
Fall 2006 Program Development 3

Source level debugging

☞ Source level debugging is a nice help when debugging

execution problems.

☞ To enable source level debugging with gcc/g++, you

should use the -g option.

COP 4342



Fall 2006 Program Development 3

Source level debugging

☞ The symbol table information includes the

correspondence between

➳ statements in the source and locations of instructions

in the executable

➳ variables in the source and locations in the data areas

of the executable

COP 4342



Fall 2006 Program Development 3

GDB: the Gnu debugger

☞ GDB is a line oriented debugger where actions are

initiated by typing in commands at a prompt.

☞ It can be invoked for executables created by gcc and

g++.

COP 4342



Fall 2006 Program Development 3

GDB: the Gnu debugger

☞ General capabilities

☞ Starting and exiting your program from the debugger.

☞ Pausing and continuing execution of your program

while in the debugger.

☞ Examining the state of your program.

☞ Changing the state of your program.

COP 4342



Fall 2006 Program Development 3

Starting and stopping GDB

☞ You can start gdb along these lines

gdb YOURPROGRAM [core|pid]

☞ If you don’t specify a core file or a process id, then you

can start a new execution of YOURPROGRAM with the

run command.

COP 4342



Fall 2006 Program Development 3

Starting and stopping GDB

☞ You can specify whatever arguments you like after run,
including i/o redirection.

run 123 > /tmp/out

☞ You can exit gdb with the quit command.

COP 4342



Fall 2006 Program Development 3

Stopping and continuing execution of your
program in gdb

☞ You can set and remove breakpoints.

☞ You can also step through execution, and as well simply

continue it.

COP 4342



Fall 2006 Program Development 3

Setting and removing breakpoints

☞ You can set a breakpoint to stop either when a certain

location in the source is reached, or when a condition

occurs.

☞ The general form is

break [SOMEFUNCTION|SOMELINENUM] [if SOMECONDITIION]

☞ Specifying just break will set a breakpoint at your

current location.

COP 4342



Fall 2006 Program Development 3

☞ You can remove a breakpoint with

delete BREAKPOINT

COP 4342



Fall 2006 Program Development 3

Examples

(gdb) break sets a breakpoint at the current line

(gdb) break 50 sets a breakpoint at line 50 of the current file

(gdb) break main sets a breakpoint at routine main()

(gdb) break 10 if i == 66 break execution at line 10 if the variable i
has the value 10

(gdb) delete 3 remove the 3rd breakpoint

(gdb) delete deletes all breakpoints

COP 4342



Fall 2006 Program Development 3

Stepping through execution

☞ You can step to the next statement, or you can step

into a function.

☞ The general form is

step [N] # also, "s [N]" is generally defined as "step [N]" for most versions of gdb

where N indicates the number of steps to take,

defaulting to 1 if not specified. Execution will not

continue through a breakpoint (or program termination.)

COP 4342



Fall 2006 Program Development 3

Nexting through execution

Often, you don’t want to step into a function. You

can use the next command to simply go to the next

statement rather than stepping into a function specified

on the current line.

next [N] # also, "n [N]" is generally defined as the same

COP 4342



Fall 2006 Program Development 3

Continuing execution

You can continue execution up to the next breakpoint

found, or program termination.

cont [N] # also, "c [N]" is generally defined as the same

N here specifies skip the first N-1 breakpoints.

COP 4342



Fall 2006 Program Development 3

Continuing execution until the end of a
loop

You can use the until command to execute your

program until it reaches a source line greater than the one

that you are currently on. If you are not at a jump back,

this is the same as the next command. If you are at a

back jump such as in a looping construct, then this will

let you execute until the point that you have exited the

loop.

COP 4342



Fall 2006 Program Development 3

Examining the state of your program

☞ Listing source code.

☞ Printing the values of expressions.

☞ Displaying the values of expressions.

☞ Printing a stack trace.

☞ Switching context in a trace.

COP 4342



Fall 2006 Program Development 3

Listing source code

You can list source code a specified line or function.

The general form is

list [[FILENAME:]LINENUM[,LINENUM]]|[[FILENAME:]FUNCTIONNAME]

If you don’t specify anything, then you will get 10 lines

from the current program location, or 10 more lines if you

have already listed the current program location.

COP 4342



Fall 2006 Program Development 3

Listing source code examples

(gdb) list # list 10 lines from the current location

(gdb) list 72 # list lines 67-76 (the 10 lines around line 72

(gdb) list calc.c:55 # list lines 50-59 of the file calc.c

(gdb) list 80,95 # list lines 80..95 of the current file

(gdb) list somefunc # list the function somefunc

(gdb) list cal.c:january # list the january function in cal.c

COP 4342



Fall 2006 Program Development 3

Printing the values of expressions

You can print the value of expressions involving variables

based on the state of the execution of the process. You

can also specify to some degree the formatting of those

expressions, such as asking for hexadecimal or octal values.

print[/FMT] EXPRESSION

The FMT can be ’o’ for octal, ’x’ for hexadecimal, ’d’

for signed decimal, ’f’ for float, ’u’ for unsigned decimal,

’t’ for binary, and ’a’ for address. If no EXPRESSION is

COP 4342



Fall 2006 Program Development 3

given, the last one is used.

COP 4342



Fall 2006 Program Development 3

Example print commands

print i # prints the value of the variable i
print a[i] # prints the value of a[i]
print/t a[i] # prints a[i] in binary
print a[i]-x # prints the value of a[i] - x
print a # prints the values in array a
print p # prints the value of the pointer p
print *p # prints the value pointed to by p
p i # prints the value of i

COP 4342



Fall 2006 Program Development 3

Displaying the values of expressions

The display command is very similar to the print
command, but the value is displayed after each step or

continue command.

display[/FMT] EXPRESSION

COP 4342



Fall 2006 Program Development 3

Undisplaying expression values

You can use the undisplay command to stop displaying

expressions.

COP 4342



Fall 2006 Program Development 3

Printing a stack trace

☞ You can print a trace of the activation records of the

stack of functions called up until this point.

☞ The trace shows the names of the routines called, the

values of the arguments passed to each routine, and the

line number last executed in that routine.

☞ The general form is

where [N]

COP 4342



Fall 2006 Program Development 3

If N is positive, then only the last N activation records

are shown. If N is negative, then only the first N

activation records are shown.

COP 4342



Fall 2006 Program Development 3

Switching context in the stack

You can up or down in the stack with up [N] and down
[N].

COP 4342



Fall 2006 Program Development 3

Changing state in your program execution

You can modify the values of variables while executing

in order to avoid making code changes just for the sake

of debugging.

For instance,

set i = 10 # set the variable i to the value 10
set a[i] = 4 # set a[i] to 4

COP 4342



Fall 2006 Program Development 3

Making impromptu calls to functions

You can call simply invoke a function from the gdb

prompt. This can be very useful to call debugging routines

that print the values of complex structures that might be

difficult to parse with just the gdb print command.

call FUNCTION(ARGS)

COP 4342



Fall 2006 Program Development 3

Other useful features

One of the most useful things that you can do is to

simply run a program that is segfaulting and see where

the problem is occuring. Or if you have a core file from a

segfaulted program, you can specify to read its state with

gdb PROGNAME CORENAME.

You can CTL-C when you are in a program that is in

an endless loop and actually find out where the loop is.

COP 4342



Fall 2006 Program Development 3

Command shortcuts

You can create and use aliases, or use the fact

that commands only need as many letters as make the

command unique (and you can use TAB for completion).

COP 4342


