered
r %% column is right-justified
| %% draws a vertical
|| %% draws two vertical lines together

COP 4342

Fall 2006 review

Specifying data in the table

Horizontal “data” lines end in “\\ ”.

Column entries are divided by ampersands (“&”).

Horizontal rules can be drawn with “\hline ”.

For example:

\begin{tabular}{l|l||l}
Command & Arguments & Explanation\\
\hline
{\tt break} & \verb+[file:]function+ & Sets a breakpoint at function\\
\end{tabular}

COP 4342

Fall 2006 review

Figures

LATEX supports a “figure” environment, where you
can place a graphic of some sort (though I think that
generally it is best to stick with either encapsulated
PostScript R©; however, the “png” format generally works
fine also.)

COP 4342

Fall 2006 review

Figures

\begin{figure}[PLACEMENT]
\includegraphics[OPTIONS]{FILENAME}
\caption{CAPTION}
\label{LABEL}
\end{figure}

COP 4342

Fall 2006 review

Figures

Note that the PLACEMENT is an option specified
with [] , not a requirement as with the table
environment.

COP 4342

Fall 2006 review

Options

width= %% you can specify a width, such as [width=5in]

height= %% you can specify a height, such as [height=5in]

scale= %% you can specify a scaling factor, such as [scale=0.75]

angle= %% you can specify an angle in degrees, such as [angle=45]

COP 4342

Fall 2006 review

Figure example

Figure 1: FSU 1851 logo

\begin{figure}[h]
\centering
\includegraphics[width=2.2in]{fsu-1851-trans.png}
\caption{FSU 1851 logo}
\end{figure}

COP 4342

Fall 2006 review

Another figure example

Figure 2: FSU 1851 logo

\begin{figure}[h]
\centering
\includegraphics[width=1.6in,angle=30]{fsu-1851-trans.png}
\caption{FSU 1851 logo}
\end{figure}

COP 4342

Fall 2006 review

Lists in LATEX

There are many types of lists possible in LATEX.

For instance, you can use:

☞ itemize – bulleted lists

☞ enumerate – numbered lists

☞ description – customized lists

☞ dinglist – a type of customized used on this list

COP 4342

Fall 2006 review

Lists in LATEX

The general form is

\begin{LISTTYPE}
\item
\item

...
\item
\end{LISTTYPE}

COP 4342

Fall 2006 review

Example of a list

\begin{dinglist}{\DingListSymbolA}
\item {\tt itemize} -- bulleted lists
\item {\tt enumerate} -- numbered lists
\item {\tt description} -- customized lists
\item {\tt dinglist} -- a type of customized used on this list (via
\verb+\usepackage{pifont}+, which gives you access to ding characters)
\end{dinglist}

COP 4342

Fall 2006 review

Arbitrary text rotation

You can use the package “rotating” to do arbitrarily
rotated text:

Rotate this text

\usepackage{rotating}
...
\begin{rotate}{30}
Rotate this text
\end{rotate}

COP 4342

Fall 2006 review

The verbatim and Verbatim environments;
inline verb

With the wide allocation of special characters to
default use in LATEX, it is often convenient go into
a mode that explicitly treats special characters as
ordinary ones. Since this very useful for displaying
program code, these environments generally also are
monospaced and, by default, in a teletype font.

☞ \verb – you can use the inline \verb to specify

COP 4342

Fall 2006 review

verbatim while in normal paragraph mode, such as
%@*!)!%$%*!@ with \verb+%@*!)!%$%*!@+ .

☞ \begin{verbatim} – you can use the standard
verbatim environment for multiline material

☞ \begin{Verbatim} – if you do a \usepackage{fancyvrb}
you can include verbatim material in footnotes,
modify the font size and font family, and many other
effects.

COP 4342

Fall 2006 review

Fancy Verbatim

The output of the following

\begin{Verbatim}[fontshape=it,frame=leftline,fontsize=\scriptsize]
Easy to see what is there
When the left line is where
We might care
\ end{Verbatim}

is on the next slide...

COP 4342

Fall 2006 review

Fancy Verbatim

Easy to see what is there
When the left line is where
We might care

COP 4342

Fall 2006 review

Multiple columns

You can also create multicolumn output in the middle
of a page with the “multicol” package:

\documentclass[12pt]{article}
\usepackage{multicol}
\begin{document}
\setlength{\columnseprule}{1pt} %% make a one pt rule between columns
Not multicolumn in the beginning, but the next bit is:
\begin{multicols}{3}
This is 3 col material in the middle of a page, instead of for the
whole document. It’s convenient on occasion, but usually the tabular
environment is what you want, not multicol.
\end{multicols}
And then back to single column mode.
\end{document}

COP 4342

Fall 2006 review

Bibliographies in L ATEX

You can keep your bibliographic references in a file
called BIBLIO.bib ; this file is to be processed by the
program bibtex .

The text references in your paper are made with the
\cite command:

\cite{KEY}

COP 4342

Fall 2006 review

Bibliographies in L ATEX

You cause the actual generation of the bibliography
with:

\bibliographystyle{STYLE}
\bibliography{BIBLIO}

COP 4342

Fall 2006 review

Creating your bibliography database

Each entry in the database contains predefined
information, some general and some specific to
various types of publications.

These fields include author, title, journal, volume,
number, pages, date, institution, publisher, url.

COP 4342

Fall 2006 review

Creating your bibliography database

The general form of each of the entries in a *.bib file
is:

@entry_type{key,
field_name = ‘‘text’’,
field_name = ‘‘text’’,

...
field_name = ‘‘text’’

}

COP 4342

Fall 2006 review

Examples

@book{Crandal:2001:PNCP,
author = "Richard Crandall and Carl Pomerance",
title = "Prime Numbers: A Computational Perspective",
year = "2001",
address = "New York",
publisher = "Springer-Verlag",
ISBN = "0-387-94777-9"

}

COP 4342

Fall 2006 review

Examples

@article{Cipra:1996:SLLN,
author = "Barry Cipra",
title = "The Secret Life of Large Numbers",
year = "1996",
journal = "What’s Happening in the Mathematical Sciences",
volume = "3",
address = "Providence Rhode Island",
publisher = "American Mathematical Society",
pages = "90-99",
ISBN = "0-8128-0355-7"

}

COP 4342

Fall 2006 review

Bibliography styles

There are four \bibliographystyle s recognized:

☞ plain – entries are ordered alphabetically and
markers are a number inside square brackets

COP 4342

Fall 2006 review

Bibliography styles

☞ unsrt – entries are ordered by appearance of
citation inside the paper

☞ alpha – same as plain but markers are an
abbreviation of the author’s name and year

COP 4342

Fall 2006 review

Bibliography styles

☞ abbrv – same as plain but bibliographic listing
abbreviates first names, months, and journal names

COP 4342

Fall 2006 review

The order of events

In order to have your bibliography compiled into your
paper, you run the following sequence of programs:

pdflatex BASENAME
bibtex BASENAME
pdflatex BASENAME

COP 4342

Fall 2006 review

The order of events

While you can specify suffixes with pdflatex/latex,
bibtex is not some accommodating and it is easier to
just specify the basename. This is also true inside
of your document: at the \bibliography command,
don’t put the .bib .

COP 4342

Fall 2006 review

Viewing output

You have a number of choices for viewing various
output:

☞ dvi files – you can use xdvi or evince .

☞ ps files – you can use gv , ghostview , or evince .

☞ pdf files – you can use xpdf or evince .

COP 4342

Fall 2006 review

Conversions

As mentioned earlier, there are a number of
conversions that you might want to do with your
LATEXoutput:

☞ dvips / dvi2ps – converts a DVI file to
PostScript R© (PS).

