
Chapter 12: Logic Languages

July 8, 2016



Declarative languages go for logic

I So far, based on (mostly) predicate calculus rather than
lambda calculus



Declarative languages go for logic

I And vice versa: concepts common with the Prolog community
influenced the type inferencing in languages like ML and
Haskell.

flowery(X) <- rainy(x)

rainy(Portland)

------------

flowery(Portland)



Prolog

I While the logic programming languages are not successful in
the real world (even Curry seems to have withered on the vine
– almost of this year’s messages are just generic “Calls for
Papers”), they do have some mildly interesting features.



Prolog

I For instance, it is possible to solve the recently popular
“Cheryl’s Birthday” problem using Prolog: One interesting
solution



Prolog

I Uses “Horn” clauses



Prolog

I Dense terminology, based on its logical roots. Terms can be of
any of these types

I Atom: identifier beginning with lowercase letter, or quoted
string

I Number: usual base 10 representations for integer and floating
point numbers

I Variable: identifier beginning with an upper case letter
I Structure (aka a “compound term”): an atom (called a

“functor” in this case) and a list of arguments (which are
themselves terms); the number of arguments is called “arity”

I A “predicate” is a functor and its arity.



Prolog

I The Horn clauses are either “facts” or “rules”. “Facts” have
no explicit righthand side (implicitly, they are “fact :- true.”),
and “rules” do (e.g., “rule :- something.”)

I So how does this all work? You have to give a goal to be
reached; the Prolog engine tries to use the declarations that
you have made to deduce that goal (actually, it does the
opposite: it tries to prove the negative of the goal false).



Prolog

I Supports lists.

I Supports “is” arithmetic (but try just “X.” with SWI-Prolog).



Prolog

?- [user].

rainy(seattle).

|: rainy(rochester).

|: cold(rochester).

|: snowy(X) :- rainy(X), cold(X).

|: % user://1 compiled 0.01 sec, 5 clauses

true.

?- snowy(X).

X = rochester.



Prolog (previous example continued)

?- [user].

cold(seattle).

Warning: user://2:38:

Redefined static procedure cold/1

Previously defined at user://1:26

|: cold(rochester).

|: % user://2 compiled 0.00 sec, 2 clauses

true.

?- snowy(X).

X = seattle ;

X = rochester.

?-



Imperative Prolog

I Supports “cuts”, allowing you to commit to a part of the
search tree

I Cut allows not only efficiency gains by stopping
re-reconsideration ad infinitum, but it allows us to create
selection:

statement :- condition, !, then.

statement :- else.



Imperative Prolog
I How about a loop?

?- [user].

natural(1).

|: natural(N) :- natural(M), N is M+1.

|: looping(N) :- natural(I), write(I), nl, I = N, !.

|: % user://3 compiled 0.01 sec, 4 clauses

true.

?- looping(5).

1

2

3

4

5

true.

?-



Where logic languages are limited

I Prology is limited to Horn clauses, not all of first-order
predicate calculus

I Execution order exists, and it’s not clear on how to optimize
this without programmer intuition

I Negation and the “closed world” assumption



The future?

I So far, nobody has done a lot with these. Maybe we should
try to build these languages around satisfiability formulations?

I Lots of open questions, so lots of room for research!


