
Chapter 6 Control Flow

October 11, 2017

Expression evaluation

I It is common in programming languages to use the idea of an
expression, which might be

I a simple object
I function invocation over some number of arguments (which

usually can be expressions)
I an operator over some number of operands (which are

generally expressions) (also note that some languages treat
operators as syntactic sugar for functions)

{in,pre,post}fix

I Infix just means that the function name appears among the
arguments.

I Prefix means that the function name appears first followed by
its arguments.

I Postfix means that arguments appear first and the function
name last.

Expressions and typical languages

I Smalltalk is all infix
I Forth, PostScript, and some intermediate languages (PCode

type, for example) use postfix.
I The Lisp family of languages are prefix
I Most other languages use a mix of prefix and infix notation.

Precedence and associativity

I Infix is inherently ambiguous with regard to precedence and
associativity, and languages that allow infix notation have to
have rules governing their use; rules can be simplistic (Pascal
and Smalltalk, for instance), or can be quite elaborate (C is
an excellent example.)

Assignment

I In imperative languages, assignment allows a given, named
area of memory to have its value changed.

I Side effects come into play when an assignment makes some
other state change than just changing the value of the
variable being assigned to.

I Many programming languages differentiate between
“expressions”, which also produce a value and may or may not
have side effects, and “statements”, which exist to produce
side effects and any return value is cordially ignored.

I Purely functional languages and side effects: Haskell really
tries to get ride of side-effects, even with respect to IO (think
about that for a moment: how do you structure IO as not a
side-effect? The answer lies in (modern) monads — not the
same as Leibniz’s monads.)

References and Values

I l-values and r-values (2 := a; “2 is not an l-value!”)
I Legal C (indeed, not uncommon)

(f(a)+3)->b[c] = 2;

I Subtleties of assigments to and from pointers.

Orthogonality and Algol 68

I Features can be used in any combination
I All combinations make sense
I The meaning of a given feature stays consistent no matter the

context it is used.

Algol 68: it is just an expression

I See Expression-oriented programming languages

begin

a := if b < c then d else e;

a := begin f(b); g(c) end;

g(d);

2 + 3;

end

I evaluates to 5

C: close to the same

I Ternary ‘? :’ construction
I The problematic “if (a = b)” issue

Combination assignment operators

I C: “+=”, “-=”, prefix “++”, prefix “–” (not postfix forms,
though)

I Perl: “=˜”

Multiway assignment

I Swap and multi-valued returns

a,b = b,a

a,b,c = func(d,e,f)

Initialization

I Static variables, local to a routine, need some sort of value
I Static variables can be preallocated by compiler (though you

have to be careful to make sure that the actual memory
section is writable at runtime)

I Initialization can help prevent using uninitialized variables, a
common problem in some languages

Uninitialization

I Languages like Perl support the idea of being able to identify
an uninitialized variable (undefined() function).

Constructors

I Common in object-oriented languages to allow constructors to
initialize new objects

Ordering within expressions

I Common not to specify this since it lets the compiler choose
the most optimal version

I So what do you about side effects?

Application of Mathematical Identities

I Consider

a = b + c

d = c + e + b

I Applying a bit of math, this can be reduced to

a = b + c

d = a + e

I Dangerous many times in programming languages because of
precision issues.

Short-circuit evaluation

I Can be very efficient

if(x or y)

I if x is true, don’t bother evaluating y

Short-circuit evaluation

if(x and y)

I if is false, don’t bother evaluating y

C

if(p && p->value != something)

{

p = p->next;

}

I Very common construction!

Pascal doesn’t short-circuit

I Ends up writing more auxiliary variable code by hand

Short-circuits and side-effects

I What if you wanted a side-effect to happen from an
evaluation that was short-circuited?

6.2 Structured and Unstructured Flow

I Assembly: jmp, branch, call all change the program counter
PC; usual semantics are

jmp X => PC := X

branch X => PC := PC + X

call X => PUSH PC, PC := X

GOTO

I A Goto statement is pretty similar; name some line of code in
some way, and then Goto that name.

I Dijkstra and the Goto statement

I How about “longjmp()”?

Perl’s structured alternatives: next, last, redo

I next: start the next iteration of a loop
I last: immediate exit a loop
I redo: restart the loop block without evaluating any

conditionals; to quote the man page “This command is
normally used by programs that want to lie to themselves
about what was just input.”

C’s continue

I skip the rest of this loop (like Perl’s next)

Multi-level returns

I Can be done (Ruby actually likes these and supports quite
sophisticated versions, even used in its own libraries), but
unwinding (at the least) is always an issue when leaving
multiple levels of invoked subroutines.

Errors and other exceptions

I For an interesting discussion on Haskell’s philosphy, see Error
versus Exception

I Structured exceptions are similar to multi-level returns and
present similar implementation issues. (Try looking at the
approachable (if dated) material here.)

