
Chapter 8 Subroutines and Control Abstraction

June 25, 2015



Stack layout

I Common to have subroutine activation record allocated on a
stack

I Typical fare for a frame: arguments, return value, saved
registers, local variables, temporaries. . .

I Maybe the best part of using a stack: it’s easy to deallocate
(also, decent hardware support usually)



Stack layout

I Processors almost always support at least one stack; generally
there is a register devoted to that stack called the “stack
pointer” (usually abbreviated something like SP.) Multiple
stack computer designs aren’t as common, but allow for clean
separation of return addresses, expression evaluation,
argument lists, and so forth.



Stack layout

I While a stack pointer points to the active end of the stack, a
frame pointer generally is used to point somewhere in the
stack (usually at the “current” activation record). In the
x86/x86 64 family, this register is usually BP/EBP/RBP.



Static and dynamic links



Static and dynamic links

I Dynamic links allow one to walk back the frame pointer
linearly down the call stack.

I Static links allow one to walk back the frame pointer from a
lexical viewpoint.



Calling sequence

I The maintenance of stacks (or, indeed, anything else,
particularly registers) prior to and at the end of a subroutine
invocation is called the “calling sequence”. While in assembly
language programming this is often ad hoc, in higher
languages, it is generally quite rigid. In most languages today,
a single united stack is the center of the action.



A prologue

I The housekeeping which is done before entry into a subroutine
is called the prologue; typically involve any needed set up of
parameters, saving the return address (though usually this
taken care by the CALL instruction), modifying the program
counter (again, usually the bailiwick of the CALL instruction),
moving the stack pointer for space allocation, saving registers,
moving the frame pointer, and perhaps some initialization
code.



An epilogue

I The housekeeping which must be done after a routine has
finished is called the epilogue; return values have to
adjudicated, stacks allocated must be deallocated, registers
restored, and of course, moving the program counter (that is
usually done by a RETURN instruction).



A matter of decisions

I As the text so correctly points out, figuring out who does
what with the registers is critical to any calling sequence;
indeed, with assembly language programming, it’s usually the
only significant issue in the calling sequence. Architectures
offering large amounts of registers mean that this bounty can
simply be split among the caller and callee.



Architecture (the actuality of the machine) plays a part
with most implementations

I Ignoring the hardware is generally the wrong answer.
I Compilers on CISC machines tend to pass arguments on the

stack; on RISC machines, they tend to use registers
I Compilers on CISC machines tend to dedicate a register for

the frame; less likely to see this on RISC architecture
I As you might surmise, compilers on CISC architectures

attempt usually to make use of that complexity.



In-line expansion

I Instead of actually calling a very simple non-generally-recursive
routine with all of the calling sequences costs inherent, it often
makes sense to simply do the code in place. Some languages
offer the ability to hint to a compiler that such in-lining makes
sense, such as some members of the C family and even Ada.



Parameter passing

I Generally we distinguish the formal parameters (those
specified in the subroutine’s definition) from the actual
parameters passed (though such distinctions certainly don’t
exist in all languages, and don’t exist in assembly language
programming.)

I Call-by-value versus call-by-reference: in languages that have
a value model, you have a bit of a dilemma when passing
parameters: should you just pass the value, or should you pass
a pointer to the value? If you pass the latter, it certainly
makes it simple for the called subroutine to modify the
underlying data. However, you quickly get quagmires
associated with aliasing – though you could remedy that by
then not allowing any modifications of the state of any
variable.



Parameter passing

I Closures as parameters: languages that allowing nesting and
allow subroutines to be passed as parameters need closures to
pass both the subroutine and its referencing environment.



Position parameters versus named parameters

I Instead of merely matching actual and formal parameters by
their position, languages like Ada allow one to name
parameters – which is quite useful when you have the ability
to give parameters default values; you just name values for the
parameters that either do not have a default value, or ones
that you wish to use a non-default value.



Variable numbers of arguments

I Recall the code for our RecursiveDescent parser: parser.c. At
the end, we have an emit() function that allows a variable
number of argments.

I This turns out to be fairly useful, though languages with a
native list type already have a powerful mechanism for
expressing a similar idea.



Returns

I In functional languages, generally the value of the body of the
function specifies what is returned.

I In imperative languages, it’s more common to have a explicit
“return()”; some languages allow the function to specify its
return value by either allowing an assignment to the function’s
name, or having some syntax to specify a special name to
refer to the value of a function.



Generics

I Very useful for creating containers, generics allow a
programmer to specify a set of routines that can be defined
over arbitrary types, and are quite analogous to macros in
assembly language. Indeed, the most common implementation
for generics is literally macro expansion, just as in assembly
language.

I Your text distinguishes the two by the level of the rewriter:
pure macro expansion is done outside the language as
text-rewriting (for example, m4 could be used to do this), but
generic expansion is done by the compilation environment,
giving it an ability to make syntactic and semantic distinctions
that m4 could not.



Exception handling and unwinding the stack

I Exceptions are unexpected/unusual situations that are not
easily handled locally. Run-time errors, particularly those
related to I/O, are often awkward at the point of contact, and
often are more cleanly handled elsewhere. If the elsewhere is
up the stack in a parent activation record, then the stack
needs to be unwound to that point.

I Unwinding means not only popping off all those activation
frames, but also restoring the state at the point of recovery in
the propagation process.



Note on page 424

I “Exception-handling mechanisms are among the most
complex aspects of modern language design, from both a
semantic and a pragmatic point of view. Programmers have
used subroutines since before there were compilers (they
appear, among other places, in the 19th-century notes of
Countess Ada Augusta Byron). Structured exceptions, by
contrast, were not invented until the 1970s and did not
become commonplace until the 1980s.”



setjmp and longjmp

I Between the ad hoc methods often employed in languages like
Pascal, which do not have explicit exception-handling, and
structured exceptions lies the C solution of setjmp() and
longjmp(); as the manual page says: “setjmp() and
sigsetjmp() make programs hard to understand and maintain.
If possible an alternative should be used.”



Co-routines

I These are pretty rare; I don’t remember ever seeing these
actually used anywhere (well, that is outside of assembly
language; co-routines are trivial in assembly language), though
apparently some languages do like to use these to implement
iterators.

I As your text notes, threads are quite similar in many ways,
and offer more functionality at a very modest price.


