IP: TCP, UDP, and ICMP

One of the best practical books is *Network Warrior* as mentioned on the class home page.

For an interesting bit of historical interest, take a look at RFC 681 at http://www.faqs.org/rfcs/rfc681.html – such a proposal if acted on back in 1975 might have kept sockets and ports in Unix filename space.
IP: TCP, UDP, and ICMP

Many protocols can co-exist, but one that never made it: The much-ballyhooed ISO/OSI disappeared. It was a definitive 7 layer approach. GOSIP (Government Open Systems Interconnection Profile) was a flop (http://www.itl.nist.gov/fipspubs/fip146-2.htm); here’s the official announcement from 1995 repealing the 1990 FIPS146-1 procurement requirement:
FIPS 146-1 adopted the Government Open Systems Interconnection Profile (GOSIP) which defines a common set of Open Systems Interconnection (OSI) protocols that enable systems developed by different vendors to interoperate and the users of different applications on those systems to exchange information. This change modifies FIPS 146-1 by removing the requirement that Federal agencies specify GOSIP protocols when they acquire networking products and services and communications systems and services.
IP: TCP, UDP, and ICMP

Visualizing packets – a tool to capture and display packets is very informative and instructional. Such tools include tcpdump and tshark (previously known as tethereal)
As a system administrator, one of your strongest debugging tools is **tethereal**. This allows you to actually see at a low level exact packet information.
Description of IP

1. 4 layer approach

2. Some layers can be viewed as combinations of multiple ISO/OSI layers
Description of IP

3. The four protocol that system administrators interact with

(a) ARP - Address Resolution Protocol
(b) ICMP - Internet Control Message Protocol
Description of IP

(c) UDP – User Datagram Protocol
(d) TCP – Transmission Control Protocol

4. Two main transport layer protocols are TCP and UDP
Description of IP

5. Physical network types

(a) 802.3 Ethernet (http://www.ieee802.org/3)
(b) 802.11 wireless (http://www.ieee802.org/11)
Description of IP

(c) Even IP over SCSI! (http://www.ietf.org/rfc/rfc2143.txt – experimental RFC)
Ethernet is old, but still around

- [OBSOLETE] Thicknet (10Base5)
- [OBSOLETE] Thinnet (10Base2)
- Twisted Pair (10BaseT/100BaseT/1000BaseT)
Ethernet is old, but still around

Ethernet addresses - unique 48-bit (6 byte) MAC (Media Access Control) values examples: 00:0b:db:3f:66:27, 00:30:48:2a:29:fd (if you are doing NAT, these are the addresses that are “spoofed” by a router if your IP is locked to a particular MAC. “Spoof” means in this case that it is using that MAC address although it is not the one assigned to that port at the factory.)
Ethernet is old, but still the most important version

Ethernet address ranges are controlled at a manufacturer level; you can generally identify a manufacturer from the Ethernet number it is using; the current list is at http://standards.ieee.org/regauth/oui/oui.txt

For instance, the block 00205C is owned by InterNet Systems of Florida, Inc. in Crestview, Florida.
IP interfaces

The logical view that a system administrator has of network connectivity is via an “interface”.

You can see the interfaces on a machine with `ifconfig -a`.
IP interfaces

Linux:

```
eth0    Link encap:Ethernet  HWaddr 00:0B:DB:3F:66:27
          inet addr:128.186.120.8  Bcast:128.186.120.255  Mask:255.255.255.0
          UP  BROADCAST  RUNNING  MULTICAST  MTU:1500  Metric:1
          RX packets:329465  errors:0  dropped:0  overruns:0  frame:0
          TX packets:33862  errors:0  dropped:0  overruns:0  carrier:0
          collisions:0  txqueuelen:1000
          RX bytes:86856566 (82.8 Mb)  TX bytes:4174751 (3.9 Mb)
          Base address:0xecc0  Memory:ff8e0000-ff900000
```
IP interfaces

lo    Link encap:Local Loopback
inet addr:127.0.0.1  Mask:255.0.0.0
UP LOOPBACK RUNNING  MTU:16436  Metric:1
RX packets:221671 errors:0 dropped:0 overruns:0 frame:0
TX packets:221671 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:23151065 (22.0 Mb)  TX bytes:23151065 (22.0 Mb)
IP interfaces

On Solaris:

root@opensolaris:~# ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1
   inet 127.0.0.1 netmask ff000000
e1000g0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu 1500 index 2
   inet 10.0.2.15 netmask fffffff00 broadcast 10.0.2.255
   ether 8:0:27:d3:84:8e

root@solaris10:~$ ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1
   inet 127.0.0.1 netmask ff000000
bge0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
   inet 128.186.120.53 netmask fffffff00 broadcast 128.186.120.255
IP interfaces

On Windows, `ipconfig /all` does the same.
ARP – Address Resolution Protocol

ARP lets you map IP to and from MAC addresses.

