
Summer 2009 Daemons and Other Processes

Processes and Daemons

+ Fundamentally, kernels provide a few logical constructs

that mediate access to either real or virtual resources.

The two most important in Unix are processes and

filesystems.

+ You can view the characteristics of processes on a Unix

machine with a variety of programs, including ps, top,

lsof, and even ls.

CNT 4603

Summer 2009 Daemons and Other Processes

What Unix/Linux system administrators
see – ps

[root@localhost root]# cat /etc/redhat-release
Fedora release 8 (Werewolf)
[root@localhost root]# ps -elf # This is SYSV; Berkeley = ’ps axlww’
F S UID PID PPID C PRI NI TTY TIME CMD
4 S root 1 0 0 75 0 ? 00:00:08 init
4 S root 1573 1384 0 75 0 tty 00:00:00 -bash
5 S root 7492 1 0 75 0 ? 00:01:08 sendmail: accepting
1 S smmsp 7497 1 0 75 0 ? 00:00:00 sendmail: Queue run
5 S apache 25079 1321 0 75 0 ? 00:00:00 /usr/sbin/httpd
5 S apache 25080 1321 0 75 0 ? 00:00:00 /usr/sbin/httpd
5 S apache 25085 1321 0 75 0 ? 00:00:00 /usr/sbin/httpd
5 S apache 25086 1321 0 75 0 ? 00:00:00 /usr/sbin/httpd

CNT 4603

Summer 2009 Daemons and Other Processes

What system administrators see – ps

5 S root 13137 7492 0 76 0 ? 00:00:00 sendmail: server [10.1.
5 S root 16572 7492 0 75 0 ? 00:00:00 sendmail: k0CBPF4I01657
5 S root 18574 7492 0 75 0 ? 00:00:00 sendmail: k0CBcKUk01857
5 S root 20824 7492 0 75 0 ? 00:00:00 sendmail: k0CBs9CZ02082
5 S root 22950 7523 6 75 0 ? 00:04:14 /usr/bin/perl
5 S root 23050 7523 6 78 0 ? 00:03:58 /usr/bin/perl
5 S root 32112 1151 0 75 0 ? 00:00:00 sshd: root@pts/0
4 S root 32142 32112 0 75 0 pts/0 00:00:00 -bash
5 S root 32286 1 0 83 0 ? 00:00:00 sendmail: ./k0CD8sHV032
5 S root 32317 7492 0 75 0 ? 00:00:00 sendmail: k0CD96Jh03231

CNT 4603

Summer 2009 Daemons and Other Processes

What Unix/Linux system administrators
see – top

[root@localhost root]# top -b -n1 # run in batch mode for one iteration
08:17:41 up 1 day, 18:12, 2 users, load average: 9.69, 9.14, 8.89
115 processes: 114 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: cpu user nice system irq softirq iowait idle

total 0.0% 0.0% 0.9% 0.0% 0.9% 0.0% 98.0%
Mem: 510344k av, 392504k used, 117840k free, 0k shrd, 17208k buff

240368k actv, 55488k in_d, 4760k in_c
Swap: 522104k av, 90392k used, 431712k free 72852k cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
1090 root 20 0 1088 1088 832 R 0.9 0.2 0:00 0 top

1 root 15 0 492 456 432 S 0.0 0.0 0:08 0 init
3 root 15 0 0 0 0 SW 0.0 0.0 0:00 0 keventd

CNT 4603

Summer 2009 Daemons and Other Processes

What Unix/Linux system administrators
see - lsof

[root@localhost root]# lsof # heavily redacted to fit on page
COMMAND PID USER NODE NAME
sendmail 20824 root 159526 /lib/libcrypt-2.3.2.so
sendmail 20824 root 159568 /lib/libcrypto.so.0.9.7a
sendmail 20824 root 319023 /usr/lib/libldap.so.2.0.17
sendmail 20824 root 32286 /usr/lib/sasl/libcrammd5.so.1.0.19
sendmail 20824 root 32104 /usr/kerberos/lib/libk5crypto.so.3.0
sendmail 20824 root 32095 /lib/tls/libdb-4.2.so

CNT 4603

Summer 2009 Daemons and Other Processes

What system administrators see - lsof

sendmail 20824 root 318943 /usr/lib/libz.so.1.1.4
sendmail 20824 root 65611 /dev/null
sendmail 20824 root TCP anothermachine.com:smtp->10.1.1.20:
sendmail 20824 root 65611 /dev/null
sendmail 20824 root 16220 socket
sendmail 20824 root TCP anothermachine.com:smtp->10.1.1.20:
sendmail 20824 root TCP localhost.localdomain:48512->localh
sendmail 20824 root TCP anothermachine.com:smtp->10.1.1.20:

CNT 4603

Summer 2009 Daemons and Other Processes

Processes and Daemons : fork(2)and
clone(2)

+ Fundamentally, kernels provide some logical constructs

that mediate access to either real or virtual resources.

