
Chapter 15: The end of it all

July 20, 2016



The endings of programming language roads: 3 more
prevalent models

I Graph reduction (ML family of functional languages)
I Stack-based (Pleasant, Forth, SECD-based functional

languages)
I Basic blocks: use registers effectively, place activation records

generally in a stack (most compiled languages) or in a heap



Phases to final assembly

I The book suggests a plausible list:

I Scanner (front)
I Parser (front)
I Semantic analysis (front)
I Intermediate code generation (middle or back)
I Machine independent optimization (back)
I Target code generation (back)
I Machine-specific code optimization (back)



Intermediate forms

I IFs

I High level: tend to be “tree-ish”
I Lower level: tend to be more linear (three address/quadruples

are common) (LLVM, CIL, . . . )



Code generation

I The text goes through steps to generate target code for the
GCD program from the beginning of the book, using an
interesting combination of stack manipulation via a register
formulation.



Basic blocks

I A basic block is just a set of always sequential instructions (no
jumps in or out).



Register spills

I What happens when you run out of real registers? You have
to move something to memory; that’s called a “spill”.



Address space organization

I PIC, relocatable code, executable code, and linking:

I Position independent code needs no relocation for items in the
code unit, although external references will still need some sort
of scheme (import and export tables)

I Relocatable code needs a relocation table in addition to an
import table to handle locally relocatable information

I Executable code has resolved all relocation issues and can be
processed by the processor.

I Generally this resolution process is called “linking” and is done
by a “linker” or “loader” (see the discussion at the bottom of
page 797 about distinctions that might be perceived for the
two terms.)



Sections and segments

I Sections exist in executables as instructions to the kernel as to
how to lay out an executable’s segments in memory.

I Sections can be BSS, or data, or read-only data, or executable
code, or symbol table information, or debug information, or
thread-local storage, or whatever else the compiler writer
wants. Additionally, dynamic segments can be created from
operations like dlopen(3) or mmap(2); typically dlopen(3)
type operations are used for shared libraries, and pure
mmap(2) calls are used for memory allocation.



Dynamic linking

I Problematic solution to old problems, and its security
implications are frightening. Dynamic Linking considered
harmful, (for the other side, see No static linking.)


