
Shell Basics
As noted on page 116 in your book, the fundamental

process for an interactive shell is
The shell first displays some sort of "prompt".
You type some command, which can either be a
"built-in" (i.e., the shell just does what you ask rather
than starting a separate child process), or can name a
program to be executed as a separate process.

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:41 AM

Whatever you type, when you hit return, the shell
first takes a good long look at your input: it evaluates
and substitutes for any metacharacters, it expands
any variables, and then it tries to match the
command against its internal command set. If it
doesn't find anything there, it finally looks around
the directories listed in the $PATH variable to see if it
can find a program of that name.
Finally, once the program is complete (or you put it
in the "background"), you get a new prompt.

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:41 AM

Environment variables
and their effects

You can get a list of the current shell's environmental
variables in various ways: env, printenv; (in Bash, you

can also use set, but that also gives additional shell
variables that aren't actually in the process's

environment.)
Important environment variables:

PATH
HOME
USER
SHELL

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:41 AM

% export x=12 # create an environmental variable
% y=15 # create a local variable
% echo x = $x and y = $y
x = 12 and y = 15
% bash # now create a new child process
% echo x = $x and y = $y
x = 12 and y =

Local variables
In addition to environmental variables which are passed

on to child processes, you can create local variables.

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:41 AM

export PS1="# "
export PS2="... "

Prompts
Bourne shell, Korn shell, Bash, and others in that family

have two primary prompt variables, PS1 and PS2

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:42 AM

Redirection
I have already mentioned input redirection in the
context of creating files. Overall, there are three

important redirection operators: <, >, and >>

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:42 AM

The < operator lets you redirect standard in; for
instance, you can do

and this will have sort takes its standard in from the
file /etc/passwd.

sort < /etc/passwd

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:42 AM

cal 1752 > /tmp/unusual-cal.txt

As we have seen already, the > operator lets you
redirect standard out; for instance, you can take the

output of cal and save it:

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:42 AM

cal 1753 >> /tmp/unusual-cal.txt

Finally, you can use the >> operator to append data to a
file:

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:42 AM

(ls -R | wc -l) 2>/dev/null

Named file descriptors
You can also specifically name which file descriptor to

use with the form "n>" and "n<".
This is particularly useful when you want to split, say,

stdout and stderr data out to two different places.

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:42 AM

Merging file descriptor data
You can also merge file descriptor data with the special
forms "x>&y" and "x<&y". The first lets you merge the

output of two file descriptors. For example:

This sends all of file descriptor 1 (stdout) also to file
descriptor 2 (stderr).

ls -lR / 1>&2

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:43 AM

$ cat <<'EOF'
> this is stuff that
> we want to echo
> until the
> EOF
this is stuff that
we want to echo
until the
$

"Here" documents
Another very useful type of redirection, particularly in

shell scripts, is the "here" document.
The syntax looks like

For example:

<<'EOF'
data... data...
data... data...
EOF

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:43 AM

$ sort < /etc/passwd | tee /tmp/sorted-passwd | cut -d: -f 1
$ cat /tmp/sorted-passwd

In addition to simple file redirection, we have the
concept of a "pipe", which is a creation of the kernel.

It's actually just a simple " ".
The syntax for creating a pipe between two processes is

the vertical bar ("|").

The tee: there's a nice program call tee that will let
you intercept "mid-pipe" data.

buffer

sort < /etc/passwd | cut -d: -f 1

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:43 AM

% x=`date --iso-8601`
% mkdir new-$x/ old-$x/ cur-$x/
% ls -d *$x
cur-2013-01-29 new-2013-01-29 old-2013-01-29
%

More uses for
data from processes

Unix has had long had the very useful concept of being
able to expand output from a process into the command

line of a shell process.

This can be particularly valuable when you save the
output to a variable:

echo The date and time is `date`

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:43 AM

Filters
Once we have the concept of a bytestream flowing

through pipes, a natural metaphor for programs that
modify the bytestream is to call them a "filter".

There are a very large number of standard filters; some
of the most useful are .here

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:43 AM

% tr -sc A-Za-z '\012' < pg39452.txt | sort | uniq -c | sort -n | tail -8
 1454 in
 1567 a
 1910 I
 2289 that
 2570 of
 3078 to
 3479 and
 4397 the

Here's a filter example derived from page 107 of
Kernighan and Pike's The Unix Programming

Environment that shows the 8 most frequently used
words in by John Bunyan (book

contents courtesy of):Project Gutenberg
Pilgrim's Progress

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:43 AM

% ls /usr/share/man/man2 | sed -e s/.2.gz//g | \
> xargs man -s 2 -k | sort | \
> grep -v 'unimplemented system calls'

Here's a "one-liner" I created to list all of the system
calls on a given system:

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:44 AM

% (ls -R / | wc -l) 2>/dev/null &
% jobs
[1]+ Running (ls -R / | wc -l) 2> /dev/null &

Foreground/background
One of the great strengths of Unix has been its very

clean "job control". You can easily send a process into
the background with a simple ampersand:

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:44 AM

% cat &
[1] 7200
% cat &
[2] 7201
% cat &
[3] 7203
% cat &
[4] 7209
% fg %1 # now bring job #1 back
cat
some input
some input
[CTRL-D]
% jobs # okay, we see that job #1 has finished
[2] Stopped cat
[3]- Stopped cat
[4]+ Stopped cat
% fg %3 # now bring job #3
cat
more input
more input
[CTRL-D]
% jobs # and now we see that it's finished also
[2]- Stopped cat
[4]+ Stopped cat
% # and so forth...

You can start many jobs:

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:44 AM

pdflatex file1.tex
This is pdfTeX, Version 3.1415926-1.40.10 (TeX Live 2009/Debian)
entering extended mode
! I can't find file `file1.tex'.
<*> file1.tex

(Press Enter to retry, or you will never exit!)
Please type another input file name:

[1]+ Stopped pdflatex file1.tex
[CTRL-Z]
% kill -9 %1

Killing a stubborn job
(think LaTeX!)

If you get stuck in a LaTeX session (or emacs, for that
matter), you can often use CTRL-Z to get out. Once you

do, you can use kill to get rid of it:

http://www.cs.fsu.edu/~langley/COP3353-2013-1/reveal.js-2013-02-11/04.html?print-pdf

02/11/2013 11:44 AM