Here’s an ARP table from a Linux machine (arp -a):

aegis.cs.fsu.edu (128.186.120.1) at 00:0B:BE:F7:51:88 [ether] on eth0
csdc03.cs.fsu.edu (128.186.120.179) at 00:30:48:2A:29:FD [ether] on eth0
ARP – Address Resolution Protocol

ARP table from a Solaris 10 machine:
ARP – Address Resolution Protocol

Net to Media Table: IPv4

<table>
<thead>
<tr>
<th>Device</th>
<th>IP Address</th>
<th>Mask</th>
<th>Flags</th>
<th>Phys Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>bge0</td>
<td>aegis.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:0b:be:f7:51:88</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>mail</td>
<td>255.255.255.255</td>
<td>00:30:48:27:18:3c</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>sophie.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:0b:db:3f:66:27</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>titanic.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:30:48:76:22:de</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>omicron</td>
<td>255.255.255.255</td>
<td>00:03:ba:2f:c3:45</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>brain.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:b0:d0:7b:8b:6d</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>csdc02.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:30:48:27:43:2b</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>csdc03.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:30:48:2a:29:fd</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>tempest.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:90:27:e0:01:15</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>m114-8.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:04:75:e7:2f:d7</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>azaroman.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:0b:db:3f:65:73</td>
<td></td>
</tr>
<tr>
<td>bge0</td>
<td>ivy.cs.fsu.edu</td>
<td>255.255.255.255</td>
<td>00:0b:db:7e:ab:48</td>
<td></td>
</tr>
</tbody>
</table>
OpenSolaris

Net to Media Table: IPv4

<table>
<thead>
<tr>
<th>Device</th>
<th>IP Address</th>
<th>Mask</th>
<th>Flags</th>
<th>Phys Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1000g0</td>
<td>10.0.2.15</td>
<td>255.255.255.255</td>
<td>SPLA</td>
<td>08:00:27:d3:84:8e</td>
</tr>
<tr>
<td>e1000g0</td>
<td>10.0.2.2</td>
<td>255.255.255.255</td>
<td>o</td>
<td>52:54:00:12:35:02</td>
</tr>
<tr>
<td>e1000g0</td>
<td>10.0.2.3</td>
<td>255.255.255.255</td>
<td>o</td>
<td>52:54:00:12:35:03</td>
</tr>
<tr>
<td>e1000g0</td>
<td>BASE-ADDRESS.MCAST.NET 240.0.0.0</td>
<td>SM</td>
<td>01:00:5e:00:00:00</td>
<td></td>
</tr>
</tbody>
</table>

\prog{arp -a} also works on Windows:

\begin{Verbatim}[fontsize=\scriptsize]
Interface: 128.186.121.35

<table>
<thead>
<tr>
<th>Internet Address</th>
<th>Physical Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.186.121.10</td>
<td>08-00-20-1d-f0-37</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.186.121.36</td>
<td>00-a0-24-8e-31-06</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.186.121.41</td>
<td>08-00-20-7d-4f-49</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.186.121.83</td>
<td>00-c0-f0-16-4d-13</td>
<td>dynamic</td>
</tr>
</tbody>
</table>
\end{Verbatim}
You can also do an “ARP ping”:

[root@localhost root]# /usr/sbin/arping csdc02.cs.fsu.edu
ARPING 128.186.120.178 from 128.186.120.8 eth0
Unicast reply from 128.186.120.178 [00:30:48:27:43:2B] 2.029ms
Unicast reply from 128.186.120.178 [00:30:48:27:43:2B] 1.092ms
Unicast reply from 128.186.120.178 [00:30:48:27:43:2B] 0.987ms
Unicast reply from 128.186.120.178 [00:30:48:27:43:2B] 0.978ms
tshark: a first glance

Name service is typically done via UDP, not TCP, although both are supported.

The best fundamental RFC for name service is RFC1034 (http://www.ietf.org/rfc/rfc1034.txt).
tshark: a first glance

Here’s a simple nameserver lookup:

Capturing on eth0
1 Frame 1 (74 bytes on wire, 74 bytes captured)
   Arrival Time: Jan 31, 2006 10:27:59.500427000
   Time delta from previous packet: 0.000000000 seconds
   Time since reference or first frame: 0.000000000 seconds
   Frame Number: 1
   Packet Length: 74 bytes
   Capture Length: 74 bytes
   Protocols in frame: eth:ip:udp:dns

   Ethernet II, Src: DellEsgP_3f:66:27 (00:0b:db:3f:66:27),
       Dst: Supermic_2a:29:fd (00:30:48:2a:29:fd)
   Destination: Supermic_2a:29:fd (00:30:48:2a:29:fd)
Source: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Type: IP (0x0800)
Internet Protocol, Src: 128.186.120.8 (128.186.120.8),
   Dst: 128.186.120.179 (128.186.120.179)
Version: 4
Header length: 20 bytes
[ ... ]
Total Length: 60
[ ... ]
Protocol: UDP (0x11)
[ ... ]
Source: 128.186.120.8 (128.186.120.8)
Destination: 128.186.120.179 (128.186.120.179)
User Datagram Protocol, Src Port: 32778 (32778), Dst Port: domain (53)
   Source port: 32778 (32778)
   Destination port: domain (53)
   Length: 40
   Checksum: 0x09a4 [correct]
Domain Name System (query)
   Transaction ID: 0xdc56
Flags: 0x0100 (Standard query)
   0... .... .... .... = Response: Message is a query
   .000 0... .... .... = Opcode: Standard query (0)
   .... ..0. .... .... = Truncated: Message is not truncated
   .... ...1 .... .... = Recursion desired: Do query recursively
   .... .... .0.. .... = Z: reserved (0)
   .... .... ...0 .... = Non-authenticated data OK: Non-authenticated
data is unacceptable

Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
Queries
   www.cs.fsu.edu: type A, class IN
       Name: www.cs.fsu.edu
       Type: A (Host address)
       Class: IN (0x0001)

2 Frame 2 (90 bytes on wire, 90 bytes captured)
   Arrival Time: Jan 31, 2006 10:27:59.500918000
Time delta from previous packet: 0.000491000 seconds
Time since reference or first frame: 0.000491000 seconds
Frame Number: 2
Packet Length: 90 bytes
Capture Length: 90 bytes
Protocols in frame: eth:ip:udp:dns

Ethernet II, Src: Supermic_2a:29:fd (00:30:48:2a:29:fd),
   Dst: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)