☞ ps2pdf – converts a PostScript file to Portable
Document Format (PDF).

COP 4342

Fall 2006 review

Conversions

☞ dvipdf – converts a DVI file to PDF.

☞ pdftops – converts a PDF file to PS.

COP 4342

Fall 2006 review

Conversions

☞ pdftotxt – converts a PDF file to text.

COP 4342

Fall 2006 review

Diagrams with dot files

The graphviz package allows you to use an
ordinary text file to automatically create graph
visualizations.

As you can see from the examples displayed, it can
make some very neat visualizations. You can find more
information at http://www.graphviz.org .

COP 4342

Fall 2006 review

The dot language

Here’s the dot code for the graph in my sendmail
paper:

// Uses graphviz package from http://www.graphviz.org

digraph MailSplit
{

"Outside Mailer" [shape = parallelogram];
"Incoming Mailer" [shape = parallelogram];
"Outgoing Mailer" [shape = parallelogram];
"Outside Mailer" -> "Incoming Mailer"

[label =
"An Email Message With\n Multiple Recipients In\n Envelope"]

"Incoming Mailer" -> "Queue Entry for\n Recipient #1"

COP 4342

Fall 2006 review

[label = "Recipient #1"];
"Incoming Mailer" -> "Queue Entry for\n Recipient #2"

[label = "Recipient #2"];
"Incoming Mailer" -> "..." [style = "dotted"];
"Incoming Mailer" -> "Queue Entry for\n Recipient #n"

[label = "Recipient #n"];
subgraph cluster_0 {

style = filled;
color = lightgrey;
label = "Incoming Queue";
"Queue Entry for\n Recipient #1"

[style=filled,color=white];
"Queue Entry for\n Recipient #2"

[style=filled,color=white];
"..." [style=filled,color=white];
"Queue Entry for\n Recipient #n"

[style=filled,color=white];
}
"Queue Entry for\n Recipient #1" -> "Outgoing Mailer";
"Queue Entry for\n Recipient #2" -> "Outgoing Mailer";
"..." -> "Outgoing Mailer" [style=dotted];

COP 4342

Fall 2006 review

"Queue Entry for\n Recipient #n" -> "Outgoing Mailer";
}

COP 4342

Fall 2006 review

Other tools: xfig

xfig is a menu-driven tool that allows a user to
interactively create and manipulate figures. Features
include:

☞ Drawing lines, ellipses, splines, polygons, rectangles,
arcs, and arrows.

☞ Entering text and arrows.

☞ Components can be scaled, moved, copied,

COP 4342

Fall 2006 review

deleted, flipped, rotated, and aggregated into larger
components.

☞ A variety of line styles are supported.

☞ Libraries of icons are also supported.

☞ Items can also be floodfilled with colors or patterns.

COP 4342

Fall 2006 review

xfig example

COP 4342

Fall 2006 review

xfig example

COP 4342

Fall 2006 review

Other xfig capabilities

☞ Can export into different formats (default is fig
format, but in this slide presentation, the fig files were
exported as png files), including LATEX picture format,
MetaPost, MetaFont, gif, encapsulated PostScript,
Portable Document Format, png, and jpeg.

☞ Can use a grid to control placement (“snap to grid”.)

☞ Can change the characteristics of existing objects.

COP 4342

Fall 2006 review

☞ Can perform group operations on aggregations of
objects.

COP 4342

Fall 2006 review

xv , gimp , krita and inkscape

There are a number of programs to display or
manipulate images. The program xv is one of the
oldest; it has steadily gained features over the years.

Another is the gimp , which has as its strongest point
manipulation, although many people have criticized its
interface.

Recently krita has become quite popular. Like
gimp , it also has its strongest manipulation of images.

COP 4342

Fall 2006 review

A different kind of program is inkscape , which
while it can take in an image graphic, its strong point is
creating scalable vector graphics (SVG).

COP 4342

Fall 2006 review

spell and ispell

The spell utility will check a file for spelling
problems. It is usually just a script pointing to
aspell/ispell running in batch mode.

The aspell program is a replacement from GNU
for ispell . Its default mode is interactive. aspell is
very featureful, and interfaces well with emacs.

COP 4342

Fall 2006 review

Printing control with lpr/lprm/lpq

☞ lpr – The traditional BSD method of queuing print
items to printers. Some popular options are:
-#NUM a number of copies
-PQUEUE specify a print queue by name
-p run a formatter over the file before its printed so that print job information is given.

☞ lpq [-PQUEUE] – Lets you look at the print jobs
for a given queue QUEUE. It gives a job number for
each that is useful for deleting items with lprm .

☞ lprm [-PQUEUE] [-] – Lets you remove items

COP 4342

Fall 2006 review

from a print queue. You can either specify job
numbers (determined from lpq), or with just “-”,
which removes all of your items from a queue.

COP 4342

Fall 2006 review

pr

pr is a common formatter for print jobs that
does various tasks, such as placing header/footer
information such as page numbers and doublespacing.

Common options:

-W NUM set page width to NUM
-l NUM set page length to NUM
-h HEADER specify header rather than the default, which is the filename
-d doublespace output
-COLUMN multicolumn output: print with COLUMN number of columns
-w NUM set page width to NUM for multiple column output

COP 4342

Fall 2006 review

a2ps

The program a2ps converts text files to PostScript. It
allows you to do things such as printing multiple virtual
pages on a single page.

For example:

a2ps --print-anyway yes -5 -o termcap.ps /etc/termcap

will reformat the /etc/termcap file to five pages per
sheet.

COP 4342

Fall 2006 review

Common options for a2ps

-r landscape mode

-f # use font size #

-o OUT write output to file name OUT rather than
printing to ‘‘lpr’’

--columns N N columns per page

-# prints # pages per sheet of paper

COP 4342

Fall 2006 review

Building blocks for Unix power tools

Now that we have given a good overview of a lot of
the better Unix tools, I want to take some time to talk
about our toolset for building Unix programs.

The most important of these are the system calls.

COP 4342

Fall 2006 review

Building blocks for Unix power tools

A Unix system call is a direct request to the kernel
regarding a system resource. It might be a request
for a file descriptor to manipulate a file, it might be a
request to write to a file descriptor, or any of hundreds
of possible operations.

These are exactly the tools that every Unix program
is built upon.

COP 4342

Fall 2006 review

File descriptor and file descriptor
operations

In some sense, the mainstay operations are those
on the file system.

COP 4342

Fall 2006 review

File descriptor and file descriptor
operations

Unlike many other resources which are just artifacts
of the operating system and disappear at each reboot,
changing a file system generally is an operation
that has some permanence (although of course it
is possible and even common to have “RAM” disk
filesystems since they are quite fast, and for items
that are meant to be temporary anyway, they are quite
acceptable.)

