
Chapter 3 - Names, Scopes, and Bindings

May 28, 2015



Origins of high level languages

I With machine languages, generally there are no names,
limited scoping, and binding is not really a relevant concept.

I All assemblers allow some sort of names; the most minimal
ones supported are generally called labels and definitions, but
fancier assemblers can have other types of names such as
macros.



Origins of high level languages

I Scope comes into play even in assemblers. The most obvious
of course is between separate compilation modules; however,
even within an assembler, the idea of local labels (often
indicated with an initial “L”, “%%”, or perhaps “.”) is very
convenient — think about how macros work, with simple text
rewriting of one string for another with designated abstraction
points. If you have a label created by a macro, what happens
if you invoke the same macro again in the same module?
Unless you make it part of the parameterization, it will be the
same label. If you have the ability to declare very local labels,
though, this isn’t a problem.



Origins of high level languages

I Since assembly languages actually provide the greatest
freedom (all of the machine’s resources are there for the
programmer in their fullest extent), what is the rationale for
“higher level” languages?

I Obviously, you get more (if not perfect) machine
independence. No longer do you care about the most that you
can do with the hardware; it becomes instead using the
greatest common hardware efficiently (think gcd() rather than
max()).

I In assembly, even with heavy use of macros, porting code
from one architecture to a reasonably differing one requires
more work than any high level language.



Origins of high level languages

I More imporatantly, higher level languages are generally good
at something; specialized languages, like gp/pari, are even
“superb” rather than “generally good”.

I While you lose a certain amount of freedom, you (should)
gain a lot of expressivity, the ability to pithily and clearly
express ideas.

I For instance, look at the expressivity of Haskell for the
“hello world” program of the functional world, the factorial
function.



So what is a name?

I Your text gives this definition on pages 111-112:
“A name is a mnemonic character string used to represent
something else. Names in the most languages are identifiers
(alphanumeric tokens), though certain other symbols, such as
+ or :=, can also be names. Names allow us to refer to
variables, constants, operations, types, and so on using
symbolic identifiers rather than low-level concepts like
addresses.”



So what is a name?

I Names also allow us to abstract; that is, use a name to
represent a slew of activities.



3.1 The notions of binding and binding time

I A “binding” is an association between a name and what it
represents.

I “Binding time” is the time when we decide on an association.



3.1 Possible binding times

I Language design time (control flow, constructors,
fundamental types; nice recent example

I Language implementation time (precision, i/o, stacks, heaps,
other memory blobs, hardware exceptions)

I Program writing time
I Compile time (sections; debugging information; any static

data has to fit somewhere)



3.1 Possible binding times

I Link time (resolution of “static” intermodule references; any
mechanics needed to deal with dynamic loading)

I Load time (more dynamic loading issues; resolving sectioning
directives into actual memory layout)

I Run time (“a host of other decisions that vary from language
to language” is how your book expresses this on page 113.)



3.1 Binding time

I Earlier binding generaly implies more efficient execution of the
final code; later binding of names generally implies slower
code.

I Generally, “static” is used to mean “before run time”;
“dynamic” is used to mean “at run time”. (Not exactly
precise there; how about when dynamic linking is happening,
for instance? Static? Dynamic?)



3.2.1 Object life and storage management

I Static allocation: obviously, global variables can be statically
allocated. The text argues on page 115 that you can regard
the machine language instructions of a compiled program as
being statically allocated. Fixed strings are statically allocated.
Debugging structures that support debuggers like gdb are
statically allocated (see the dwarf2 specification, for instance.)



3.2.1 Object life and storage management

I Static allocation: Even local variables might be allocated
statically; the canonical example would be older Fortran
subroutines, which could not be recursive. Named constants,
even when local to a subroutine, might well be statically
allocated if there the language and the code allow sufficient
clarity as to the “constant’s” value.



3.2.1 Object life and storage management

I Arguments and return values: One of my favorite sentences
from the text is on page 116: “Modern compilers keep these
in registers whenever possible, but sometimes space in
memory is needed.” Now, if we could get more operating
systems to use the same regimen for system calls! (Linux, to
its credit, does do so; the BSDs, as illustrated above, don’t.)

I Temporaries: (obviously) use registers whenever possible.