Destination: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Source: Supermic_2a:29:fd (00:30:48:2a:29:fd)
Type: IP (0x0800)

Internet Protocol, Src: 128.186.120.179 (128.186.120.179),
   Dst: 128.186.120.8 (128.186.120.8)

Version: 4
Header length: 20 bytes
[ ... ]
Total Length: 76
[ ... ]
Protocol: UDP (0x11)
[ ... ]
Source: 128.186.120.179 (128.186.120.179)
Destination: 128.186.120.8 (128.186.120.8)

User Datagram Protocol, Src Port: domain (53), Dst Port: 32778 (32778)
Source port: domain (53)
Destination port: 32778 (32778)
Length: 56
Checksum: Oxdf2c [correct]

Domain Name System (response)
Transaction ID: 0xdc56
Flags: 0x8580 (Standard query response, No error)
  1... .... ..... ..... = Response: Message is a response
  .000 0... .... ..... = Opcode: Standard query (0)
  .... .1... .... ..... = Authoritative: Server is an authority for domain
  .... ..0. .... ..... = Truncated: Message is not truncated
  .... ...1 .... ..... = Recursion desired: Do query recursively
  .... .... 1... .... ..... = Recursion available: Server can do recursive queries
  .... .... .0... .... = Z: reserved (0)
  .... .... ..0. .... = Answer authenticated: Answer/authority portion
  ... was not authenticated by the server
  .... .... .... 0000 = Reply code: No error (0)
Questions: 1
Answer RRs: 1
Authority RRs: 0
Additional RRs: 0
Queries
    www.cs.fsu.edu: type A, class IN
        Name: www.cs.fsu.edu
        Type: A (Host address)
        Class: IN (0x0001)
Answers
    www.cs.fsu.edu: type A, class IN, addr 192.168.23.10
        Name: www.cs.fsu.edu
        Type: A (Host address)
        Class: IN (0x0001)
        Time to live: 1 hour
        Data length: 4
        Addr: 192.168.23.10
tshark continued: a look at mail exchange

Here’s another type of record, an MX (mail exchange) record:

tethereal -V port 53
Capturing on eth0
1 Frame 1 (70 bytes on wire, 70 bytes captured)
   Arrival Time: Jan 31, 2006 10:31:00.104730000
   Time delta from previous packet: 0.000000000 seconds
   Time since reference or first frame: 0.000000000 seconds
   Frame Number: 1
   Packet Length: 70 bytes
   Capture Length: 70 bytes
   Protocols in frame: eth:ip:udp:dns
Ethernet II, Src: DellEsgP_3f:66:27 (00:0b:db:3f:66:27),
    Dst: Supermic_2a:29:fd (00:30:48:2a:29:fd)
Destination: Supermic_2a:29:fd (00:30:48:2a:29:fd)
Source: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Type: IP (0x0800)
Internet Protocol, Src: 128.186.120.8 (128.186.120.8),
    Dst: 128.186.120.179 (128.186.120.179)
Version: 4
Header length: 20 bytes
[
 ...
]
Protocol: UDP (0x11)
Header checksum: 0x4885 [correct]
    Good: True
    Bad : False
Source: 128.186.120.8 (128.186.120.8)
Destination: 128.186.120.179 (128.186.120.179)
User Datagram Protocol, Src Port: 32778 (32778), Dst Port: domain (53)
    Source port: 32778 (32778)
    Destination port: domain (53)
Length: 36
Checksum: 0xf824 [correct]
Domain Name System (query)
Transaction ID: 0x68be
Flags: 0x0100 (Standard query)
  0... .... ..... ..... = Response: Message is a query
  .000 0... .... ..... = Opcode: Standard query (0)
  .... ..0. ..... ..... = Truncated: Message is not truncated
  .... ...1 .... ..... = Recursion desired: Do query recursively
  .... .... .0.. .... = Z: reserved (0)
  .... .... ...0 .... = Non-authenticated data OK: Non-authenticated data is unacceptable

Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
Queries
  cs.fsu.edu: type MX, class IN
    Name: cs.fsu.edu
    Type: MX (Mail exchange)
    Class: IN (0x0001)
2 Frame 2 (107 bytes on wire, 107 bytes captured)
   Arrival Time: Jan 31, 2006 10:31:00.105676000
   Time delta from previous packet: 0.000946000 seconds
   Time since reference or first frame: 0.000946000 seconds
   Frame Number: 2
   Packet Length: 107 bytes
   Capture Length: 107 bytes
   Protocols in frame: eth:ip:udp:dns

Ethernet II, Src: Supermic_2a:29:fd (00:30:48:2a:29:fd),
    Dst: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Destination: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Source: Supermic_2a:29:fd (00:30:48:2a:29:fd)
Type: IP (0x0800)

Internet Protocol, Src: 128.186.120.179 (128.186.120.179),
   Dst: 128.186.120.8 (128.186.120.8)

   Version: 4
   Header length: 20 bytes
   [ ... ]
Protocol: UDP (0x11)
Header checksum: 0x746c [correct]
  Good: True
  Bad : False
Source: 128.186.120.179 (128.186.120.179)
Destination: 128.186.120.8 (128.186.120.8)
User Datagram Protocol, Src Port: domain (53), Dst Port: 32778 (32778)
  Source port: domain (53)
  Destination port: 32778 (32778)
Length: 73
Checksum: 0xc6ba [correct]
Domain Name System (response)
  Transaction ID: 0x68be
  Flags: 0x8580 (Standard query response, No error)
  1... .... .... .... = Response: Message is a response
  .000 0... .... .... = Opcode: Standard query (0)
  .... .1... .... .... = Authoritative: Server is an authority for domain
  .... ..0. .... .... = Truncated: Message is not truncated
  .... ...1 .... .... = Recursion desired: Do query recursively
  .... .... 1... .... = Recursion available: Server can do recursive queries
Questions: 1
Answer RRs: 1
Authority RRs: 0
Additional RRs: 1