COP 4342

Fall 2006 review

Important file descriptor calls

A file descriptor is an int. It provides stateful access
to an i/o resource such as a file on a filesystem, a
pseudo-terminal, or a socket to a tcp session.

open() -- create a new file descriptor to access a file
close() -- deallocate a file descriptor

COP 4342

Fall 2006 review

Important file descriptor calls

dup() -- duplicate a file descriptor
dup2() -- duplicate a file descriptor

COP 4342

Fall 2006 review

Important file descriptor calls

fchmod() -- change the permissions of a file associated with a file
-- descriptor

fchown() -- change the ownership of a file associated with a file

COP 4342

Fall 2006 review

Important file descriptor calls

fcntl() -- miscellaneous manipulation of file descriptors: dup(), set
-- close on exec(), set to non-blocking, set to asynchronous
-- mode, locks, signals

ioctl() -- manipulate the underlying ‘‘device’’ parameters for

COP 4342

Fall 2006 review

Important file descriptor calls

flock() -- lock a file associated with a file descriptor

COP 4342

Fall 2006 review

Important file descriptor calls

pipe() -- create a one-way association between two file
-- descriptors so that output from
-- one goes to the input of the other

COP 4342

Fall 2006 review

Important file descriptor calls

select() -- multiplex on pending i/o to or from a set of file descriptors

COP 4342

Fall 2006 review

Important file descriptor calls

read() -- send data to a file descriptor
write() -- take data from a file descriptor

COP 4342

Fall 2006 review

Important file descriptor calls

readdir() -- raw read of directory entry from a file descriptor

COP 4342

Fall 2006 review

Important file descriptor calls

fstat() -- return information about a file associated with a fd: inode,
perms, hard links, uid, gid, size, modtimes

fstatfs() -- return the mount information for the filesystem that the file
-- descriptor is associated with

COP 4342

Fall 2006 review

Important filesystem operations

In addition to using the indirect means of file
descriptors, Unix also offers a number of direct
functions on files.

access() -- returns a value indicating if a file is accessible
chmod() -- changes the permissions on a file in a filesystem
chown() -- changes the ownership of a file in a filesystem

COP 4342

Fall 2006 review

Important filesystem operations

link() -- create a hard link to a file
symlink() -- create a soft link to a file

COP 4342

Fall 2006 review

Important filesystem operations

mkdir() -- create a new directory
rmdir() -- remove a directory

COP 4342

Fall 2006 review

Important filesystem operations

stat() -- return information about a file associated with a fd: inode,
perms, hard links, uid, gid, size, modtimes

statfs() -- return the mount information for the filesystem that the file
-- descriptor is associated with

COP 4342

Fall 2006 review

Signals

alarm -- set an alarm clock for a SIGALRM to be sent to a process
-- time measured in seconds

getitimer -- set an alarm clock in fractions of a second to deliver either
-- SIGALRM, SIGVTALRM, SIGPROF

COP 4342

Fall 2006 review

Signals

kill -- send an arbitrary signal to an arbitrary process
killpg -- send an arbitrary signal to all processes in a process group

COP 4342

Fall 2006 review

Signals

sigaction -- interpose a signal handler (can include special ‘‘default’’ or
-- ‘‘ignore’’ handlers)

sigprocmask -- change the list of blocked signals

COP 4342

Fall 2006 review

Signals

wait -- check for a signal (can be blocking or non-blocking) or child exiting
waitpid -- check for a signal from a child process (can be general or specific)

COP 4342

Fall 2006 review

Modifying the current process’s state

chdir -- change the working directory for a process to dirname
fchdir -- change the working directory for a process via fd
chroot -- change the root filesystem for a process

COP 4342

Fall 2006 review

Modifying the current process’s state

execve -- execute another binary in this current process
fork -- create a new child process running the same binary
clone -- allows the child to share execution context (unlike fork(2))
exit -- terminate the current process

COP 4342

Fall 2006 review

Modifying the current process’s state

getdtablesize -- report how many file descriptors this process can have
-- active simultaneously

COP 4342

Fall 2006 review

Modifying the current process’s state

getgid -- return the group id of this process
getuid -- return the user id of this process
getpgid -- return process group id of this process
getpgrp -- return process group’s group of this process

COP 4342

Fall 2006 review

Modifying the current process’s state

getpid -- return the process id of this process
getppid -- return parent process id of this process
getrlimit -- set a resource limit on this process (core size, cpu time,

-- data size, stack size, and others)
getrusage -- find amount of resource usage by this process

COP 4342

Fall 2006 review

Modifying the current process’s state

nice -- change the process’s priority

COP 4342

Fall 2006 review

Networking

socket -- create a file descriptor

bind -- bind a file descriptor to an address, such a tcp port
listen -- specify willingness for some number of connections to be

-- blocked waiting on accept()
accept -- tell a file descriptor block until there is a new connection

connect -- actively connect to listen()ing socket

setsockopt -- set options on a given socket associated with fd, such out-of-band
-- data, keep-alive information, congestion notification, final timeout,
-- and so forth (see man tcp(7))

getsockopt -- retrieve information about options enabled for a given connection from fd

getpeername -- retrieve information about other side of a connection from fd
getsockname -- retrieve information this side of a connection from fd

COP 4342

Fall 2006 review

Others

brk -- allocate memory for the data segment for the
-- current process

gethostname -- gets a ‘‘canonical’’ hostname for the machine
gettimeofday -- gets the time of day for the whole machine
settimeofday -- sets the time of day for the whole machine
mount -- attaches a filesystem to a directory and makes it available
sync -- flushes all filesystem buffers, forcing changed blocks to

-- ‘‘drives’’ and updates superblocks
futex -- raw locking (lets a process block waiting on a change

to a specific memory location)
sysinfo -- provides direct access from the kernel to:

load average
total ram for system
available ram

COP 4342

Fall 2006 review

amount of shared memory existing
amount of memory used by buffers
total swap space
swap space available
number of processes currently in proctable

COP 4342

Fall 2006 review

SYS V IPC

msgctl -- SYS V messaging control (uid, gid, perms, size)
msgget -- SYS V message queue creation/access
msgrcv -- receive a SYS V message
msgsnd -- send a SYS V message

shmat -- attach memory location to SYS V shared memory segment
shmctl -- SYS V shared memory control (uid, gid, perms, size, etc)
shmget -- SYS V shared memory creation/access
shmdt -- detach from SYS V shared memory segment

COP 4342

Fall 2006 review

Numerical tools

There are a large number of tools available for Unix
machines:

☞ Desktop tools such as bc , dc , and Pari/GP

☞ Computer Algebra Systems such as maxima

☞ Numerical tools library: GMP and Pari/GP

☞ Visualization via gnuplot and graphviz

COP 4342

Fall 2006 review

bc and dc

bc is a calculator. Normally, it works with integers,
but you can set it the number of decimal places with
the scale variable:

[langley@sophie 2006-Fall]$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
1/6
0
scale=20
1/6
.16666666666666666666

COP 4342

Fall 2006 review

bc

You can also do quick base conversions with bc :

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
obase=16
ibase=10
16
10
quit
$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.

COP 4342

Fall 2006 review

This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
ibase=10
obase=16
15
F
quit

COP 4342

Fall 2006 review

bc

bc uses traditional infix notation:

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
12 + 34
46
12 * 34
408
34 / 12
2
99 - 12
87

COP 4342

Fall 2006 review

56 % 14
0
3 ˆ 3
27

COP 4342

Fall 2006 review

bc

bc also allows small programs to be written:

a=0
while(a < 10)
{

a = a+1;
print a * a , "\n";

}

1
4
9
16
25
36

COP 4342

Fall 2006 review

49
64
81
100

COP 4342

Fall 2006 review

bc

bc supports the following statement types:

☞ Simple expressions, such as 3 * 5

☞ Assignment, such a = a - 1

☞ if/then

☞ while

☞ Compound statements between { }

COP 4342

Fall 2006 review

☞ C-style for : for(EXP1 ; EXP2 ; EXP3)

☞ break and continue

☞ Function definition and return with define and
return

COP 4342

Fall 2006 review

bc

Math functions available when started with -l :

s(x) # sine of x in radians
c(x) # cosine of x in radians
a(x) # arctangent of x in radians
l(x) # natural logarithm of x
e(x) # e to x
sqrt(x) # square root of x (doesn’t actually need -l option)

COP 4342

Fall 2006 review

dc

The program dc is desk calculator much like bc in
calculator mode, but is uses Reverse Polish Notation
(RPN) rather than infix notation. Unlike bc , dc doesn’t
support complex statements and programming.