Continuations

I C allows setjump()/longjmp() (and now also
setcontext()/getcontext(), though I am not familiar with any
code that actually uses the latter), which are like
continuations with some limitations

I Scheme and Ruby allow first-class continuations; indeed, part
of Scheme’s reputation was built around continuations

6.3 Sequencing

I Compound statements : begin/end, { }; as mentioned, some
languages where everything is an expression use that concept
to give a value to statement blocks also, usually by adopting
the evaluation of the final statement in the compound block

I Freedom from side-effects and idempotence: there are some
advantages to being able to call a function twice with the
same given set of arguments, and get the same result. Not
only can we reason more clearly about the program, we can
may also be to do optimizations that cannot happen with a
function that has side-effects.

I Of course, sometimes side-effects are desirable – for instance,
it’s also nice to call a read some data function() and get
different data, or call a random number generator() and get a
different answer.

6.4 Selection

I Most imperative languages support at least if/then/else type
constructions (many in the C family also support ideas like the
ternary operator).

I Declarative and functional languages also all support
alternation facilities, but they can be expressed in a large
number of ways, some of which are somewhat subtle.

6.4.1 Short-circuits

I Since we generally don’t use the value of a boolean expression
evaluated as part of an alternation or looping construction for
anything other than governing the construction’s execution,
we can often “short-circuit” the evaluation. The text gives a
particularly nice example in examples 6.46 and 6.47, where
the expression

if ((A>B) and (C>D) or (E != F) then

then-clause

else

else-clause

6.4.1 Short-circuits

I Is “short-circuited” to

r1 := A

r2 := B

if r1 <= r2 goto L4

r1 := C

r2 := D

if r1 > r2 goto L1

(continued)

L4:

r1:=E

r2:=F

if r1 == r2 goto L2

L1:

then-clause

goto L3

L2:

else-clause

L3:

6.4.1 Short-circuits

I If you do need the value of the expression, then you can still
use short-circuit code to generate it.

I One of the triumphs of programming language design, as
noted in the footnote on page 250.

6.4.2 Case/Switch statements

I What if you have a large number of alternative cases? Using
an extended if/then/else/elsif often is visually less than
pleasing.

I How about a construction that expresses each case with a
simplified syntax? You could call it “case”.

I That works out to be not only more elegant and expressive,
but it also allows one to use fast alternatives such as a jump
table.

6.4.2

I Alternatives include sequential testing (i.e., same as extended
if/then/else), hashing, or binary search

I When to use an alternative: when your jump table is not
dense. Example

case (X)

1: do_something();

200000: do_something_else();

20000000000: do_other_stuff();

endcase

6.4.2

I C’s “switch” statement (a type of case statement) has the
ability to “fall through”, which can be quite useful; look at
the re2c code from the example at the end of the notes for
chapter 4 – it uses fall through extensively.

I Even more dramatic use of “fall through”: Duff’s device.

6.5 Iteration

I A fundamental mechanism; you need iteration to make a
computer actually useful (as to the alternative idea of
recursion, you can regard actual recursion on von Neumann
hardware to be an augmented instance of iteration.)

6.5.1 Enumeration-controlled loops

I Fortran’s “do” loops; many other languages have
corresponding “for” constructions.

I Some languages do not allow access to the value of the
enumeration variable after the loop is finished (usually in such
languages the header is considered to declare the index.)

6.5.2 Combination loops

I The C family (and Perl, for that matter) has the rather nice
combination loop:

for(INITIALIZATION;

BOOLEANEXPRESSION;

ITERATIONSTEP)

6.5.5 Logically controlled loops

I while / until / do while
I Mid-loop testing: as mentioned previously, in Perl, you can

have last, next, or even “redo”.

6.6.1 Iteration and recursion

I At a machine level, these are equivalent. Both are
accomplished with an instruction that changes the program
counter arbitrarily rather than just incrementing it; the
recursive version also implicitly pushes the current program
counter to a stack so that it can return to the next instruction
simply by popping that value from the stack, something that
can be done explicitly.

6.6.1 Iteration and recursion

I Tail recursion: can be optimized back to a straight jump
instruction since there are no following instructions, and thus
you don’t need to push any address since you don’t need to
come back.

6.6.2 Applicative- and normal-order evaluation

I Applicative-order evaluation means that arguments are fully
evaluated before being passed to a function.

I Normal-order evaluation means that arguments are only
evaluated when their value is needed (you can regard it as
lazy evaluation without the memoization). Lazy evaluation in
Haskell is actually quite nice.

Chapter Summary

I Control flow can take many forms, but for a language to be
Turing complete, it needs to be able to express alternation
and iteration.

I We can have other ideas, such as exception handling and
concurrency, and even nondeterminancy (also, you might look
at Non-deterministic parallelism considered useful.)

I “Goto” is largely gone, and largely unlamented. However, in
the end, what is actually running is built over actual “goto”
(unlimited changes to the program counter.)