Queries
- \texttt{cs.fsu.edu}: type MX, class IN
  - Name: cs.fsu.edu
  - Type: MX (Mail exchange)
  - Class: IN (0x0001)

Answers
- \texttt{cs.fsu.edu}: type MX, class IN, preference 10, mx mail.cs.fsu.edu
  - Name: cs.fsu.edu
  - Type: MX (Mail exchange)
  - Class: IN (0x0001)
  - Time to live: 1 hour
  - Data length: 9
Preference: 10
Mail exchange: mail.cs.fsu.edu

Additional records
mail.cs.fsu.edu: type A, class IN, addr 128.186.120.4
  Name: mail.cs.fsu.edu
  Type: A (Host address)
  Class: IN (0x0001)
  Time to live: 1 hour
  Data length: 4
  Addr: 128.186.120.4
tshark: UDP can be complex, also

Here’s a more complex lookup:

Capturing on eth0
1 Frame 1 (73 bytes on wire, 73 bytes captured)
   Arrival Time: Jan 31, 2006 10:19:50.034677000
   Time delta from previous packet: 0.000000000 seconds
   Time since reference or first frame: 0.000000000 seconds
   Frame Number: 1
   Packet Length: 73 bytes
   Capture Length: 73 bytes
   Protocols in frame: eth:ip:udp:dns
   Ethernet II, Src: DellEsgP_3f:66:27 (00:0b:db:3f:66:27),
      Dst: Supermic_2a:29:fd (00:30:48:2a:29:fd)
   Destination: Supermic_2a:29:fd (00:30:48:2a:29:fd)
Source: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)  
Type: IP (0x0800)  
Internet Protocol, Src: 128.186.120.8 (128.186.120.8),  
       Dst: 128.186.120.179 (128.186.120.179)  
Version: 4  
Header length: 20 bytes  
[ ... ]  
Protocol: UDP (0x11)  
Header checksum: 0xdb64 [correct]  
    Good: True  
    Bad : False  
Source: 128.186.120.8 (128.186.120.8)  
Destination: 128.186.120.179 (128.186.120.179)  
User Datagram Protocol, Src Port: 32778 (32778), Dst Port: domain (53)  
    Source port: 32778 (32778)  
    Destination port: domain (53)  
    Length: 39  
    Checksum: 0xce29 [correct]  
Domain Name System (query)  
    Transaction ID: 0xf7f5
Flags: 0x0100 (Standard query)

0... .... .... .... = Response: Message is a query
.000 0... .... .... = Opcode: Standard query (0)
.... ..0. .... .... = Truncated: Message is not truncated
.... ...1 .... .... = Recursion desired: Do query recursively
.... .... .0.. .... = Z: reserved (0)
.... .... ...0 .... = Non-authenticated data OK: Non-authenticated data is unacceptable

Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
Queries

   www.yahoo.com: type A, class IN
       Name: www.yahoo.com
       Type: A (Host address)
       Class: IN (0x0001)

2 Frame 2 (539 bytes on wire, 539 bytes captured)
Arrival Time: Jan 31, 2006 10:19:50.036833000
Time delta from previous packet: 0.002156000 seconds
Time since reference or first frame: 0.002156000 seconds
Frame Number: 2
Packet Length: 539 bytes
Capture Length: 539 bytes
Protocols in frame: eth:ip:udp:dns

Ethernet II, Src: Supermic_2a:29:fd (00:30:48:2a:29:fd),
                  Dst: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Destination: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Source: Supermic_2a:29:fd (00:30:48:2a:29:fd)
Type: IP (0x0800)

Internet Protocol, Src: 128.186.120.179 (128.186.120.179),
                  Dst: 128.186.120.8 (128.186.120.8)
Version: 4
Header length: 20 bytes
[ ... ]
Protocol: UDP (0x11)
Header checksum: 0xa538 [correct]
Good: True
Bad : False
Source: 128.186.120.179 (128.186.120.179)
Destination: 128.186.120.8 (128.186.120.8)
User Datagram Protocol, Src Port: domain (53), Dst Port: 32778 (32778)
Source port: domain (53)
Destination port: 32778 (32778)
Length: 505
Checksum: 0xeafe [correct]
Domain Name System (response)
Transaction ID: 0xf7f5
Flags: 0x8180 (Standard query response, No error)
  1... ..... ..... ..... = Response: Message is a response
  .000 0... ..... ..... = Opcode: Standard query (0)
  .... .0... ..... ..... = Authoritative: Server is not an authority for domain
  .... ..0. ..... ..... = Truncated: Message is not truncated
  .... ...1 .... ..... = Recursion desired: Do query recursively
  .... .... 1... ..... = Recursion available: Server can do recursive queries
  .... .... .0... ..... = Z: reserved (0)
  .... .... ..0. ..... = Answer authenticated: Answer/authority portion was
                      not authenticated by the server
Questions: 1
Answer RRs: 9
Authority RRs: 10
Additional RRs: 7

Queries
www.yahoo.com: type A, class IN
  Name: www.yahoo.com
  Type: A (Host address)
  Class: IN (0x0001)