COP 4342

Fall 2006 review

dc

[langley@sophie 2006-Fall]$ dc
34 99
f
99
34
55 88
f
88
55
99
34
+
*
*
f

COP 4342

Fall 2006 review

481338
quit

COP 4342

Fall 2006 review

dc

dc commands:

p # print the top value from the stack
n # print the top value from the stack and pop it off
f # print the entire stack
+ # adds the top two values from the stack and pushes the result
- # subtracts the first value on the stack from the second, pops them

off, and pushes the result
* # pops top two values from stack, pushes multiplication result onto stack
/ # pops top two values from stack, pushes division result back on stack
˜ # pops top two values from stack, pushes both division and remainder

back on stack

COP 4342

Fall 2006 review

GP/Pari

GP/Pari is a much featureful calculator than bc .
It handles integers, reals, exact rationals, complex
numbers, vectors, and more. It does modular
arithmetic natively. It can some equation simplification,
and it has a number of number theoretical functions
such as gcd() .

COP 4342

Fall 2006 review

GP/Pari

Starting GP/Pari at a shell prompt is easy:

$ gp
GP/PARI CALCULATOR Version 2.1.7 (released)

i686 running linux (ix86 kernel) 32-bit version
(readline v4.3 enabled, extended help available)

Copyright (C) 2002 The PARI Group
PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER.
Type ? for help, \q to quit.
Type ?12 for how to get moral (and possibly technical) support.

realprecision = 28 significant digits
seriesprecision = 16 significant terms
format = g0.28

parisize = 4000000, primelimit = 500000
? simplify((a+1)*(a-1))
%1 = aˆ2 - 1
? ??

COP 4342

Fall 2006 review

You can also start it inside of Emacs with M-x gp if
the appropriate pari.el file is available on your machine.
The details are in the GP/Pari manual which you can
pull up with ?? emacs .

COP 4342

Fall 2006 review

Using gp

gp also uses simple infix notation, like bc :

? 12 + 24
%2 = 36
?

COP 4342

Fall 2006 review

Using gp

Notice that each result is numbered. You can use
that notation to refer to a result:

? 12 + 24
%43 = 36
? %43 * 14
%44 = 504
?

(You can refer to just %for the previous result.)

COP 4342

Fall 2006 review

Builtin functions in GP

There are a very large number of functions builtin to
GP. You can them with ordinary prefix notation:

? gcd(1019986919288111313171891231912376299117891237171129910217,
2198699771571875111911119160590951112121701191107)
%42 = 319
? factor(1001)
%3 =
[7 1]

[11 1]

[13 1]

COP 4342

Fall 2006 review

? factor(540)
%45 =
[2 2]

[3 3]

[5 1]
?

COP 4342

Fall 2006 review

Some useful builtin functions in GP

gcd # greatest common divisor
factor # factorization
simplify # simplify a one-variable polynomial

COP 4342

Fall 2006 review

Debugging

You can turn on copious debugging in GP with \g20 :

? \g20
debug = 20

? factor(1209401294012940192034901249012490124014212414124102411241111)
Miller-Rabin: testing base 1000288896
IFAC: cracking composite

34338877624535303177265598981012930047607660148829727
IFAC: checking for pure square
OddPwrs: is 34338877624535303177265598981012930047607660148829727

...a 3rd, 5th, or 7th power?
modulo: resid. (remaining possibilities)

211: 79 (3rd 1, 5th 0, 7th 0)
209: 98 (3rd 0, 5th 0, 7th 0)

COP 4342

Fall 2006 review

IFAC: trying Pollard-Brent rho method first
Rho: searching small factor of 175-bit integer
Rho: using Xˆ2-11 for up to 4770 rounds of 32 iterations
Rho: time = 100 ms, 768 rounds
Rho: fast forward phase (256 rounds of 64)...
Rho: time = 50 ms, 1028 rounds, back to normal mode
Rho: time = 30 ms, 1280 rounds
Rho: time = 40 ms, 1536 rounds
Rho: fast forward phase (512 rounds of 64)...
Rho: time = 120 ms, 2052 rounds, back to normal mode
Rho: time = 30 ms, 2304 rounds
Rho: time = 30 ms, 2560 rounds
Rho: time = 40 ms, 2816 rounds
Rho: time = 30 ms, 3072 rounds
Rho: fast forward phase (1024 rounds of 64)...
Rho: time = 230 ms, 4100 rounds, back to normal mode
Rho: time = 40 ms, 4352 rounds
Rho: time = 40 ms, 4608 rounds
Rho: time = 20 ms, Pollard-Brent giving up.
IFAC: trying Shanks’ SQUFOF, will fail silently if input

is too large for it.

COP 4342

Fall 2006 review

IFAC: trying Lenstra-Montgomery ECM
ECM: working on 8 curves at a time; initializing for up to 3 rounds...
ECM: time = 0 ms
ECM: dsn = 4, B1 = 700, B2 = 77000, gss = 128*420
ECM: time = 200 ms, B1 phase done, p = 701, setting up for B2

(got [2]Q...[10]Q)
(got [p]Q, p = 709 = 79 mod 210)
(got initial helix)

ECM: time = 10 ms, entering B2 phase, p = 913
ECM: finishing curves 4...7

(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 27799)

ECM: finishing curves 0...3
(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 27799)

ECM: time = 140 ms
ECM: dsn = 6, B1 = 900, B2 = 99000, gss = 128*420
ECM: time = 260 ms, B1 phase done, p = 907, setting up for B2

(got [2]Q...[10]Q)

COP 4342

Fall 2006 review

(got [p]Q, p = 911 = 71 mod 210)
(got initial helix)

ECM: time = 0 ms, entering B2 phase, p = 1117
ECM: finishing curves 4...7

(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 28001)
(giant step at p = 81761)

ECM: finishing curves 0...3
(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 28001)
(giant step at p = 81761)

ECM: time = 190 ms
ECM: dsn = 8, B1 = 1150, B2 = 126500, gss = 128*420
ECM: time = 320 ms, B1 phase done, p = 1151, setting up for B2

(got [2]Q...[10]Q)
(got [p]Q, p = 1153 = 103 mod 210)
(got initial helix)

ECM: time = 10 ms, entering B2 phase, p = 1361
ECM: finishing curves 4...7

COP 4342

Fall 2006 review

(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 28277)
(giant step at p = 82003)

ECM: finishing curves 0...3
(extracted precomputed helix / baby step entries)
(baby step table complete)

ECM: time = 110 ms, p <= 28229,
found factor = 31705445367881

IFAC: cofactor = 1083059304989990299718013026798727465767
Miller-Rabin: testing base 768462011
Miller-Rabin: testing base 892785826
Miller-Rabin: testing base 739165157
Miller-Rabin: testing base 1874708212
Miller-Rabin: testing base 1732294655
Miller-Rabin: testing base 1648543222
Miller-Rabin: testing base 659912585
Miller-Rabin: testing base 370113064
Miller-Rabin: testing base 670592259
Miller-Rabin: testing base 481073162
IFAC: factor 1083059304989990299718013026798727465767

COP 4342

Fall 2006 review

is prime
Miller-Rabin: testing base 1340817133
Miller-Rabin: testing base 353959964
Miller-Rabin: testing base 1730244551
Miller-Rabin: testing base 1484512990
Miller-Rabin: testing base 1728249361
Miller-Rabin: testing base 22662352
Miller-Rabin: testing base 905839691
Miller-Rabin: testing base 2098523762
Miller-Rabin: testing base 1062164725
Miller-Rabin: testing base 1715475524
IFAC: factor 31705445367881

is prime
IFAC: prime 31705445367881

appears with exponent = 1
IFAC: main loop: 1 factor left
IFAC: prime 1083059304989990299718013026798727465767

appears with exponent = 1
IFAC: main loop: this was the last factor
IFAC: found 2 large prime (power) factors.
%4 =

COP 4342

Fall 2006 review

[5441 1]

[6473 1]

[31705445367881 1]

[1083059304989990299718013026798727465767 1]

?