The two most important in Unix are processes and

filesystems.

+ A new process is created by fork(2); or, alternatively,

in Linux with clone(2)since processes and threads are

both just task struct in Linux.

CNT 4603

Summer 2009 Daemons and Other Processes

Processes and Daemons : fork(2)and
clone(2)

+ With clone(2), memory, file descriptors and signal

handlers are still shared between parent and child.

+ With fork(2), these are copied, not shared.

CNT 4603

Summer 2009 Daemons and Other Processes

Starting a Unix/Linux process

+ exec*()instantiates a new executable:

ó Usually, when doing an exec*()the named file is

loaded into the current process’s memory space

CNT 4603

Summer 2009 Daemons and Other Processes

Starting a Unix/Linux process

ó Unless the first two characters of the file are #! and
the following characters name a valid pathname to an

executable file, in which that file is instead loaded

ó If the executable is dynamically linked, then the

dynamic loader maps in the necessary bits (not done

if the binary is statically linked.)

CNT 4603

Summer 2009 Daemons and Other Processes

Starting a Unix/Linux process

ó Then code in the initial “.text” section is then

executed. (There are three main types of sections:

“.text” sections for executable code, “.data” sections

(including read-only “.rodata” sections), and “.bss”

sections (Blocks Started by Symbol) which contains

“uninitialized” data.

CNT 4603

Summer 2009 Daemons and Other Processes

Some Typical Assembly Code

.file "syslog.c" ; the file name this originated in

.data ; a data section

.align 4 ; put PC on 4 (or 16) byte alignment

.type LogFile,@object ; create a reference of type object

.size LogFile,4 ; and give it 4 bytes in size

CNT 4603

Summer 2009 Daemons and Other Processes

Some Typical Assembly Code

LogFile: ; address for object
.long -1 ; initialize to a value of -1
.align 4 ; align . to 4 (16) byte
.type LogStat,@object ; a new object reference is created
.size LogStat,4 ; give it 4 bytes also

LogStat: ; here’s its address in memory
.long 0 ; and initialized it to a value zero
.section .rodata ; here’s a ‘‘read-only’’ section

CNT 4603

Summer 2009 Daemons and Other Processes

Some Typical Assembly Code

.LC0: ; local label for a string
.string "syslog" ; initialized to "syslog"
[...]
.text ; now we have some executable code

.globl syslog ; and it iss a global symbol for
.type syslog,@function ; a function syslog()

CNT 4603

Summer 2009 Daemons and Other Processes

Some Typical Assembly Code

syslog:
pushl %ebp ; and away we go...
movl %esp, %ebp
subl $8, %esp

CNT 4603

Summer 2009 Daemons and Other Processes

Daemon processes

+ When we refer to a daemon process, we are referring

to a process with these characteristics:

ó Generally persistent (though it may spawn temporary

helper processes like xinetd does)

CNT 4603

Summer 2009 Daemons and Other Processes

Daemon processes

ó No controlling terminal (and the controlling tty

process group (tpgid) is shown as -1 in ps)

ó Parent process is generally init (process 1)

ó Generally has its own process group id and session

id;

CNT 4603

Summer 2009 Daemons and Other Processes

Daemon processes

+ Generally a daemon provides a service. So why not put

such services in the kernel?

+ Another level of modularity that is easy to control

+ Let’s keep from growing the already largish kernel

CNT 4603

Summer 2009 Daemons and Other Processes

Daemon processes

+ Ease (and safety) of killing and restarting processes

+ Logically, daemons generally share the characteristics

one expects of ordinary user processes (except for the

lack of controlling terminal.)

CNT 4603

Summer 2009 Daemons and Other Processes

BSD-ish: Kernel and user daemons:
swapper

+ All UNIX processes have a unique process ID (pid).

+ An increasing number of daemons execute in kernel

mode; (pagedaemon and swapper are two early

examples from the BSD world); the rest still execute in

user mode.

CNT 4603

Summer 2009 Daemons and Other Processes

BSD-ish: Kernel and user daemons:
swapper

+ BSD swapper (pid 0) daemon

ó The BSD swapper is a kernel daemon. swapper moves

whole processes between main memory and secondary

storage (swapping out and swapping in) as part of the

operating system’s virtual memory system.