Answers
www.yahoo.com: type CNAME, class IN, cname www.yahoo.akadns.net
  Name: www.yahoo.com
  Type: CNAME (Canonical name for an alias)
  Class: IN (0x0001)
  Time to live: 1 minute
  Data length: 22
  Primary name: www.yahoo.akadns.net
www.yahoo.akadns.net: type A, class IN, addr 68.142.226.52
  Name: www.yahoo.akadns.net
Type: A (Host address)
Class: IN (0x0001)
Time to live: 48 seconds
Data length: 4
Addr: 68.142.226.52

www.yahoo.akadns.net: type A, class IN, addr 68.142.226.55
Name: www.yahoo.akadns.net
Type: A (Host address)
Class: IN (0x0001)
Time to live: 48 seconds
Data length: 4
Addr: 68.142.226.55

www.yahoo.akadns.net: type A, class IN, addr 68.142.226.34
Name: www.yahoo.akadns.net
Type: A (Host address)
Class: IN (0x0001)
Time to live: 48 seconds
Data length: 4
Addr: 68.142.226.34

www.yahoo.akadns.net: type A, class IN, addr 68.142.226.35
Name: www.yahoo.akadns.net
Type: A (Host address)
Class: IN (0x0001)
Time to live: 48 seconds
Data length: 4
Addr: 68.142.226.35

www.yahoo.akadns.net: type A, class IN, addr 68.142.226.37
Name: www.yahoo.akadns.net
Type: A (Host address)
Class: IN (0x0001)
Time to live: 48 seconds
Data length: 4
Addr: 68.142.226.37

www.yahoo.akadns.net: type A, class IN, addr 68.142.226.44
Name: www.yahoo.akadns.net
Type: A (Host address)
Class: IN (0x0001)
Time to live: 48 seconds
Data length: 4
Addr: 68.142.226.44
www.yahoo.akadns.net: type A, class IN, addr 68.142.226.45
  Name: www.yahoo.akadns.net
  Type: A (Host address)
  Class: IN (0x0001)
  Time to live: 48 seconds
  Data length: 4
  Addr: 68.142.226.45

www.yahoo.akadns.net: type A, class IN, addr 68.142.226.50
  Name: www.yahoo.akadns.net
  Type: A (Host address)
  Class: IN (0x0001)
  Time to live: 48 seconds
  Data length: 4
  Addr: 68.142.226.50

Authoritative nameservers
  akadns.net: type NS, class IN, ns use1.akadns.net
  Name: akadns.net
  Type: NS (Authoritative name server)
  Class: IN (0x0001)
  Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: use1.akadns.net
akadns.net: type NS, class IN, ns use9.akadns.net
   Name: akadns.net
   Type: NS (Authoritative name server)
   Class: IN (0x0001)
   Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: use9.akadns.net
akadns.net: type NS, class IN, ns usw5.akadns.net
   Name: akadns.net
   Type: NS (Authoritative name server)
   Class: IN (0x0001)
   Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: usw5.akadns.net
akadns.net: type NS, class IN, ns usw6.akadns.net
   Name: akadns.net
   Type: NS (Authoritative name server)
   Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: usw6.akadns.net
akadns.net: type NS, class IN, ns asia4.akadns.net
Name: akadns.net
Type: NS (Authoritative name server)
Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 8
Name server: asia4.akadns.net
akadns.net: type NS, class IN, ns asia9.akadns.net
Name: akadns.net
Type: NS (Authoritative name server)
Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 8
Name server: asia9.akadns.net
akadns.net: type NS, class IN, ns eur4.akadns.net
Name: akadns.net
Type: NS (Authoritative name server)
Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: eur4.akadns.net

akadns.net: type NS, class IN, ns eur7.akadns.net
Name: akadns.net
Type: NS (Authoritative name server)
Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: eur7.akadns.net

akadns.net: type NS, class IN, ns eur8.akadns.net
Name: akadns.net
Type: NS (Authoritative name server)
Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: eur8.akadns.net

akadns.net: type NS, class IN, ns usc4.akadns.net
Name: akadns.net

Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: eur4.akadns.net

akadns.net: type NS, class IN, ns eur7.akadns.net
Name: akadns.net
Type: NS (Authoritative name server)
Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: eur7.akadns.net

akadns.net: type NS, class IN, ns eur8.akadns.net
Name: akadns.net
Type: NS (Authoritative name server)
Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: eur8.akadns.net

akadns.net: type NS, class IN, ns usc4.akadns.net
Name: akadns.net
Type: NS (Authoritative name server)
Class: IN (0x0001)
Time to live: 10 hours, 55 minutes, 5 seconds
Data length: 7
Name server: usc4.akadns.net

Additional records
eur4.akadns.net: type A, class IN, addr 195.219.3.169
  Name: eur4.akadns.net
  Type: A (Host address)
  Class: IN (0x0001)
  Time to live: 1 day, 8 hours, 20 minutes, 19 seconds
  Data length: 4
  Addr: 195.219.3.169

eur7.akadns.net: type A, class IN, addr 193.108.94.88
  Name: eur7.akadns.net
  Type: A (Host address)
  Class: IN (0x0001)
  Time to live: 18 minutes, 34 seconds
  Data length: 4
  Addr: 193.108.94.88
eur8.akadns.net: type A, class IN, addr 62.4.69.96
   Name: eur8.akadns.net
   Type: A (Host address)
   Class: IN (0x0001)
   Time to live: 18 minutes, 34 seconds
   Data length: 4
   Addr: 62.4.69.96

usc4.akadns.net: type A, class IN, addr 69.45.78.3
   Name: usc4.akadns.net
   Type: A (Host address)
   Class: IN (0x0001)
   Time to live: 1 day, 12 hours, 53 minutes, 38 seconds
   Data length: 4
   Addr: 69.45.78.3

use1.akadns.net: type A, class IN, addr 67.72.17.134
   Name: use1.akadns.net
   Type: A (Host address)
   Class: IN (0x0001)
   Time to live: 7 hours, 19 minutes, 34 seconds
   Data length: 4
Addr: 67.72.17.134
use9.akadns.net: type A, class IN, addr 81.52.250.134
  Name: use9.akadns.net
  Type: A (Host address)
  Class: IN (0x0001)
  Time to live: 20 hours, 59 minutes, 38 seconds
  Data length: 4
  Addr: 81.52.250.134
usw5.akadns.net: type A, class IN, addr 63.241.73.200
  Name: usw5.akadns.net
  Type: A (Host address)
  Class: IN (0x0001)
  Time to live: 1 day, 15 hours, 13 minutes, 44 seconds
  Data length: 4
  Addr: 63.241.73.200
Characteristics of IP to bear in mind