COP 4342

Fall 2006 review

GP/Pari

Getting help is easy. The most comprehensive help
comes from firing up the manual pages with ?? . You
can choose a specific topic with ?? TOPIC such as
?? gcd .

COP 4342

Fall 2006 review

Plotting with GP

You can also make simple plots with GP, such as

? ploth(t=0,Pi*2,[sin(t*17)*13,cos(t*52)],1)
%18 = [-12.99999286243945384, 12.99999286243945384, -0.9999978038281271963, 1.000000000000000000]
?

The final “1” indicates that this is plotted as a two-
dimensional parametric function, i.e., the x coordinate
is x = sin(17t), and the y coordinate is y = cos(52t).

COP 4342

Fall 2006 review

Programming with GP

You can program inside of the gp shell. The basic
control structures are

while(CONDITION,CODE)

if(CONDITION,THEN-CODE,ELSE-CODE)

for(VAR=A,B,CODE)

forstep(VAR=A,B,STEP,CODE)

COP 4342

Fall 2006 review

Examples

? for(i=2,10,print(i*i%(i+10)))
4
9
2
10
4
15
10
5
0

COP 4342

Fall 2006 review

Examples

? forstep(i=1,6,0.5,print(i))
1
1.500000000000000000000000000
2.000000000000000000000000000
2.500000000000000000000000000
3.000000000000000000000000000
3.500000000000000000000000000
4.000000000000000000000000000
4.500000000000000000000000000
5.000000000000000000000000000
5.500000000000000000000000000
6.000000000000000000000000000
?

COP 4342

Fall 2006 review

Examples

? x = 0
%1 = 0
? while(x < 10, x = x+1; print(x))
1
2
3
4
5
6
7
8
9
10
?

COP 4342

Fall 2006 review

Examples

? x = 10
%1 = 10

? while(x > 0, if(x % 2 == 0, x = x / 2 , x = x + 7); print(x))
5
12
6
3
10
5
12

[...]

COP 4342

Fall 2006 review

Defining functions

Function definition syntax:

NAME([ARG1, [ARG2, [...]]]) = local([ARG1, [ARG2, [...]]]) ; CODE

NAME([ARG1, [ARG2, [...]]]) =
{

local([ARG1, [ARG2, [...]]]) ; CODE
}

COP 4342

Fall 2006 review

Examples

/* long form */
? first_prime_div(x) =
{

forprime(p=2,x,if(x % p == 0, return(p)))
}
? first_prime_div(35)
%19 = 5
?

/* short form */
? first_prime_div2(x) = forprime(p=2,x,if(x % p == 0, return(p)))
? first_prime_div2(161)
%20 = 7

COP 4342

Fall 2006 review

GMP and pari library programming

Both GMP (Gnu Multi-Precision library) and Pari’s
library are powerful tools for C programming.
Generally, GMP is not as featureful, but it sits very
close to the metal. Pari gives you much wider range
of basic types and functions on those types.

COP 4342

Fall 2006 review

GMP programming

GMP has three basic types: floating point, integers,
and rationals.

Functions are also divided by the same three
classes.

COP 4342

Fall 2006 review

GMP programming

The types are identified by the following naming
convention:

mpz_t # type for integers
mpz_* # names for integer functions

mpf_t # type for floats
mpf_* # names for floating point functions

mpq_t # type for rationals
mpq_* # names for rational functions

COP 4342

Fall 2006 review

Writing a GMP program

Writing a C program with GMP is easy if a bit tedious.
First, you need to pull in the headers:

#include <unistd.h> // or stdio.h and stdargs.h should work
#include <gmp.h>

COP 4342

Fall 2006 review

Writing a GMP program

Next you declare variables:

#include <unistd.h> // or stdio.h and stdargs.h should work
#include <gmp.h>

int main()
{

mpz_t x, y; // types are simple to use
}

COP 4342

Fall 2006 review

Writing a GMP program

Now you must initialize any variables before use:

#include <unistd.h> // or stdio.h and stdargs.h should work
#include <gmp.h>

int main()
{

mpz_t x, y;

mpz_init(x); // critical, otherwise errors are unpredictable
mpz_init(y); //

}

COP 4342

Fall 2006 review

Writing a GMP program

Compiling and linking is simple:

gcc -o prog prog.c -lgmp

COP 4342

Fall 2006 review

Writing a GMP program

When creating a subroutine, make sure you clear
the variables after you finish using them (despite the
static declaration, that’s just a pointer to the actual
dynamically allocated memory for the variable):

COP 4342

Fall 2006 review

Writing a GMP program

#include <unistd.h> // or stdio.h and stdargs.h should work
#include <gmp.h>

void func()
{

mpz_t x;
mpf_t y;

mpz_init(x);
mpf_init(y);

mpz_clear(x); // otherwise you have a memory leak!
mpf_clear(y); //
return;

}

COP 4342

Fall 2006 review

Simple example program

#include <unistd.h>
#include <gmp.h>

char *answers[3] = { "composite", "probably prime", "prime" } ;

int main(int argc, char *argv[])
{

int result;
mpz_t n;
mpz_init(n);
mpz_set_str(n,argv[1],10); // set the value of n from a string in base 10

result = mpz_probab_prime_p(n,20); // do a primality test with 20 repetitions
gmp_printf("%Zd is %s\n",n,answers[result]);

}

COP 4342

Fall 2006 review

Integer functions: assignment

void mpz_set (mpz_t result, mpz_t op) # z = z
void mpz_set_ui (mpz_t result, unsigned long int op) # z = uint
void mpz_set_si (mpz_t result, signed long int op) # z = signed int
void mpz_set_d (mpz_t result, double op) # z = double
void mpz_set_q (mpz_t result, mpq_t op) # z = q (via truncation)
void mpz_set_f (mpz_t result, mpf_t op) # z = f (via truncation)

int mpz_set_str (mpz_t result, char *str, int base)
return 0 means string was completely a number
in the indicated base, -1 means that it wasn’t

void mpz_swap (mpz_t result1, mpz_t result2) # swap two values

COP 4342

Fall 2006 review

Integer functions: arithmetic

void mpz_add (mpz_t sum, mpz_t op1, mpz_t op2) # z = z + z
void mpz_add_ui (mpz_t sum, mpz_t op1, unsigned long int op2) # z = z + uint
void mpz_sub (mpz_t diff, mpz_t op1, mpz_t op2) # z = z - z
void mpz_sub_ui (mpz_t diff, mpz_t op1, unsigned long int op2) # z = z - unit
void mpz_ui_sub (mpz_t diff, unsigned long int op1, mpz_t op2) # z = uint - z
void mpz_mul (mpz_t result, mpz_t op1, mpz_t op2) # z = z * z
void mpz_mul_si (mpz_t result, mpz_t op1, long int op2) # z = z * signed int
void mpz_mul_ui (mpz_t result, mpz_t op1, unsigned long int op2) # z = z * uint
void mpz_neg (mpz_t result, mpz_t op) # z = -z
void mpz_abs (mpz_t result, mpz_t op) # z = |z|

