
Chapter 9: Data Abstraction and Object
Orientation

October 30, 2017

Three fundamental concepts to object-oriented
programming

I Encapsulation
I Inheritance
I Dynamic method binding

Object-oriented programming

I What we would like from any module-based approach:

I Reduce conceptual load by minimizing the level of detail
needed at any one point

I Fault containment, so that programmers don’t misuse a
component, and limiting where a component might be used

I Independence: it would be nice to be able to be agnostic with
respect to the actual implementation; if we later change out
one implementation for another, then it should not have any
evident impact on code using the module

Object-orientation

I However, just using modules alone doesn’t seem to be
adequate; when you want to extend functionality or replace
some method, module syntax alone doesn’t seem to have any
convenient way of expressing these minor modifications.

Refinement

I “Object-orientation can be seen as an attempt to enhance
opportunites for code reuse by making it easy to define new
abstractions as extensions or refinements of existing
abstractions.” [page 451]

Derivation

I In an object-oriented language, one of the more powerful ideas
is that the idea of a derived class, which inherits the fields and
methods of its parent class, and which can be augmented,
hidden, or supplanted by the programmer with other
functionality.

Encapsulation and inheritance

I Modules: some languages allow a module to be split into the
declaration and definitions needed for outside consumers
(often called a “header”), and the internal bits needed for the
implementation (generally called the “body”).

I As the book points out, it is common for a method to utilize
a “self” (or “this” or “current”) that allows the module to
refer to the calling instance variable; this generally can be
regarded as turning a call of the form var->method(x) to
method(var,x).

Modules and types

I It has been common for languages to conflate modules and
types.

I Here’s an introduction to Haskell’s rules for modules, for
instance.

Initialization and finalization

I Generally, initialization in an object-oriented paradigm has
been called a “constructor”; some languages have also allowed
for “destructors”, though this is comparatively rare.

I Lots of issues with constructors can arise: conventions on
passing arguments and their meaning; execution order in
deeply structured (or even multiply inherited!) objects that
have many levels of constructors; garbage collection for
languages that have no explicit destructors. . .

Dynamic method binding and virtual methods

I Consider the situation where each of the following derived
classes have redefined a method called print classes():

class person { ...

class student : public person { ...

class professor : public person { ...

student s;

professor p;

person *x = &s;

person *y = &p;

x->print_classes();

y->print_classes();

Smalltalk

I Smalltalk is where the ideas for object orientation were first
fleshed out, and in many ways is the canonical exemplar of
object orientation, using only dynamic type-checking and
dynamic method lookup. This imposes speed penalties that
are not present in languages that allow the compiler to do
more of the work.