- IP addresses assigned to interface, not computer
- Interfaces don’t have to be physical devices: Virtual interfaces “eth0:0”, “eth0:1”, etc.
- For instance, another non-physical interface is the loopback device
- A computer can have multiple interfaces
TCP protocol

TCP is inherently more complex than UDP: UDP just throws a packet on the wire. In an environment where speed is desirable, and small packetsize is not a detriment, and there is no particular need for sequencing, UDP can be quite useful.
TCP protocol

TCP tries to be fast, and to also provide sequencing and losslessness, which fits in the general paradigm of a file as just a bytestream.
TCP protocol

Let’s look at a TCP connection over port 25, the SMTP MTA port:

[root@localhost root]# tshark -V port 25
Capturing on eth0
1 Frame 1 (74 bytes on wire, 74 bytes captured)
   Arrival Time: Jan 31, 2006 11:48:35.009104000
   Time delta from previous packet: 0.000000000 seconds
   Time since reference or first frame: 0.000000000 seconds
   Frame Number: 1
   Packet Length: 74 bytes
   Capture Length: 74 bytes
   Protocols in frame: eth:ip:tcp
Ethernet II, Src: DellEsgP_3f:66:27 (00:0b:db:3f:66:27),
    Dst: Supermic_27:18:3c (00:30:48:27:18:3c)
Destination: Supermic_27:18:3c (00:30:48:27:18:3c)
Source: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Type: IP (0x0800)
Internet Protocol, Src: 128.186.120.8 (128.186.120.8),
    Dst: 128.186.120.4 (128.186.120.4)
Version: 4
Header length: 20 bytes
[ ... ]
Protocol: TCP (0x06)
Header checksum: 0x39ee [correct]
    Good: True
    Bad : False
Source: 128.186.120.8 (128.186.120.8)
Destination: 128.186.120.4 (128.186.120.4)
Transmission Control Protocol, Src Port: 35433 (35433),
    Dst Port: smtp (25), Seq: 0, Ack: 0, Len: 0
Source port: 35433 (35433)
Destination port: smtp (25)
Sequence number: 0  (relative sequence number)
Header length: 40 bytes
Flags: 0x0002 (SYN)
   0... .... = Congestion Window Reduced (CWR): Not set
   .0.. .... = ECN-Echo: Not set
   ..0. .... = Urgent: Not set
   ...0 .... = Acknowledgment: Not set
   .... 0... = Push: Not set
   .... .0.. = Reset: Not set
   .... ..1. = Syn: Set
   .... ...0 = Fin: Not set
Window size: 5840
Checksum: 0x2105 [correct]
Options: (20 bytes)
   Maximum segment size: 1460 bytes
   [ ...  ]
Time delta from previous packet: 0.000618000 seconds
Time since reference or first frame: 0.000618000 seconds
Frame Number: 2
Packet Length: 74 bytes
Capture Length: 74 bytes
Protocols in frame: eth:ip:tcp
Ethernet II, Src: Supermic_27:18:3c (00:30:48:27:18:3c),
    Dst: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Destination: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Source: Supermic_27:18:3c (00:30:48:27:18:3c)
Type: IP (0x0800)
Internet Protocol, Src: 128.186.120.4 (128.186.120.4),
    Dst: 128.186.120.8 (128.186.120.8)
Version: 4
Header length: 20 bytes
          [  ...  ]
Protocol: TCP (0x06)
Header checksum: 0x493b [correct]
          Good: True
          Bad : False
Source: 128.186.120.4 (128.186.120.4)
Destination: 128.186.120.8 (128.186.120.8)

Transmission Control Protocol, Src Port: smtp (25),
               Dst Port: 35433 (35433), Seq: 0, Ack: 1, Len: 0

Source port: smtp (25)
Destination port: 35433 (35433)
Sequence number: 0 (relative sequence number)
Acknowledgement number: 1 (relative ack number)
Header length: 40 bytes
Flags: 0x0012 (SYN, ACK)

0... .... = Congestion Window Reduced (CWR): Not set
.0.. .... = ECN-Echo: Not set
..0. .... = Urgent: Not set
...1 .... = Acknowledgment: Set
.... 0... = Push: Not set
.... .0.. = Reset: Not set
..... ..1. = Syn: Set
..... ...0 = Fin: Not set

Window size: 5792
Checksum: 0x2559 [correct]
Options: (20 bytes)
    Maximum segment size: 1460 bytes
    [ ... ]
SEQ/ACK analysis
    This is an ACK to the segment in frame: 1
    The RTT to ACK the segment was: 0.000618000 seconds