COP 4342

Fall 2006 review

Rational number functions: arithmetic

void mpq_add (mpq_t sum, mpq_t addend1, mpq_t addend2) # q = q + q
void mpq_sub (mpq_t difference, mpq_t minuend, mpq_t subtrahend) # q = q - q
void mpq_mul (mpq_t product, mpq_t multiplier, mpq_t multiplicand) # q = q * q
void mpq_div (mpq_t quotient, mpq_t dividend, mpq_t divisor) # q = q / q
void mpq_neg (mpq_t negation, mpq_t operand) # q = - q
void mpq_abs (mpq_t result, mpq_t op) # q = |q|
void mpq_inv (mpq_t inverted_number, mpq_t number) # q = 1 / q

COP 4342

Fall 2006 review

Floating point functions: arithmetic

void mpf_add (mpf_t sum, mpf_t op1, mpf_t op2) # f = f + f
void mpf_add_ui (mpf_t sum, mpf_t op1, unsigned long int op2) # f = f + uint
void mpf_sub (mpf_t diff, mpf_t op1, mpf_t op2) # f = f - f
void mpf_ui_sub (mpf_t diff, unsigned long int op1, mpf_t op2) # f = uint - f
void mpf_sub_ui (mpf_t diff, mpf_t op1, unsigned long int op2) # f = f - uint
void mpf_mul (mpf_t result, mpf_t op1, mpf_t op2) # f = f * f
void mpf_mul_ui (mpf_t result, mpf_t op1, unsigned long int op2) # f = f *uint
void mpf_div (mpf_t result, mpf_t op1, mpf_t op2) # f = f / f
void mpf_ui_div (mpf_t result, unsigned long int op1, mpf_t op2) # f = uint / f
void mpf_div_ui (mpf_t result, mpf_t op1, unsigned long int op2) # f = f / uint
void mpf_sqrt (mpf_t root, mpf_t op) # f = sqrt(f)
void mpf_sqrt_ui (mpf_t root, unsigned long int op) # f = sqrt(uint)
void mpf_pow_ui (mpf_t result, mpf_t op1, unsigned long int op2) # f = f ˆ f
void mpf_neg (mpf_t negation, mpf_t op) # f = - f
void mpf_abs (mpf_t result, mpf_t op) # f = |f|

COP 4342

Fall 2006 review

Comparison functions

int mpz_cmp (mpz_t op1, mpz_t op2) # returns negative if op1 < op2,
0 if op1 == op2
positive if op1 > op2

int mpz_cmp_ui (mpz_t op1, unsigned long int op2) # same for uint
int mpf_cmp (mpf_t op1, mpf_t op2) # same for floats
int mpf_cmp_ui (mpf_t op1, unsigned long int op2) # same
int mpq_cmp (mpq_t op1, mpq_t op2) # same for rationals
int mpq_cmp_ui (mpq_t op1, unsigned long int num2, unsigned long int den2)

COP 4342

Fall 2006 review

Other useful functions

int mpz_probab_prime_p (mpz_t N, int repetitions)
returns 0 if N definitely composite
1 if probably prime
2 if definitely prime

void mpz_nextprime (mpz_t result, mpz_t N)
result is next prime greater than N

void mpz_gcd (mpz_t result, mpz_t op1, mpz_t op2)
result is GCD(op1,op2)

int mpz_jacobi (mpz_t a, mpz_t b)
jacobi (a/b) Calculate the Jacobi symbol (a/b). This is defined only for b odd.

int mpz_legendre (mpz_t a, mpz_t p)
legendre (a/p)

COP 4342

Fall 2006 review

Other useful functions

unsigned long int mpz_remove (mpz_t result, mpz_t op, mpz_t f)
result = divide out all of a given factor f from op

void mpz_fac_ui (mpz_t result, unsigned long int op)
result = op!

void mpz_bin_ui (mpz_t rop, mpz_t n, unsigned long int k)
computes the binomial coefficient n over k

void mpz_fib_ui (mpz_t fn, unsigned long int n)
computes the nth Fibonacci number

COP 4342

Fall 2006 review

Gnuplot for plotting

The program gnuplot allows you to plot functions
and data:

COP 4342

Fall 2006 review

Running gnuplot

Most options for running gnuplot are invoked from
inside gnuplot ’s shell, so just

% gnuplot

is enough to get you started.

COP 4342

Fall 2006 review

The basic plotting commands

☞ plot → operates either in rectangular or polar/parametric
coordinates

☞ splot → lets you plot surfaces and contours

☞ replot → lets you redo a plot, such as when you
change devices

COP 4342

Fall 2006 review

Plotting functions

The basic command to plot a function of one variable
is

gnuplot> plot f(x)

COP 4342

Fall 2006 review

Functions

where f(x) can be user defined or any of the
standard math library functions:

abs acos acosh arg
asin asinh atan atan2
atanh besj0 besj1 besy0
besy1 ceil column cos
cosh erf erfc exp
floor gamma ibeta igamma
imag int inverf invnorm
lgamma log log10 norm
rand real sgn sin
sinh sqrt tan tanh

COP 4342

Fall 2006 review

Examples of a simple function

gnuplot> f(x) = f(x) = 5 + (-6 + 7*x) * x
gnuplot> plot f(x)

COP 4342

Fall 2006 review

Example of surfaces and contours

COP 4342

Fall 2006 review

Example of surfaces and contours

gnuplot> set parametric # so we can specify u and v
gnuplot> set hidden3d # nice looking mode
gnuplot> set contour base # draw a base projection also
gnuplot> set isosamples 50,50 # lots of sampling
gnuplot> splot u,v,sin(u)+cos(v) # make the plot

COP 4342

Fall 2006 review

Network tools: ssh

Unix is rich in tools for network connectivity.

One of the most useful is ssh . It allows one
to execute commands on a remote machine, either
one at a time or in a “login” session. Unlike its
predecessors telnet , rsh , and rlogin , it provides
a secure session, with both encryption for the session
and improved authentication security.

COP 4342

Fall 2006 review

ssh

The general form:

ssh [-i IDENTITYFILE] [-p PORT] [-x|-X] HOSTNAME | USER@HOSTAME [COMMAND]

COP 4342

Fall 2006 review

ssh

If you just specify the hostname, the username will
default to your current one. If you specify a command,
it will be executed rather than creating a general login
shell.

Using -x turns off X11 forwarding. Using -X allows
you to forward X11 windows via the encrypted session
you are using.

COP 4342

Fall 2006 review

Setting up keys

The general invocation for ssh-keygen is:

ssh-keygen -t [dsa|rsa]

COP 4342

Fall 2006 review

Setting up keys

For example:

[.ssh]$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/langley/.ssh/id_rsa): id_rsa3
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in id_rsa3.
Your public key has been saved in id_rsa3.pub.
The key fingerprint is:
5d:be:5e:50:ab:75:a6:54:bc:16:6e:65:07:9e:ea:f5 langley@machine.cs.fsu.edu

COP 4342

Fall 2006 review

Setting up keys

The contents of the resulting “.pub” file are added
to the public keys kept in the remote machine’s
$HOME/authorized_keys file:

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAq33Tkj7QM68HVK17QB
do8CeyFSTj20Wz89JAJYp4eKD8qDFbDlXg/ngurjIqsuEGRuueIX5Q
h7Re84AaNJdJABYSzZytGR0klO8FFXkBpFEL4bli6ygPAa/vq4cyDV
djmy5S9dulr6afFk/2x3ac4nOgC7LtPSiMh1
UF+N8vpPk= langley@machine.cs.fsu.edu

COP 4342

Fall 2006 review

Setting up keys

Once you have added the .pub file to the
authorized_keys on the remote machine, you need
to make sure that you have the corresponding private
key in your local .ssh subdirectory.

