
Chapter 4 - Semantic Analysis

October 4, 2017



The role of the semantic analyzer

I Compilers use semantic analysis to enforce the static semantic
rules of a language

I It is hard to generalize the exact boundaries between semantic
analysis and the generation of intermediate representations (or
even just straight to final representations); this demarcation is
the logical boundary between the front-end of a compiler
(lexical analysis and parsing) and the back-end of the compiler
(intermediate representations and final code.)



The role of the semantic analyzer

I For instance, a completely separated compiler could have a
well-defined lexical analysis and parsing stage generating a
parse tree, which is passed wholesale to a semantic analyzer,
which could then create a syntax tree and populate a symbol
table, and then pass it all on to a code generator;

I Or a completely interleaved compiler could intermix all of
these stages, literally generating final code as part of the
parsing engine.



The role of the semantic analyzer

I The text focuses on an organization where the parser creates
a syntax tree (and no full parse tree), and semantic analysis is
done over a separate traversal of the syntax tree.



Dynamic checks

I The Tony Hoare observation about disabling semantic checks
being akin to a sailing enthusiast who wears a life jacket when
training on dry land, but removes it when going to sea.

I Assertions, invariants, preconditions, and post-conditions: let
the programmer express logical requirements for values. (If
you continue along this route, you see run into thickets of
various ideas about formalizing semantics, such as operational
semantics, axiomatic semantics, and denotational semantics.)



Static analysis

I “In general, compile-time algorithms that predict run-time
behavior are known as static analysis.”

I In Ada, ML, and Haskell, type checking is static. (An
amusing, related paper: Dynamic Typing in Haskell).



Static analysis

I Language design is where you make the decisions that drive
what can be statically checked.



Attribute grammars

I Attribute grammars add two concepts to a CFG:

I Semantic rules (also called “semantic actions” or “grammar
rules”)

I Attributes; these are values associated with terminals and
non-terminals. Synthesized attributes are derived from
children; inherited attributes come a parent or a sibling;
L-attributes (“L” from “Left-to-Right, all in a single pass”)
come either from a left sibling or from the parent.



Evaluating attributes

I The process of assigning values to a tree is called annotation
or decoration.



Evaluating attributes in an S-attributed grammar

I If all of the attributes in an attribute grammar are synthesized
(i.e., derived from children), then the attributed grammar is
said to be “S-attributed”.

I All of the rules assign attributes only to the left-hand side
(LHS) symbol, and all are based on the set of attribute values
of the right-hand side (RHS) symbols.



Evaluating attributes that are inherited

I If any of the attributes in an attribute grammar are inherited
(i.e., a RHS symbol which has an attribute derived either from
the LHS or from a left sibling symbol), then the attributed
grammar is said to be “L-attributed”.



Evaluating attributes that are inherited

I Consider the following (Lemon syntax rather than the text’s
syntax):

expr(A) ::= CONST(B) exprtail(C).

{C.st = B.val; A.val = C.val}

exprtail(A) ::= MINUS CONST(B) exprtail(C).

{C.st = C.st - B.val; A.val = C.val}

exprtail(A) ::= .

{A.val = A.st}



Evaluating attributes that are inherited

expr(A) ::= CONST(B) exprtail(C).

{C.st = B.val; A.val = C.val}

exprtail(A) ::= MINUS CONST(B) exprtail(C).

{C.st = C.st - B.val; A.val = C.val}

exprtail(A) ::= .

{A.val = A.st}

I Consider the inherited actions: In the first line, exprtail (a
LHS symbol) has its subtotal (“st”) attribute set to the value
of its left sibling, CONST. In the second line, the LHS
exprtail’s subtotal is reduced by CONST’s value. In the third
line, exprtail has its value derived from its subtotal.



Upshot

I Practical programming languages generally require some
L-attributed flow.



Attribute flow

I As a notation, grammars are declarative and do not imply an
ordering; a grammar is well-defined iff the rules determine a
unique set for each and every possible parse tree. A grammar
is noncircular if no attribute depends on itself.

I Your text defines a translation scheme is an algorithm that
annotates a tree using the rules of an attribute grammar in an
order consistent with the tree’s attribute flow. (See, however,
pp.37-40 of the Dragon Book for a slightly different take.)



Attribute flow

I Clearly, a S-attributed grammar can be decorated in the same
order as a LR parser, allowing a single pass that interleaves
parsing and attribute evaluation.

I Equally clearly, an L-attributed grammar can be decorated in
the same order as LL parser, allowing a single pass that
interleaves parsing and attribute evaluation.



Attribute flow is not just “LR <-> S-attribute”

I Page 188: “. . . it is often possible for a bottom-up parser to
accommodate some non-S-attributed attribute flow. . . ”



One pass compilation

I Compilers that interleave both semantic analysis and target
code generation are said to be one-pass compilers. (The text
notes on page 189 that some authors also allow intermediate
code generation to count as single-pass.)



Building a syntax tree

I A parser can use semantic actions to just build a syntax tree,
and then use a separate semantic analyzer to decorate the
tree.



Building a syntax tree

I Nice feature of S-attributed grammars is that the LR parser’s
semantic actions are very straightforward (see pseudo-code in
figure 4.5 on page 190):



Building a syntax tree

Figure 4.7 from text



Building a syntax tree

I Using LL is not as simple since syntax tree information has to
flow from left siblings to right siblings (see figure 4.6 on page
191). You end up with both an inherited “syntax tree” (st)
attribute and a tree pointer:



Building a syntax tree

Figure 4.8 from text



Action Routines

I Page 191: “Most production compilers, however, use an ad
hoc, handwritten translation scheme, interleaving parsing with
at least the initial construction of a syntax tree, and possibly
all of semantic analysis and intermediate code generation.”

I In LL parsing, one can embed action routines anywhere on the
RHS; if you are writing a recursive descent parser, the action
routine at the beginning of a production rule is placed at the
beginning of the implementing subroutine, and so on.



Action Routines

I In LR parsing, in general, one can always put action routines
at the end of a production rule (indeed, Lemon only allows
this placement), though various tools such Bison allow more
“flexibility”. (See here for more about mid-rule-actions in
Bison.)



Space managment for attributes

I If you are building a tree, you can use those nodes to hold the
attribute information.

I If you don’t build a tree, then for bottom-up parsing with an
S-attributed grammar, one can use an attribute stack
mirroring the parse stack.

I For top-down parsing, while you can use a stack, it’s not
simple. It’s probably just better to build a tree, though, or at
least have an automated tool keep up with items. (See
ANTLR or Coco/R)



Decorating a Syntax Tree

I As mentioned earlier, the focus in this text is having the
parser create a syntax tree and then using a separate stage for
semantic analysis and intermediate code generation.

I Tree grammars augmented with semantic rules are used to
decorate syntax trees, analogous to the way that context-free
grammars augmented with semantic rules can create
decorated parse trees.

I Generally, these are implemented with mutually recursive
subroutines.

I For instance, take a look at the compiler passes for GCC 4.1



Example of S-attributed grammar

Example here


