
Fall 2006 Building blocks

Building blocks for Unix power tools

Now that we have given a good overview of a lot of
the better Unix tools, I want to take some time to talk
about our toolset for building Unix programs.

The most important of these are the system calls.

COP 4342



Fall 2006 Building blocks

Building blocks for Unix power tools

A Unix system call is a direct request to the kernel
regarding a system resource. It might be a request
for a file descriptor to manipulate a file, it might be a
request to write to a file descriptor, or any of hundreds
of possible operations.

These are exactly the tools that every Unix program
is built upon.

COP 4342



Fall 2006 Building blocks

File descriptor and file descriptor
operations

In some sense, the mainstay operations are those
on the file system.

COP 4342



Fall 2006 Building blocks

File descriptor and file descriptor
operations

Unlike many other resources which are just artifacts
of the operating system and disappear at each reboot,
changing a file system generally is an operation
that has some permanence (although of course it
is possible and even common to have “RAM” disk
filesystems since they are quite fast, and for items
that are meant to be temporary anyway, they are quite
acceptable.)

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

A file descriptor is an int. It provides stateful access
to an i/o resource such as a file on a filesystem, a
pseudo-terminal, or a socket to a tcp session.

open() -- create a new file descriptor to access a file
close() -- deallocate a file descriptor

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

dup() -- duplicate a file descriptor
dup2() -- duplicate a file descriptor

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

fchmod() -- change the permissions of a file associated with a file
-- descriptor

fchown() -- change the ownership of a file assocaited with a file

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

fcntl() -- miscellaneous manipulation of file descriptors: dup(), set
-- close on exec(), set to non-blocking, set to asynchronous
-- mode, locks, signals

ioctl() -- manipulate the underlying ‘‘device’’ parameters for

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

flock() -- lock a file associated with a file descriptor

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

pipe() -- create a one-way association between two file
-- descriptors so that output from
-- one goes to the input of the other

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

select() -- multiplex on pending i/o to or from a set of file descriptors

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

read() -- send data to a file descriptor
write() -- take data from a file descriptor

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

readdir() -- raw read of directory entry from a file descriptor

COP 4342



Fall 2006 Building blocks

Important file descriptor calls

fstat() -- return information about a file associated with a fd: inode,
perms, hard links, uid, gid, size, modtimes

fstatfs() -- return the mount information for the filesystem that the file
-- descriptor is associated with

COP 4342



Fall 2006 Building blocks

Important filesystem operations

In addition to using the indirect means of file
descriptors, Unix also offers a number of direct
functions on files.

access() -- returns a value indicating if a file is accessible
chmod() -- changes the permissions on a file in a filesystem
chown() -- changes the ownership of a file in a filesystem

COP 4342



Fall 2006 Building blocks

Important filesystem operations

link() -- create a hard link to a file
symlink() -- create a soft link to a file

COP 4342



Fall 2006 Building blocks

Important filesystem operations

mkdir() -- create a new directory
rmdir() -- remove a directory

COP 4342



Fall 2006 Building blocks

Important filesystem operations

stat() -- return information about a file associated with a fd: inode,
perms, hard links, uid, gid, size, modtimes

statfs() -- return the mount information for the filesystem that the file
-- descriptor is associated with

COP 4342



Fall 2006 Building blocks

Signals

alarm -- set an alarm clock for a SIGALRM to be sent to a process
-- time measured in seconds

getitimer -- set an alarm clock in fractions of a second to deliver either
-- SIGALRM, SIGVTALRM, SIGPROF

COP 4342



Fall 2006 Building blocks

Signals

kill -- send an arbitrary signal to an arbitrary process
killpg -- send an arbitrary signal to all processes in a process group

COP 4342



Fall 2006 Building blocks

Signals

sigaction -- interpose a signal handler (can include special ‘‘default’’ or
-- ‘‘ignore’’ handlers)

sigprocmask -- change the list of blocked signals

COP 4342



Fall 2006 Building blocks

Signals

wait -- check for a signal (can be blocking or non-blocking) or child exiting
waitpid -- check for a signal from a child process (can be general or specific)

COP 4342



Fall 2006 Building blocks

Modifying the current process’s state

chdir -- change the working directory for a process to dirname
fchdir -- change the working directory for a process via fd
chroot -- change the root filesystem for a process

COP 4342



Fall 2006 Building blocks

Modifying the current process’s state

execve -- execute another binary in this current process
fork -- create a new child process running the same binary
clone -- allows the child to share execution context (unlike fork(2))
exit -- terminate the current process

COP 4342



Fall 2006 Building blocks

Modifying the current process’s state

getdtablesize -- report how many file descriptors this process can have
-- active simultaneously

COP 4342



Fall 2006 Building blocks

Modifying the current process’s state

getgid -- return the group id of this process
getuid -- return the user id of this process
getpgid -- return process group id of this process
getpgrp -- return process group’s group of this process

COP 4342



Fall 2006 Building blocks

Modifying the current process’s state

getpid -- return the process id of this process
getppid -- return parent process id of this process
getrlimit -- set a resource limit on this process (core size, cpu time,

-- data size, stack size, and others)
getrusage -- find amount of resource usage by this process

COP 4342



Fall 2006 Building blocks

Modifying the current process’s state

nice -- change the process’s priority

COP 4342



Fall 2006 Building blocks

Networking

socket -- create a file descriptor

bind -- bind a file descriptor to an address, such a tcp port
listen -- specify willingness for some number of connections to be

-- blocked waiting on accept()
accept -- tell a file descriptor block until there is a new connection

connect -- actively connect to listen()ing socket

setsockopt -- set options on a given socket associated with fd, such out-of-band
-- data, keep-alive information, congestion notification, final timeout,
-- and so forth (see man tcp(7))

getsockopt -- retrieve information about options enabled for a given connection from fd

getpeername -- retrieve information about other side of a connection from fd
getsockname -- retrieve information this side of a connection from fd

COP 4342