By default, the filenames id_dsa and id_rsa are
used. If you want to login with a private key in a
different file, just use the -i option:

[.ssh]$ ssh -i id_rsa3 langley@machine.cs.fsu.edu

COP 4342

Fall 2006 review

Network tools: rdesktop

You can, if necessary, access Windows machines
running terminal services (or remote desktop) via
rdesktop .

COP 4342

Fall 2006 review

Network tools: rdesktop

COP 4342

Fall 2006 review

Running rdesktop

rdesktop [-f] HOSTNAME

The -f option puts you in fullscreen mode (CTRL-ALT-ENTER to shift back).

COP 4342

Fall 2006 review

Network tools: ftp

ftp is an older interactive method of transferring
files. It is still useful occasionally, though since it is
insecure it should only be run within a safely sheltered
environment.

Invocation:

ftp [-p] HOSTNAME

The option -p is not found on every version of ftp
(modern versions of ftp default to this mode), but

COP 4342

Fall 2006 review

when it is, it allows you to specify passive mode for
data transfers, which can help you use ftp going
through firewalls.

COP 4342

Fall 2006 review

ftp commands

cd RDIR # chdir on the remote machine to RDIR
lcd LDIR # chdir on the local machine to LDIR
dir [RDIR] # get a directory of the remote directory RDIR (defaults to .)
get RNAME [LNAME] # get a single file RNAME from the remote machine, using

LNAME as the local name if specified
put LNAME [RNAME] # put a single file LNAME from the local machine to the remote

machine, using RNAME as the remote name if specified
mget RNAMEPATTERN # get multiple files fitting RNAMEPATTERN (expansion is done

remotely)
mput LNAMEPATTERN # put multiple files fitting LNAMEPATTERN (expansion is done

#locally)
hash # show a hash mark every time 1k is sent or received
del # delete a remote file
mdel RNAMEPATTERN # delete remote files fitting pattern (expansion is done remotely)
quit # exit ftp
![CMD] # if no CMD is given, start a shell; otherwise, execute the CMD

locally

COP 4342

Fall 2006 review

Sending file trees

The easiest way to send a file tree with ftp is to use
tar first, and then ftp the tarfile. For example:
[2006-Fall]$ tar cfz /tmp/somedir.tgz somedir
[2006-Fall]$ ftp ftp.redhat.com
Connected to ftp.redhat.com.
220 Red Hat FTP server ready. All transfers are logged. (FTP) [no EPSV]
Name (ftp.redhat.com:ftp): ftp
331 Please specify the password.
Password:langley@ftp
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> lcd /tmp
Local directory now /tmp
ftp> put somedir.tgz

COP 4342

Fall 2006 review

telnet

Like ftp , telnet is an older, insecure program which
should be avoided outside of secure environments
unless you are using it in a situation for where security
is not relevant, such as testing a mail server.

Invoking:

telnet HOSTNAME [PORT]

COP 4342

Fall 2006 review

Using telnet

One of the most useful ways to still use telnet is
for testing mail servers:

COP 4342

Fall 2006 review

[2006-Fall]$ telnet mail.cs.fsu.edu 25
Trying 128.186.120.4...
Connected to mail.cs.fsu.edu (128.186.120.4).
Escape character is ’ˆ]’.
220 mail.cs.fsu.edu ESMTP Postfix
helo machine.cs.fsu.edu
250 mail.cs.fsu.edu
mail from: <langley@cs.fsu.edu>
250 Ok
rcpt to: <langley@cs.fsu.edu>
250 Ok
data
354 End data with <CR><LF>.<CR><LF>
Subject: This is a test

This message is a test message.

.
250 Ok: queued as B01E3F2F50
quit
221 Bye
Connection closed by foreign host.

COP 4342

Fall 2006 review

The r family

The “r” programs rlogin , rsh , and rcp should all
be avoided these days since the “s” programs ssh and
scp are more than adequate replacements.

COP 4342

Fall 2006 review

Web browsers, email clients

There are a large number of web browsers and email
clients available on Unix machines.

The traditional line-oriented email client is mail ; two
more recent ones are pine and elm .

COP 4342

Fall 2006 review

mail

[2006-Fall]$ mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/spool/mail/langley": 2 messages 2 new
>N 1 root@machine.cs.fsu.e Thu Oct 20 15:54 16/630 "test456"

N 2 root@machine.cs.fsu.e Thu Oct 20 15:54 16/627 "test"
& x

COP 4342

Fall 2006 review

mail

The mail program is very lightweight, and you can
quickly read mail messages using it.

If you use “q” to quit, the state of your message box
will be updated to indicate things such as whether or
not you have read a message. If you use “x”, the
message box is not updated.

COP 4342

Fall 2006 review

elm and pine : deprecated

Both elm and pine are designed as “screen”
mailers rather than just a line mailer.

While some people prefer them, they lack many
features that other mailers have: mail is fast and
lightweight, and graphic mailers generally are able to
handle imap and pop , which makes handling multiple
mailboxes uniformly very simple.

COP 4342

Fall 2006 review

links (a.k.a. lynx or elinks)

The program links is a nice screen-based webbrowser. While it doesn’t handle such as things as flash very

well, it is a very responsive webbrowser.

COP 4342

Fall 2006 review

links (a.k.a. lynx or elinks)

Using the “g” command

COP 4342

Fall 2006 review

links (a.k.a. lynx or elinks)

A typical web page rendered in links .

COP 4342

Fall 2006 review

links (a.k.a. lynx or elinks)

A typical web page rendered in links .

COP 4342

Fall 2006 review

Default keybindings in links

PageDown page down
" " page down
PageUp page up
b page up
Down down
Up up
Ctrl-C copy clipboard
Ctrl-P scroll up
Ctrl-N scroll down
[scroll left
] scroll right
Home home
Ctrl-A home
Ctrl-E end
Enter enter
Left back
d download
/ search
? search back

COP 4342

Fall 2006 review

n find-next
Ctrl-R reload
g goto url
a add bookmark
s bookmark manager
q quit

COP 4342

Fall 2006 review

Graphic webbrowsing and email

You can now run a variety of graphic webbrowsers
and email clients in many Unix/Linux environments.

Browsers:

epiphany
firefox
galeon
konqueror
mozilla

COP 4342

Fall 2006 review

Graphic webbrowsing and email

Email clients:

evolution
mozilla mail
thunderbird
xmail

(Another popular option with email is to use a webbrowser reader, such as squirrelmail or

openwebmail .)

COP 4342

Fall 2006 review

Graphic webbrowsing and email

Most graphic email clients can gracefully handle
multiple mailboxes on multiple servers. One of the
easiest ways to do this is via imap , which allows you
to leave the mail on the server rather than the pop
paradigm of pulling it to the local machine.

COP 4342

Fall 2006 review

dd

The dd program is a surprisingly powerful one. It can
be used for everything from copying a disk partition to
converting ASCII files to EBCDIC.

