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1. Introduction.

Brief description of anatomy and function of neurons; massively parallel compu-
tations; nerve fiber = axon bundle; cerebral cortex has between 1010 and 1011 neurons
and 104 to 105 connections per neuron; signal travels about 90 mph (1584 inches per
second) on axon. The response time for recognition of a simple word is around 540
microseconds (.54 sec). Synapse time? Length of connection in brain? Information
transfer time from cell to cell?

Given the biological hardware that has evolved (can evolve), what is the most
efficient algorithm that can run on the hardware? This is the natural algorithm and
the one we can expect to find implemented biologically.

Naturally parallel v naturally serial computations [cognize v deduce]; examples
of algorithms that are naturally parallel (recognizing your grandmother) and others
that are naturally serial (the connectedness problem).

cognize. (Webster) To take cognizance of; to know, perceive, or recognize.
(Oxford) To know, perceive, become conscious of; to make (anything) an
object of cognition.

cognition. (Webster) 1. The process of knowing or perceiving; perception.
2. The faculty of knowing, the act of acquiring an idea.
(Oxford) 1. The action or faculty of knowing; knowledge, consciousness; ac-
quaintance with a subject.
2. (phil.) The action or faculty of knowing, taken in its widest sense, including
sensation, perception, conception, etc., as distinguished from feeling and vo-
lition; also, more specifically, the action of cognizing an action in perception
proper.

See Table 1.1.

All these combine to prove that biological computations must be massively par-
allel and lead to the neural network computational paradigm: many computational
units in a massively parallel architecture.

Watershed Events

McCulloch-Pitts (1943): Artificial neuron

Rosenblatt (1962): Perceptron learning algorithm (Hebbian learning)

Widrow-Hoff (1962): Gradient descent learning; adaptive filters

Minsky-Pappert (1969): Good theorems and bad conjectures

Werbos (1974): Backpropagation learning; economic forecasting

Hopfield (1982): Energy functions and activation dynamics; associative memory

1
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Figure 1.1. Schematic of generic biological neuron.

PDP Group (1986): Connectionist models; popularization of backpropagation

Computational Intelligence (1990+): ANN integrated into a computational view
of intelligence, along with symbolic AI, Bayesean nets, data mining, pattern classifi-
cation, and many other previously insular avenues of interest

Organizational Dichotomies

Biological v artificial neural networks

Recurrent v acyclic networks

Supervised v unsupervised learning

The role of time

Software v hardware implementations

Scales of Space and Time

Spatial: molecules – cells – organs – organisms – societies

Temporal: See Table 1.

Modern Schools:

• Applications [engineering, economics, neurocontrol] Widrow, Meade, Werbos

• Learning and self-organization [computer science, math, physics] Kohonen, An-
derson, Hopfield
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Table 1.1. Time Scale Of Human Action‡

Scale Time Units System Organization Level

107 months

106 weeks Social

105 days

104 hours Task

103 10 min Task Rational

102 minutes Task

101 10 sec Unit Task

100 1 sec Operations Cognitive

10−1 100 ms Deliberate Act

10−2 10 ms Neural Circuit

10−3 1 ms Neuron Biological

10−4 100 µs Organelle

‡From Newell (1990), p. 122.

• Neuroscience modeling [biology, psychology] Grossberg, Sejnowski

• Cognitive Modelling [psychology, linguistics] PDP group, Touretzky
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2. The McCulloch-Pitts Neuron.

The simplest reasonable computational model of a generic biological neuron was
introduced by McCulloch and Pitts in 1943. We refer to this model as the McCulloch-
Pitts neuron, or M-P neuron. The M-P neuron consists of the following components:

Terminology Alternate Terminology Notation
pre-synaptic inputs inputs x1, . . . , xm

synaptic strengths weights w1, . . . , wm

internal state net input y
threshold negative bias τ
relative input biased net input ỹ
activation function output function ϕ
activation value output z

The components are related as follows: The internal state is the weighted sum of
inputs, the biased net input is the net input minus the threshold (or plus the bias),
and the output is the value obtained by applying the activation function to the biased
net input. This prescription is summarized in the equations

y = w1x1 + w2x2 + . . . + wmxm =

m
∑

i=1

wixi (2.1)

ỹ = y − τ =
m

∑

i=1

wixi − τ (2.2)

z = ϕ(ỹ) = ϕ(y − τ) (2.3)

The function (x1, . . . , xm) 7−→ z defined by

z = ϕ(w1x1 + . . . + wmxm − τ) (2.4)

is often called the transfer function or throughput funtion of the neuron. In general, all
of these components are allowed to have any real value, although in some special cases
there may be restrictions imposed. The output values will of course be restricted to
the output values of the activation function. An M-P neuron is illustrated in Figure
2.1.

The components of the McCulloch-Pitts model are intended as analogous to the
basic functional components of a generic biological neuron. Pre-synaptic inputs rep-
resent signals, either from outside stimuli or from other neurons. Synaptic strength

5



6 Neural Networks

x1 ©↗
w1

x2 ©↗
w2

−τ

x3 ©↗
w3 ∑

ỹ ϕ z

x4 ©↗
w4

x5 ©↗
w5

Figure 2.1. A McCulloch-Pitts neuron with 5 inputs.

represents the efficacy of the transmission of the input into the neuron, including
membrane transport. (A negative synaptic strength represents an inhibitory connec-
tion, a positive synaptic strength represents an excitatory connection.) The internal
state represents the integrated effect of all post-synaptic inputs. The output repre-
sents the firing status of the neuron.

The activation function ϕ for an M-P neuron can in principle be any real-valued
function of a real variable. This is the only component that is not specified completely.
Nevertheless, the nature of ϕ has considerable effect on the computational ability of
networks of neurons and on their appropriateness for various applications. M-P
neurons are usually classified according to the type of activation function used. We
now introduce the most common types.