3 Frame 3 (66 bytes on wire, 66 bytes captured)
    Arrival Time: Jan 31, 2006 11:48:35.009786000
    Time delta from previous packet: 0.000064000 seconds
    Time since reference or first frame: 0.000682000 seconds
    Frame Number: 3
    Packet Length: 66 bytes
    Capture Length: 66 bytes
    Protocols in frame: eth:ip:tcp
    Ethernet II, Src: DellEsgP_3f:66:27 (00:0b:db:3f:66:27),
        Dst: Supermic_27:18:3c (00:30:48:27:18:3c)
    Destination: Supermic_27:18:3c (00:30:48:27:18:3c)
    Source: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
    Type: IP (0x0800)
Internet Protocol, Src: 128.186.120.8 (128.186.120.8),
   Dst: 128.186.120.4 (128.186.120.4)

   Version: 4
   Header length: 20 bytes
   [ .... ]
   Protocol: TCP (0x06)
   Header checksum: 0x39f5 [correct]
       Good: True
       Bad : False
   Source: 128.186.120.8 (128.186.120.8)
   Destination: 128.186.120.4 (128.186.120.4)

Transmission Control Protocol, Src Port: 35433 (35433),
   Dst Port: smtp (25), Seq: 1, Ack: 1, Len: 0

   Source port: 35433 (35433)
   Destination port: smtp (25)
   Sequence number: 1     (relative sequence number)
   Acknowledgement number: 1     (relative ack number)
   Header length: 32 bytes
   Flags: 0x0010 (ACK)
       0... .... = Congestion Window Reduced (CWR): Not set
.0... = ECN-Echo: Not set
..0. = Urgent: Not set
...1 = Acknowledgment: Set
....0... = Push: Not set
....0.. = Reset: Not set
....0. = Syn: Not set
....0 = Fin: Not set

Window size: 5840

[ ... ]

SEQ/ACK analysis

This is an ACK to the segment in frame: 2
The RTT to ACK the segment was: 0.000064000 seconds

4 Frame 4 (101 bytes on wire, 101 bytes captured)
Arrival Time: Jan 31, 2006 11:48:35.023964000
Time delta from previous packet: 0.014178000 seconds
Time since reference or first frame: 0.014860000 seconds
Frame Number: 4
Packet Length: 101 bytes
Capture Length: 101 bytes
Protocols in frame: eth:ip:tcp:smtp

Ethernet II, Src: Supermic_27:18:3c (00:30:48:27:18:3c),
   Dst: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Destination: DellEsgP_3f:66:27 (00:0b:db:3f:66:27)
Source: Supermic_27:18:3c (00:30:48:27:18:3c)
Type: IP (0x0800)
Internet Protocol, Src: 128.186.120.4 (128.186.120.4),
   Dst: 128.186.120.8 (128.186.120.8)

Version: 4
Header length: 20 bytes
[ ... ]
Protocol: TCP (0x06)
Header checksum: 0x03ce [correct]
   Good: True
   Bad : False
Source: 128.186.120.4 (128.186.120.4)
Destination: 128.186.120.8 (128.186.120.8)
Transmission Control Protocol, Src Port: smtp (25),
   Dst Port: 35433 (35433), Seq: 1, Ack: 1, Len: 35
Source port: smtp (25)
Destination port: 35433 (35433)
Sequence number: 1 (relative sequence number)
Next sequence number: 36 (relative sequence number)
Acknowledgement number: 1 (relative ack number)
Header length: 32 bytes
Flags: 0x0018 (PSH, ACK)
  0... .... = Congestion Window Reduced (CWR): Not set
  .0... .... = ECN-Echo: Not set
  ..0. .... = Urgent: Not set
  ...1 .... = Acknowledgment: Set
  .... 1... = Push: Set
  .... .0.. = Reset: Not set
  .... ..0. = Syn: Not set
  .... ...0 = Fin: Not set
Window size: 5792 (scaled)
Checksum: 0x44e4 [correct]
Options: (12 bytes)
  NOP
  NOP
Time stamp: tsval 3481428865, tsecr 9604399
Simple Mail Transfer Protocol
  Response: 220 mail.cs.fsu.edu ESMTP Postfix
  Response code: 220
  Response parameter: mail.cs.fsu.edu ESMTP Postfix

5 Frame 5 (66 bytes on wire, 66 bytes captured)
  Arrival Time: Jan 31, 2006 11:48:35.024014000
  Time delta from previous packet: 0.000050000 seconds
  Time since reference or first frame: 0.014910000 seconds
  Frame Number: 5
  Packet Length: 66 bytes
  Capture Length: 66 bytes
  Protocols in frame: eth:ip:tcp
  Ethernet II, Src: DellEs3gP_3f:66:27 (00:0b:db:3f:66:27),
    Dst: Supermic_27:18:3c (00:30:48:27:18:3c)
  Destination: Supermic_27:18:3c (00:30:48:27:18:3c)
  Source: DellEs3gP_3f:66:27 (00:0b:db:3f:66:27)
  Type: IP (0x0800)
  Internet Protocol, Src: 128.186.120.8 (128.186.120.8),
    Dst: 128.186.120.4 (128.186.120.4)
Version: 4
Header length: 20 bytes
[ ... ]
Protocol: TCP (0x06)
Header checksum: 0x39f4 [correct]
    Good: True
    Bad : False
Source: 128.186.120.8 (128.186.120.8)
Destination: 128.186.120.4 (128.186.120.4)
Transmission Control Protocol, Src Port: 35433 (35433),
    Dst Port: smtp (25), Seq: 1, Ack: 36, Len: 0
Source port: 35433 (35433)
Destination port: smtp (25)
Sequence number: 1 (relative sequence number)
Acknowledgement number: 36 (relative ack number)
Header length: 32 bytes
Flags: 0x0010 (ACK)
    0... .... = Congestion Window Reduced (CWR): Not set
    .0... .... = ECN-Echo: Not set
    ..0. .... = Urgent: Not set
...1 .... = Acknowledgment: Set
.... 0... = Push: Not set
.... .0.. = Reset: Not set
.... ..O. = Syn: Not set
.... ...0 = Fin: Not set

Window size: 5840
Checksum: 0x53be [correct]
Options: (12 bytes)
  NOP
  NOP
  Time stamp: tsval 9604400, tsecr 3481428865

SEQ/ACK analysis
  This is an ACK to the segment in frame: 4
  The RTT to ACK the segment was: 0.000050000 seconds
TCP: important points for system administrators

Did the SYN packet go out?

