
Fall 2006 Program Development 4

Flex and lexical analysis

From the area of compilers, we get a host of tools to

convert text files into programs. The first part of that

process is often called lexical analysis, particularly for such

languages as C.

A good tool for creating lexical analyzers is flex. It

takes a specification file and creates an analyzer, usually

called lex.yy.c.

COP 4342

Fall 2006 Program Development 4

Lexical analysis terms

☞ A token is a group of characters having collective

meaning.

☞ A lexeme is an actual character sequence forming a

specific instance of a token, such as num.

☞ A pattern is a rule expressed as a regular expression

and describing how a particular token can be formed.

For example, [A-Za-z][A-Za-z_0-9]* is a rule.

COP 4342

Fall 2006 Program Development 4

☞ Characters between tokens are called whitespace; these

include spaces, tabs, newlines, and formfeeds. Many

people also count comments as whitespace, though since

some tools such as lint/splint look at comments, this

conflation is not perfect.

COP 4342

Fall 2006 Program Development 4

Attributes for tokens

Tokens can have attributes that can be passed back to

the calling function.

Constants could have the value of the constant, for

instance.

Identifiers might have a pointer to a location where

information is kept about the identifier.

COP 4342

Fall 2006 Program Development 4

Some general approaches to lexical analysis

Use a lexical analyzer generator tool, such as flex.

Write a one-off lexical analyzer in a traditional

programming language.

Write a one-off lexical analyzer in assembly language.

COP 4342

Fall 2006 Program Development 4

Flex - our lexical analyzer generator

Is linked with its library (libfl.a) using -lfl as a

compile-time option.

Can be called as yylex().

It is easy to interface with bison/yacc.

COP 4342

Fall 2006 Program Development 4

l file → lex → lex.yy.c

lex.yy.c and → gcc → lexical analyzer

other files

input stream → lexical analyzer → actions taken

when rules applied

COP 4342

Fall 2006 Program Development 4

Flex specifications

Lex source:

{ definitions }
%%
{ rules }
%%
{ user subroutines }

COP 4342

Fall 2006 Program Development 4

Definitions

☞ Declarations of ordinary C variables and constants.

☞ flex definitions

COP 4342

Fall 2006 Program Development 4

Rules

The form of rules are:

regularexpression action

The actions are C/C++ code.

COP 4342

Fall 2006 Program Development 4

Flex regular expressions

s string s literally

\c character c literally, where c would normally be a lex operator

[s] character class

^ indicates beginning of line

[^s] characters not in character class

[s-t] range of characters

s? s occurs zero or one time

COP 4342

Fall 2006 Program Development 4

Flex regular expressions, continued

. any character except newline

s* zero or more occurrences of s

s+ one or more occurrences of s

r|s r or s

(s) grouping

$ end of line

s/r s iff followed by r (not recommended) (r is *NOT* consumed)

s{m,n} m through n occurences of s

COP 4342

Fall 2006 Program Development 4

Examples of regular expressions in flex

a* zero or more a’s

.* zero or more of any character except newline

.+ one or more characters

[a-z] a lowercase letter

[a-zA-Z] any alphabetic letter

[^a-zA-Z] any non-alphabetic character

a.b a followed by any character followed by b

rs|tu rs or tu

COP 4342

Fall 2006 Program Development 4

a(b|c)d abd or acd

^start beginning of line with then the literal characters start

END$ the characters END followed by an end-of-line.

COP 4342

Fall 2006 Program Development 4

Flex actions

Actions are C source fragments. If it is compound, or

takes more than one line, enclose with braces (’{’ ’}’).

Example rules:

[a-z]+ printf("found word\n");
[A-Z][a-z]* { printf("found capitalized word:\n");

printf(" ’%s’\n",yytext);
}

COP 4342

Fall 2006 Program Development 4

Flex definitions

The form is simply

name definition

The name is just a word beginning with a letter (or

an underscore, but I don’t recommend those for general

use) followed by zero or more letters, underscore, or dash.

The definition actually goes from the first non-whitespace

character to the end of line. You can refer to it via

{name}, which will expand to (definition). (cite: this

COP 4342

Fall 2006 Program Development 4

is largely from “man flex”.)

Tattoueba:

DIGIT [0-9]

Now if you have a rule that looks like

{DIGIT}*\.{DIGIT}+

that is the same as writing

([0-9])*\.([0-9])+

COP 4342

Fall 2006 Program Development 4

An example Flex program

/* either indent or use %{ %} */
%{

int num_lines = 0;
int num_chars = 0;

%}
%%
\n ++num_lines; ++num_chars;
. ++num_chars;
%%
int main(int argc, char **argv)
{
yylex();
printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);
}

COP 4342

Fall 2006 Program Development 4

Another example program

digits [0-9]
ltr [a-zA-Z]
alphanum [a-zA-Z0-9]
%%
(-|\+)*{digits}+ printf("found number: ’%s’\n", yytext);
{ltr}(_|{alphanum})* printf("found identifer: ’%s’\n", yytext);
’.’ printf("found character: {%s}\n", yytext);
. { /* absorb others */ }
%%
int main(int argc, char **argv)
{

yylex();
}

COP 4342