3.2.2 Stack-based allocation

I Subroutine recursion means that we must have an ability for
dynamically allocating the local state for a subroutine (if only
one instance of a subroutine can exist (as is the case for older
Fortran), then we can use static allocation for the subroutines
local state.)



3.2.2 Stack-based allocation

I Most languages use a stack of activation records to allocate
local state. However, not all do so: look at this discussion
about adding such a facility to Forth (indeed, such allocation
was added to some Forth dialects). In the more modern age,
Haskell also does not: see this discussion of how to do
tracing. (If you want to search for more examples, use search
terms something like “stackless programming languages”.)



3.2.2 Stack-based allocation

I Who maintains the stack? The caller, with the “calling
sequence”, and the callee, with the prologue and the epilogue.

I Generally, the activation record’s structure is statically
determined and the compiler can use fixed offsets from a
stack frame pointer into the activation record.

I Most machine languages include a push/pop in the instruction
set, and sometimes these can be quite sophisticated, pushing
many registers for instance simultaneously onto the stack.



3.2.2 Stack-based allocation

I While stack-based allocation can provide some small savings
even in non-recursive programming languages (viz., pages
118-119), stack-based allocation is a widely exploited
mechanism with respect to security.



3.2.3 Heap-based allocation

I The first thing to understand is that a program is not required
to have exactly one heap. Assembly language programs often
have no heap (i.e., in Unix/Linux, no calls to sbrk(2) are
made); it is also possible to have multiple heaps (see
malloc(3) man page on using mmap(2) to create separate and
memory blocks from the sbrk(2) maintained heap.) In
OpenBSD malloc, only mmap(2)-based structures are used;
the allocator Hoard uses both sbrk(2)-based and
mmap(2)-based allocation.



3.2.3 Heap-based allocation

I Heap management is a subject of long and intense study.
There are lot of ideas; my own opinion is that
OpenBSD/Hoard approaches are far better than trying to do
just single contiguous heap approaches, and I think that the
research shows that not only is this faster and more secure,
it’s also conceptually simpler.



3.2.4 Garbage collection

I Some languages assume implicit deallocation when there are
no remaining references to an object (Perl, for instance). This
assumed (and thus automatic) deallocation has been termed
“garbage collection.”



3.2.4 Garbage collection

I Automatic garbage collection saves the programmer from
many possible errors in manual deallocation: dangling
references, use after free(3)-ing a reference, and double
free(3)s are all quite common problems with manual schemes.



3.3.1 Scope rules: Static scoping

I Static (aka “lexical”) scoping means that the bindings
between names and objects can be determined at compile
time without any reference of the flow of control at run time.
The most common variation is for the latest declaration to be
the current binding for a name.



3.3.1 Scope rules: Static scoping

I Nested scoping rules: in languages which allow nested
routines, it is very common for a variable name from a parent
routine to be available to a child routine.

I How does a child does this? With stack-based languages,
generally a child activation keeps a pointer to its parent
activation (not necessarily the same lexical parent/child
relationship, though, which could be grandparent/child
relationship, for instance.)



3.3.3 Declaration order

I Some languages require “declarations first, code after”, but
still what happens if a refers to b and b refers to a? Or what
about the classic Pascal conundrum on page 128?



3.3.3 Declaration order

I Sort of a solution: forward declarations
I Good idea also: order of declarations doesn’t matter; it’s in

scope in the entire lexical block.
I Another idea: have no variable declarations (typical of many

scripting languages)
I Another idea: Like Scheme, support all reasonable versions of

declaration order with let, letrec, and let* (even Perl isn’t this
flexible!)



3.3.3 Declaration order

I How do you have mutual recursion, where A calls B calls A?
One has to be defined before the other, and thus there is a
dilemma.

I You could take the C route, of having “declarations” and
“definitions” be different things; then you could declare both
A and B, and then both function definitions would be aware
of the other.



3.3.3 Declaration order

I Unnamed code blocks: many languages allow you to have a
block, with full scope rules, wherever a statement can occur.
This is quite handy when you need a temporary variable that
can be allocated on the stack rather than having to create it
on a heap.



3.3.3 Declaration order

I Some languages, like ML and Forth, allow you to redefine a
name, but also keep the previous behavior for definitions that
use the original behavior.



