
Chapter 8 Composite Types

June 20, 2016



Type systems

I Hardware can interpret bits in memory in various ways: as
instructions, addresses, integers, floating point, fixed point, or
perhaps even as character data.

I But bits are bits; types are conceptually imposed over the bits,
and not realized in hardware.

I Types are cognitive constructs that can

I allow humans to read code more easily
I allow humans to understand and reason about code more fully
I allow humans to limit constructs to reasonable inputs and

constrain the outputs



Type systems

I A type system consists of

I a mechanism to define types and associate these types with
language constructs

I and a set of rules for type equivalence



Records/Structures and Variants/Unions

I Fundamentally, records and structures allow 1) aggregation
into a single data structures components of different types and
2) a method of addressing each component of an aggregate

I Usually this means 1) simply putting components adjacent to
each other in memory, and 2) maintaing an offset for each
component



Simplifying the syntax

I Some languages (notably the Pascal family) allow one to
simplify accesses to complicated structures with the idea of a
“with” statement:

with complex.complicated.deep.stuff do

begin

fieldx := ’STUFF GOES HERE’;

fieldy := ’STUFF GOES THERE’;

fieldz := ’STUFF GOES EVERYWHERE’

end;



Record-like constructs in the ML family

I Generally, record-like constructs in the ML family are not in
fact such (viz., records are not first-class or even inherent in
Haskell), but generally are more awkward constructs; see for
instance A modest proposal for records in Haskell, the
discussions about GHC’s record implementation at
https://ghc.haskell.org/trac/ghc/wiki/Records and here.



Arrays

I A very common composite data structure. Most languages
have significant syntactical and semantic support for arrays.
Fundmentally, an array takes an index to a value.

I Your text takes the approach of treating associative arrays as
part of this spectrum of various types of indices; this works
well with the subsequent conflation of arrays with functions.



Array declarations

I It is popular for programming languages to allow
enumerations and ranges to used in an array specfication.

I Multi-dimensional array declarations are also common in
programming langauges.



Slices

I Slices allow one to specify a “rectangular” portion of an array.
Some languages support semantics for slices that include
removal, addition, modification of values, comparison, and
assignment.



Conformant arrays

I Conformant arrays give the ability to reference the bounds of
an array from its “dope vector” rather than having to pass
these dimensions along explicitly.



Dynamic arrays

I When the dimensions of an array are allowed to change, it is
said to be “dynamic”; while the meta-information about such
a dynamic array can be kept on a runtime stack, the actual
array needs to be in a heap of some sort.



Memory layout

I Most languages put all of the elements of an array in a single
contiguous area of memory (though certainly not all; Perl
apparently does not do this with its “l-o-l” (also, look here)).

I While of course either heap or stack allocation is feasible for a
lexically declared array of fixed characteristics, if you want
more flexible arrays, such as those created by malloc(3) or
that have flexible characteristics (resizable components, for
instance), then generally these will be heap-allocated, though
of course the pointer to this could still be stack-allocated (or
wherever the language implementation is putting its activation
records.)



Strings

I While many languages treat strings largely as just an array of
characters, some give strings a separate type that allows
operations that are not applicable to other arrays.

I Generally, most languages give strings a reasonably prominent
place, both in syntax and semantics, since string processing is
so fundamental to real-world problems.



Sets

I Pascal was the first language to explicitly have a set type; it
overloaded the “+”, “*“, and”-” operators to support support
set union, intersection, and difference.

I Generally done as a bit vector for smallish sets, and either the
language forbids largish sets, or uses a more sparse approach.



Pointers and recursive types

I Pointers are a powerfully convenient mechanism for
implementations of many of computer science’s favorite
idioms: lists, trees, red-black trees, tries, skip lists, splay trees,
scapegoat trees, heaps, sets, . . .



Pointers and models

I Reclaiming unneeded storage: some languages, like C, leave
this task to the programmer; others automate the process
with garbage collection.

I Failing to reclaim storage creates memory leaks; conversely,
freeing storage that is still in use creates dangling references.
Freeing already freed storage creates double frees.



Pointers and value models

I If there’s anything that can be said generally on this subject,
it’s that this has been a “free-for-all” area for programming
languages, spanning various ideas about l-values and r-values,
and what is an explicit reference to a memory location and
what is an implicit one. The best current reference on the
web for this subject is at Rosetta code’s Pointers and
references page.



Note on page 385 relating to “stack smashing”:

I “It would never have been a problem in the first place,
however, if C had been designed for automatic bounds
checks.”

I Yes, and I would note that it also would not have been as
serious a problem had return addresses been kept on a
separate stack from activation records; or if there had been
hardware support for array boundaries; or a host of other
techniques.



C allows conflation of pointer arithmetic with array access

I Although it’s past its utility, the original idea of allowing the
programmer to do the pointer arithmetic behind flat array
implementation was quite efficient, though modern compilers
can usually better a programmer’s efforts.

I Try this program: test-sizeof.c



Garbage collection

I Reference counting is a popular and relatively simple way to
implement garbage collection, but it needs some language
support (for instance, reference counts in C would be hard to
imagine, since malloc() is not even part of the language but is
rather just a library call.)



Garbage collection

I Other conundrums:



Garbage collection

I As the book notes, even Perl is subject to the circular
reference problem.



Garbage collection

I Mark-and-sweep, classic three steps:

I Walk “the heap”, identifying every program data item as
“useless”

I Walk all linked data structures that are outside “the heap”,
marking all items in “the heap” that are reachable as “useful”

I Walk “the heap” again, removing all of the program data
items still marked as “useless”

I Implementation issues galore, though, and language
implementations planning to use mark-and-sweep should plan
on this from the beginning



Garbage collection

I Stop-and-copy, classic unpredictable time problems (also
known as “stop the world” pause problem)

I Usually fold compaction into this method



7.8 Lists

I “In Lisp, a program is a list, and can extend itself at run time
by constructing a list and executing it. . . ” (page 365).



7.8 Lists

I While lists are much of a muchness is most languages, in
many languages (and particularly the functional languages)
now also support list comprehensions.



7.10 Equality and assignment

I As the text points out, consider equality of s == t expressed
as

I s and t are aliases
I s and t contain exactly the same characters
I s and t appear exactly the same if “printed”
I s and t occupy storage is the same bitwise

I While the last is clearly problematic (what if s and t contain
non-semantically significant bits that are not the same?) the
others can be useful measures



Equality and assignment

I And what about assignment? If s := t and t is a large
recursive structure, the language might just do a shallow copy
of t as a pointer, or maybe it does a deep copy, walking the
entire structure of t and creating a fresh copy in s.

I Or maybe the language supports both shallow and deep
mechanisms.



7.11 Wrapping up

I A type system consists of any built-in types, mechanisms to
create new types, and rules for type equivalence, type
compatibility, and type inference

I A strongly typed language never allows an operation to be
applied to an object that does not support it. (However, the
notions of strong and weak typing are not universally agreed
upon.)

I A statically typed language enforces strong typing at
compilation time.



7.11 Wrapping up

I Explicit conversion: the programmer expliclitly converts s into
t

I Implicit coercion: the program needs s to be a t, and
implicitly makes it so.

I Nonconverting casts (type punning): welcome to C!



7.11 Wrapping up

I Composite types: records, arrays, and recursive types.
I Records: whole-record operations, variant records/unions,

type safety, and memory layout.
I Arrays: memory layout; dope vectors; heap-based,

stack-based, and static-based memory allocation; whole-array
and slice-based operations.

I Recursive structures: value versus reference models for
naming and reference; most general way of structuring data,
but has the highest costs