CNT 4603

Summer 2009 Daemons and Other Processes

BSD-ish: Kernel and user daemons:
swapper

ó SA RELEVANCE: In BSD-land, the swapper is the

first process to start after the kernel is loaded. (If the

machine crashes immediately after the kernel is loaded

then you may not have your swap space configured

correctly.)

CNT 4603

Summer 2009 Daemons and Other Processes

BSD-ish: Kernel and user daemons:
swapper

ó The swapper is described as a separate kernel process

in other non-BSD UNIXes. It appears in the Linux

process table as kswapd. It does appear on AIX, HP-

UX, IRIX; for example it appears in the Solaris process

table as sched (the SysV swapper was sometimes called

the scheduler because it ’scheduled’ the allocation of

memory and thus influences the CPU scheduler).

CNT 4603

Summer 2009 Daemons and Other Processes

BSD: Kernel and user daemons:
pagedaemon

+ BSD pagedaemon. In days gone by, the third process

created by the kernel was always the pagedaemon and

always had pid 2. These days, it’s just another in

the rapidly proliferating “kernel processes” in BSD. The

pagedaemon as a kernel process originated with BSD

systems (demand paging was initially a BSD feature)

which was adopted by AT&T. The pageout process

CNT 4603

Summer 2009 Daemons and Other Processes

(still pid 2) in Solaris provides the same function with a

different name.

CNT 4603

Summer 2009 Daemons and Other Processes

BSD: Kernel and user daemons:
pagedaemon

+ SA RELEVANCE: This is all automatic – not much for

the SA to do, except monitor system behavior to make

sure the system isn’t thrashing (you would expect to see

this process taking up a lot of cpu time if there were

thrashing.)

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: init

+ init (pid 1) daemon: The first “user” process started

by the kernel; its userid is 0. All other “normal”

processes are children of init. Depending on the boot

parameters init either:

ó Spawns a single-user shell at the console

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: init

ó or begins the multi-user start-up scripts (which are,

unfortunately, not standardized across UNIXes; see

section 2.4 (starts on page 24) in USAH).

There is a lot of flux in this area; we are seeing,

for instance, in Fedora 10 replacement of the old

SysV init with upstart; hopefully we can get better

dependency resolution than we have had previously

and faster boot times. (Take a look at /etc/event.d
on Fedora 10 for instance.)

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: update (aka
bdflush/kupdate and fsflush)

+ update daemons: An update daemon executes the

sync() system call every 30 seconds or so. The sync()
system call flushes the system buffer cache; it is needed

because UNIX uses delayed write when buffering file I/O

to and from disk.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: update (aka
bdflush/kupdate and fsflush)

+ SA RELEVANCE: It’s best not to just turn off a UNIX

machine without flushing the buffer cache. It is better to

halt the system using /etc/shutdown, /etc/halt, or

poweroff; these commands attempt to put the system

in a quiescent state (including calling sync()).

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: update (aka
bdflush/kupdate and fsflush)

+ I like to do something like sync ; sync ; poweroff
or sync ; sync ; reboot just to make sure a

few manual synchronizations are made. When I am

removing a USB drive, I like to do something like sync
; umount /media/disk ; sync .

+ The update daemon goes by many names (see

CNT 4603

Summer 2009 Daemons and Other Processes

bdflush, bdflush(2), and kupdate in Linux and

fsflush in Solaris).

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

+ Even though well-written daemons consume little CPU

time they do take up virtual memory and process table

entries.

+ Years ago, as people created new services, the idea of

a super-daemon inetd was created to manage the class

of network daemons.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

+ Many network servers were mediated by the inetd
daemon at connect time, though some, such as

sendmail, postfix, qmail, and sshd were not

typically under inetd.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

+ The original inetd listened for requests for connections

on behalf of the various network services and then

started the appropriate daemon, handing off the network

connection pointers to the daemon.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

+ Some examples are pserver, rlogin, telnet, ftp,

talk, and finger.

+ The configuration file that told inetd which servers to

manage was /etc/inetd.conf.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

+ The /etc/services file: This file maps TCP and

UDP protocol server names to port numbers.

+ The /etc/inetd.conf file This file has the following

format (page 824 in USAH and “man inetd.conf”):

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

ó 1st column is the name of the service (must match

an entry in /etc/services (or be in the services NIS

map))

ó 2nd column designates the type of socket to be used

with the service (stream or datagram)

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

ó 3rd column designates the communication protocol

(tcp is paired with stream sockets and udp is paired

with datagram sockets)

ó 4th column applies only to datagram sockets - if the

daemon can process multiple requests then put ’wait’
here so that inetd doesn’t keeping forking new daemons

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

ó 5th column specifies the username that the daemon

should run under (for example - let’s have fingerd run

as ’nobody’)

ó remaining columns give the pathname and arguments

of the daemons (here’s where TCP wrappers are typically

installed).