COP 4342

Fall 2006 review

dd conversions

ascii # from EBCDIC to ASCII

ebcdic # from ASCII to EBCDIC

ibm # from ASCII to alternated EBCDIC

lcase # change upper case to lower case

ucase # change lower case to upper case

swab # swap every pair of input bytes

COP 4342

Fall 2006 review

dd copying

Copying raw block-structured devices is quite easy:

dd if=/dev/hda1 of=/dev/hda2

COP 4342

Fall 2006 review

dd other tricks

You can also remove bytes from the beginning or the
end of a file:

dd bs=1 skip=4000 # skip over the first 4000 characters

dd count=10000 bs=1 # copy only the first 10000 characters

COP 4342

Fall 2006 review

csplit

csplit (context split) lets you split a file by
specifying a pattern for each split point.

csplit /PATTERN/ /PATTERN/|COUNT

COP 4342

Fall 2006 review

csplit

For instance, say you want to split the /etc/termcap
file into 1200 separate definitions.

You can easily do this with the single line:

csplit /etc/termcap ’/ˆ[a-z]/’ ’{*}’ # the second item is a repeat counter

COP 4342

Fall 2006 review

csplit

You can then get 1300+ files, such as

[langley@sophie tmp]$ head -1000 xx*
==> xx01 <==
dumb|80-column dumb tty:\

:am:\
:co#80:\
:bl=ˆG:cr=ˆM:do=ˆJ:sf=ˆJ:

==> xx02 <==
unknown|unknown terminal type:\

:gn:tc=dumb:

==> xx03 <==
lpr|printer|line printer:\

:bs:hc:os:\
:co#132:li#66:\
:bl=ˆG:cr=ˆM:do=ˆJ:ff=ˆL:le=ˆH:sf=ˆJ:

COP 4342

Fall 2006 review

==> xx04 <==
glasstty|classic glass tty interpreting ASCII control characters:\

:am:bs:\
:co#80:\
:bl=ˆG:cl=ˆL:cr=ˆM:do=ˆJ:kd=ˆJ:kl=ˆH:le=ˆH:nw=ˆMˆJ:ta=ˆI:

==> xx05 <==
vanilla:\

:bs:\
:bl=ˆG:cr=ˆM:do=ˆJ:sf=ˆJ:

==> xx06 <==
ansi+local1:\

:do=\E[B:le=\E[D:nd=\E[C:up=\E[A:

==> xx07 <==
ansi+local:\

:DO=\E[%dB:LE=\E[%dD:RI=\E[%dC:UP=\E[%dA:tc=ansi+local1:

==> xx08 <==
ansi+tabs:\

:bt=\E[Z:ct=\E[2g:st=\EH:ta=ˆI:

COP 4342

Fall 2006 review

==> xx09 <==
ansi+inittabs:\

:it#8:tc=ansi+tabs:

==> xx10 <==
ansi+erase:\

:cd=\E[J:ce=\E[K:cl=\E[H\E[J:

==> xx100 <==
arm100|arm100-am|Arm(RiscPC) ncurses compatible (for 640x480):\

:am:ms:ut:xn:xo:\
:co#80:it#8:li#30:\
:@8=\E[M:DO=\E[%dB:K1=\E[q:K2=\E[r:K3=\E[s:K4=\E[p:K5=\E[n:\
:LE=\E[%dD:RA=\E[?7l:RI=\E[%dC:SA=\E[?7h:UP=\E[%dA:\
:ac=‘‘aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}˜˜:\
:ae=ˆO:as=ˆN:bl=ˆG:cb=\E[1K:cd=\E[J:ce=\E[K:cl=\E[H\E[J:\
:cm=\E[%i%d;%dH:cr=ˆM:cs=\E[%i%d;%dr:ct=\E[3g:do=ˆJ:\
:eA=\E(B\E)0:ho=\E[H:k0=\E[y:k1=\E[P:k2=\E[Q:k3=\E[R:\
:k4=\E[S:k5=\E[t:k6=\E[u:k7=\E[v:k8=\E[l:k9=\E[w:k;=\E[x:\
:kb=ˆH:kd=\E[B:ke=\E[?1l\E>:kl=\E[D:kr=\E[C:ks=\E[?1h\E=:\
:ku=\E[A:le=ˆH:mb=\E[5m:md=\E[1m:me=\E[m\017:mk=\E[8m:\
:mr=\E[7m:nd=\E[C:rc=\E8:\
:rs=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h:\
:..sa=\E[0%?%p1%p6%|%t;1%;%?%p2%t;4%;%?%p1%p3%|%t;7%;%?%p4%t;5%;%?%p7%t;8%;m%?%p9%t\016%e\017%;$<2>:\
:sc=\E7:se=\E[m:sf=ˆJ:so=\E[7m:sr=\EM:st=\EH:ta=ˆI:ue=\E[m:\

COP 4342

Fall 2006 review

:up=\E[A:us=\E[4m:tc=ecma+sgr:tc=klone+color:

==> xx1000 <==
ncr260wy60wpp|NCR 2900_260 wyse 60 wide mode:\

:co#132:\
:cm=\Ea%i%dR%dC:\
:is=\Ee6\E˜4\E+\Ed/\Ee1\Ed*\Er\EO\E‘1\E‘;\E‘@\E˜!\E"\Ee4\Ex@\E‘9\Ee7:\
:rs=\Ee6\E˜4\E+\Ed/\Ee1\Ed*\Er\EO\E‘1\E‘;\E‘@\E˜!\E"\Ee4\Ex@\E‘9\Ee7:\
:tc=ncr260wy60pp:

COP 4342

Fall 2006 review

csplit

Alternatively, you can also just specify arbitray line
numbers:

% csplit /etc/termcap 4 10 110
110
107
5023
734959

COP 4342

Fall 2006 review

Portable anymaps

Way back, there was a package called “PBM”, the
Portable BitMap package. It allowed you to convert
files of many different graphic types to other types,
and it allowed you to manipulate these files from the
command line.

For instance, when I did the window dumps for some
of the lectures, I used this package something along
these lines:

sleep 10 ; xwd > /tmp/xwd.1

COP 4342

Fall 2006 review

xwdtopnm < /tmp/xwd.1 | pnmtopng > /tmp/rdesktop01.png

COP 4342

Fall 2006 review

The conversions

PNM conversions
giftopnm # GIF to pnm
rasttopnm # Sun rasterfile to pnm
tifftopnm # tiff to pnm
xwdtopnm # X window dump format to pnm

pnmtotiff # pnm to tiff
pnmtoxwd # pnm to xwd
pnmtorast # pnm to Sun rasterfile
pnmtops # convert to postscript

PPM conversions
gouldtoppm # Gould scanner file to ppm
ilbmtoppm # Amiga format to ppm

COP 4342

Fall 2006 review

ppmtogif # gif to ppm
pgmtoppm # convert pgm to PPM (convert grayscale to color)

COP 4342

Fall 2006 review

Manipulations

ppmdither # dither a file (reduce the number of colors used)
ppmdepth # change the number of planes in an image
ppmquant # reduce the number of colors used in a file
ppmquantall # run ppmquant over many files so they share common colormap
ppmforge # create fractal forgeries of clouds, stars, and planets
pnmcrop # crop borders from an image
pnmcut # extract arbitrary rectangle from an image
pnmarith # add, subtract, multiply, abs(diff) two images
pnmenlarge # enlarge an image by integer factor
pnmscale # arbitrary resize an image
pbmreduce # reduce image by integer factor
pnmsmooth # smooth a picture (useful after resizing)
pnmfile # describe file’s image characteristics
pnmflip # flip an image
pnmgamma

COP 4342

Fall 2006 review

ppmforge fun

Image generated with ppmforge

ppmforge -stars 100 -night -width 200 -height 200 | pnmtopng > /tmp/xyz.png

COP 4342