3.3.4 Modules

I This methodology became common in the late 70s and early
80s. The idea was to encapsulate names, and control visibility.
Concepts like “import”, “export”, and “hiding” were brought
into play. (The book isn’t quite precise about Perl, by the by;
Perl does indeed use “package” as a keyword to indicate a
module, but the whole of a file named “x.pm” and the
“package x” inside the file is called a module in Perl-speak.)



3.3.4 Modules: closed and open scope

I Modules into which names must be explicitly imported are
“closed scopes.”

I Modules that do not not require imports are “open scopes”.

I “Selectively open” allows the programmer to add a qualifier;
for instance, if A exports buzz, then B can automatically
reference it as A.buzz; it becomes visible if B explicitly
imports the name.



3.3.5 Module types and classes

I Some languages treat modules as a mediator, managing
objects with various means to express the semantics
destroy/create/change

I Some languages treat modules as defining “types”, rather
than a mere mechanism for encapsulation.



3.3.5 Module types and classes

I Some languages extend the “module as types” concept to
“modules as a class”, with the extension of the idea of
“inheritance”, allowing the new class to “inherit”
characteristics of a parent class.



3.3.6 Dynamic scoping

I When the bindings between names and objects depend on the
flow of control at run time rather than just lexical scope, you
have “dynamic scoping”.

I TeX, for instance, uses dynamic scoping, as does Forth. Perl
allows for both, as noted in footnote 10 at the bottom of page
140.



3.4 Implementing scope

I To keep track of names in a statically scoped language, the
compiler for that language merely keeps a symbol table,
mapping a name to the information known about the symbol.

I To track names in a dynamically scoped language, the
run-time for that language must keep up with the mapping
between names and objects.



3.5 The meaning of names within a scope

I Aliases (yipes!?): aliasing (i.e., two different names in a scope
that refer to the same object) makes it harder to understand,
much less optimize, programs.

I Overloading: the trick with overloading of operator and
function names is usually being able to distinguish the
versions by the types of the arguments.



3.5 The meaning of names within a scope

I Redefining built-ins: many languages allow much freedom in
redefining built-ins; Perl, for instance, has some very
sophisticated methods, like TIE, which can redefine even the
very definition of a built-in type.



3.5.3 Polymorphism, coercion, and related

I If a function expects some an argument of type A, but finds
one of type B, it might try to “coerce” the argument to type
B. This type of implicit coercion (one of the fundamental
building blocks of Perl), is somewhat controversial. C and
C-like languages generally allow for this only in very limited
circumstances, such as converting integers silently into reals.



3.5.3 Polymorphism, coercion, and related

I Polymorphism allows a function to abstract out the idea of
type; generally, this is referred to by ideas like “genericity”;
Ada is perhaps the best-known for its generics; C++ has its
templating. Generics and templates are generally handled by
having separate code for each instantiated type.



3.6 Binding of referencing environments

I Generally, static scoping is combined with deep binding;
however, dynamic scoping often entails mechanisms for
expressing both shallow binding and a deep binding (generally
with “closures”).



Closures

I “Deep binding is implemented by creating an explicit
representation of a referencing environment (generally the one
in which the subroutine would execute if called at the present
time) and bundling it together with a reference to the
subroutine.” This bundle can be referred to as a closure, and
can be passed to other routines for later execution.

I Some languages, such as C, don’t have any formal mechanism
for expressing closures, but can simulate closures to a degree
by using function pointers and callbacks that reference explicit
context state (often abbreviated by “ctx ”).



3.6.2 First-class values and unlimited extent

I First class value: it can be passed as a paramter, returned
from a subroutine, or assigned into a variable.

I Second class value: it can be passed as a paramter. It cannot
be returned from a subroutine or assigned into a variable.

I Third class value: it cannot be passed as a parameter,
returned from a subroutine, or assigned into a variable.



3.6.2 First-class values and unlimited extent

I Typically, integers, e.g., are first class values, and labels are
third class values.

I Subroutines in functional langauges are first class; usually first
class in most scripting languages, and often second class in
most other languages.



3.7 Macro expansion

I As we saw earler, more sophisticated assemblers make use of
macros; C preserved that idea. A macro is an straight text
expansion

#define emit(a) printf("%d",a)

I Becomes via the magic of “gcc -E”

emit(3); ==> printf("%d",3);

I Macros were often used to create something like a
template/generics facility