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

ó The successor to inetd was xinetd, which combined

standard inetd functions with other useful features,

such as logging and access control.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

ó The configuration file structure for xinetd is also

different: /etc/xinetd.conf is used to modify

general behavior of the daemon and the directory

/etc/xinetd.d contains separate files per service. Your

CentOS machines use xinetd instead of inetd.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: inetd and
xinetd

+ SA RELEVANCE: When installing new software

packages you may have to modify /etc/inetd.conf,

/etc/xinetd.d/ files, and/or /etc/services. A

hangup signal (kill -HUP SOMEPID) will get the

inetd/xinetd to re-read its config file. Or you

might be able to use a startup script, such as

“/etc/init.d/inetd restart”) or “service inetd

CNT 4603

Summer 2009 Daemons and Other Processes

restart”.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: portmap and
rpcbind

+ portmap/rpcbind : portmap (rpcbind on

OpenSolaris and BSD) maps Sun Remote Procedure

Call (RPC) services to ports (/etc/rpc). Typically,

/etc/rpc looks something like:

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: portmap

[root@vm5 etc]# more /etc/rpc
#ident ‘‘@(#)rpc 1.11 95/07/14 SMI’’ /* SVr4.0
#
rpc
#
portmapper 100000 portmap sunrpc rpcbind
rstatd 100001 rstat rup perfmeter rstat_svc
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons:
portmap/rpcbind

+ Sun RPC is a backbone protocol used by other services,

such as NFS and NIS. RPC servers register with this

daemon and RPC clients get the port number for a

service from the daemon. You can find operational

information using rpcinfo. For example, rpcinfo -p
will list the RPC services on the local machine.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons:
portmap/rpcbind

+ SA RELEVANCE: Some daemons may fail if portmap
isn’t running. Most UNIXes these days automatically

start up portmap after installation, so it’s usually not

a problem. Also, there are subtle points that have

oddly creeped in from the old tcpwrappers package

that can affect the portmapper. See for example

/etc/hosts.deny.

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: syslogd

+ syslogd : syslogd is a daemon whose function is to

handle logging requests from

ó the kernel

ó other user processes, primarily daemon processes

ó processes on other machines, since syslogd can

listen for logging requests across a network

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: syslogd

+ A process can make a logging request to the syslogd

by using the function syslog(3). syslogd determines

what to do with logging requests according to the

configuration file /etc/syslog.conf

+ /etc/syslog.conf generally looks something like:

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: syslogd

*.info;mail.none;news.none;authpriv.none;cron.none /var/log/messages
authpriv.* /var/log/secure
mail.* /var/log/maillog
cron.* /var/log/cron
*.emerg *
uucp,news.crit /var/log/spooler
local7.* /var/log/boot.log

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: syslogd

+ SA RELEVANCE: For a single UNIX machine, the

default /etc/syslog.conf will suffice. Also, you

should note that Linux distributions have been moving to

rsyslogd, which provides expanded capabilities (such

as logging directly to a database) and still tries to

preserve the capabilities of the original syslogd.

+ You should read the file and figure out where the most

common error messages end up (/var/adm/messages

CNT 4603

Summer 2009 Daemons and Other Processes

or /var/log/messages are typical default locations).

CNT 4603

Summer 2009 Daemons and Other Processes

Kernel and user daemons: syslogd

+ If you are going to manage a number of

UNIX machines, consider learning how to modify

/etc/syslog.conf on the machines so all the syslog

messages are routed to a single “LOGHOST”.

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

You can see the processes running under Windows via

the Windows Task Manager – Press CTRL-ALT-DEL,

select Task Manager.

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

CNT 4603

Summer 2009 Daemons and Other Processes

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

+ You can see/end/modify/switch/create applications

+ You can see/end processes

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

CNT 4603

Summer 2009 Daemons and Other Processes

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

+ View CPU/memory performance

+ View network performance

+ View local and remote desktop users

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

CNT 4603

Summer 2009 Daemons and Other Processes

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

CNT 4603

Summer 2009 Daemons and Other Processes

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

CNT 4603

Summer 2009 Daemons and Other Processes

CNT 4603

Summer 2009 Daemons and Other Processes

Viewing processes on Windows

A nice feature of the Processes display is the ability to

sort on any column by clicking on the column header (the

sort toggles from ascending/descending).

CNT 4603