Did it get an ACK/SYN back?
TCP: important points for system administrators

Did the maximum segment size (MSS) look reasonable (1460 is good, occasionally will see much smaller, which is not so great for high volume web servers.)
TCP: important points for system administrators

Did a PUSH happen, and did it have expected data over the correct port?

strace and tshark are two of the system administrator’s best tools.
Other useful tools

**ping** – can do both UDP pings and ICMP pings

**traceroute** – *may* be useful to see where a network blockage might be
Other useful tools

**tcpdump** – similar to **tshark** (in fact, **tshark** uses some of the libraries from **tcpdump**) (libpcap)

**netstat** – lets you see network status. **netstat -rn** is particularly useful since it can let you see the routing table.
Other useful tools

route – lets you manipulate routing tables
Routing

Why do we need routing?

Machines on same network don’t need it

Two disparate physical nets do need it
Routing

- Routers/Gateways (as mentioned in *Network Warrior*), often counted as slightly different, but we will use the terms interchangeably

- Main types of routing
Routing

Static routes

- Entered manually; gathered via DHCP; gather with “router discovery” (e.g. RFC 1256)
Routing

- Every machine should have at least one: the default route
- Method for adding (route command)
- Adding an imaginary route to met.fsu.edu through xi would be:
Routing

route add -net 128.186.5.0 netmask 255.255.255.0 gw 128.186.121.41 (Linux)
route add net 128.186.5.0 128.186.121.41 (SunOS/Solaris)
Routing

Dynamic

Uses routing daemons, such as routed
Routing

Kernel routing table (netstat -rn)

How does routing work? Do we have routes to everywhere?
Dynamic routing

- Distance vector, e.g. RIP
- Link state, e.g. OSPF
- Outside our area, e.g. BGP
Dynamic routing

This has been an active area for networkers (with lots and lots of protocols such as RIP-2, IGRP, EIGRP, IS-IS, MOSPF, DVMRP, PIM, and so on), but increasing irrelevant for system administrators, who are largely using “static” routing.
“Static” routing

There are at least three different ways to implement “static” routes:
“Static” routing

1. Put it in “very” statically with the route program; at boottime, either /etc/sysconfig/network (Linux) or /etc/defaulttrouter (Solaris) is checked for an entry.
2. Use DHCP to pick up the information.
“Static” routing


ICMP:

This document specifies an alternative router discovery method using a pair of ICMP [10] messages, for use on multicast links. It eliminates the need for manual configuration of router addresses and is independent of any specific routing protocol.
“Static” routing

On Solaris, \texttt{in.routed} also understands ICMP router discovery. On Linux, it is still done via a separate \texttt{rdisc} daemon.
Fitting it all together

System administrators typically use tools on machines to debug network problems.

 ping (ICMP) is a good candidate to discover if a host is up or down, and to see if network connectivity has been lost to a network.
Fitting it all together

- **traceroute** is also useful program to see exactly how packets are traversing the network

- Finally, **tcpdump/tshark** are also useful to make sure traffic is proceeding well
Firewalls

In the past, firewalls were not nearly as important as they are today, particularly for interior machines. While it has been generally recognized for a long time that firewalls were important for outward facing machines, with the proliferation of malware, it is now conventional wisdom that one should enable firewalls on virtually all non-isolated machines.
Firewalls

On the Linux side, this generally means running iptables.
**Firewalls**

The configuration for iptables is generally found in `/etc/sysconfig/iptables`:

```bash
# Firewall configuration written by redhat-config-securitylevel
# Manual customization of this file is not recommended.
*filter
  :INPUT ACCEPT [0:0]
  :FORWARD ACCEPT [0:0]
  :OUTPUT ACCEPT [0:0]
  :RH-Firewall-1-INPUT - [0:0]
- A INPUT -j RH-Firewall-1-INPUT
- A FORWARD -j RH-Firewall-1-INPUT
- A RH-Firewall-1-INPUT -i lo -j ACCEPT
```
-A RH-Firewall-1-INPUT -p icmp --icmp-type any -j ACCEPT
-A RH-Firewall-1-INPUT -p 50 -j ACCEPT # IPsec ESP
-A RH-Firewall-1-INPUT -p 51 -j ACCEPT # IPsec AH
-A RH-Firewall-1-INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited
COMMIT
Firewalls

For instance, if you wanted to let this machine serve SMTP, you could add a rule:

... 
-A RH-Firewall-1-INPUT -p 51 -j ACCEPT
-A RH-Firewall-1-INPUT -p tcp --destination-port 25 -j ACCEPT
-A RH-Firewall-1-INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited
...
While it isn’t quite embedded processing, you will find Linux distributions that focus on providing a router appliance. From there, you can get into many more interesting issues such as VLANs, CIDR addressing, and a more in-depth study of routing protocols.
Ubiquitous computing: Linux as a router appliance

Free Cisco (http://www.freesco.org/)
Ubiquitous computing: Linux as a router appliance

- LEAF (http://leaf.sourceforge.net/)

- Linksys firewalls: the WRT models are a popular Linux platform (most people doing this should get a as many megabytes as available); DD-WRT is pretty good