Threshold Units

Instead of simply passing the internal state along as the output value, as in a linear
unit, a threshold unit outputs one of two values, interpreted usually as “firing” and
“not firing”, respectively. The binary unit uses the activation function

bin(y) =

{

1, if y ≥ 0;
0, otherwise.

(2.5)

Thus the output value of a binary unit is 1 if y ≥ τ and 0 if y < τ .

A sign unit uses the activation function
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sgn(y) =

{

+1, if y > 0;
−1, otherwise.

(2.6.1)

The output value of a sign unit is +1 if y > τ and −1 if y < τ . An implicit
requirement on a sign unit is that y 6= τ , that is, that Σwixi 6= τ , for all allowable

inputs.

The activation functions sgn and bin are related by

sgn(y) = 2bin(y)− 1 (2.6.2)

for y 6= 0.

Linear Units

A simple but very useful activation function is the identity function given by

I(y) = y. (2.7)

An M-P neuron with the identity activation function is called an affine unit. If, in
addition, the threshold τ is zero, we call the unit linear since the transfer function is
a linear mapping from euclidean n-space Rn to the real line R.

Sigmoidal Units

The logistic function is another useful and often-used activation function, given
by

L(y) =
1

1 + e−λy
(2.8.1)

where λ ≥ 0 is a constant. Calculating the first derivative of L(y) with respect to y
and comparing the result with the product of λ, L, and 1−L, the following formula
is verified:

L′(y) = λL(y)[1− L(y)]. (2.8.2)

Using equation (2.8.2), it can be shown further that L is strictly increasing, that L
takes values throughout the interval 0 < z < 1, and that L has an inflection point at
y = τ where its slope is maximized. The slope at this inflection point is λ/4, and for
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1

slope = λ
4

0
τ

Figure 2.2. The logistic function.

this reason the parameter λ/4 is called the gain of the logistic function. These facts
are summarized graphically in Figure 2.2.

It is interesting to note how the behavior of L depends on the gain parameter
λ/4. As λ gets larger, the graph better approximates a step or threshold function.
In the limiting “infinite gain” case, the logistic function is (up to a change of scale)
the threshold sign function used as an activation function in the binary units.

Another version of the sigmoidal activation function is given by the hyperbolic

tangent function:

H(y) = tanh(λy) =
eλy − e−λy

eλy + e−λy
. (2.9.1)

The hyperbolic tangent behaves very much like the logistic function, except that the
output is scaled to lie in the range −1 < z < +1, making H perhaps more useful in
settings where output is interpreted as being on a “bad ↔ good” scale instead of an
“off ↔ on” scale. One easily verifies the derivative formula

H ′(y) = λ[1− (H(y))2] (2.9.2)

from which it follows that the maximum slope of the graph of H is λ, the gain of H.

The qualitative similarity between the logistic and hyperbolic tangent functions is
more than coincindence – they are related by a linear change of scale:

H(y) = 2L(2y)− 1 (2.10)

which is easily verified by direct substitution. An M-P neuron whose activation
function is, up to linear change of scale, the logistic function, is called a sigmoidal

unit.
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Gaussian Units

A Gaussian unit has a gaussian activation function given by

G(y) =
e−(y−µ)2

2σ2
. (2.11)

This is the familiar “bell curve” of statistics, with mean µ and standard deviation σ.
Normalized Gaussian units were recently introduced into neural networks as radial
basis functions by Moody and Darken (1989). The effect of radial basis functions is
to localize the influence of the unit within the input pattern space. Their utility has
only begun to be explored.

Piecewise Linear Units

There are some activation functions in use that are neither discrete-valued nor
smooth. Common examples are the linear-threshold function

ϕ(y) =

{

0, if y < τ ;
y, otherwise

(2.12)

and the piecewise linear sigmoid function

ϕ(y) =







0, if y ≤ a;
1, if y > b;
y−a
y−b , otherwise.

(2.13)

In (2.13) it is assumed that a < b, and the threshold is defined to be the midpoint τ =
(a+b)/2. These units are found in systems where smoothness is not a requirement of
the learning algorithms and the piecewise linearity expedites computation or analysis.
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Threshold, Bias, and Auxiliary Input

Most of the variability in the functionality of a M-P neuron is determined by
the weights on inputs. Other parameters, such as threshold and gain, may also be
given as inputs or as weights on clamped auxiliary inputs. The latter possibility is
especially attractive for the threshold because it exposes this parameter to various
learning methods that modify the weights.

The table in the beginning of this section indicates that the threshold parameter
is a “negative bias”. Using the notation β for bias, we have β = −τ . The bias can
be thought of as just one of the terms summed to produce the biased net input ỹ of
the neuron:

ỹ = β +

m
∑

i=1

wixi (2.14)

If we set x0 ≡ 1 and w0 = β = −τ , that is, “clamp” the aux input to the value 1 and
identify the bias with the weight on that input, then we obtain

ỹ = β +
m

∑

i=1

wixi

= w0 +

m
∑

i=1

wixi

=

m
∑

i=0

wixi. (2.15)

With this notation, we may choose to explicitly represent the threshold or bias, or
we may suppress the threshold and add one extra clamped input and use unbiased
neurons. The latter is often convenient in both theoretical and practical settings.



3. Network Topologies.

An artificial neural network (ANN) is a digraph whose components represent
neural processes of the type discussed in Section 2. Recall that a directed graph
or digraph consists of vertices and directed edges, and that a network is a digraph
with a numerical value or weight associated with each directed edge. Networks are
important tools for representation of flows of various types. In the case of artificial
neural networks, the directed edges represent flow of signals across synapses, while
vertices represent computational units:

Network M-P Neuron
vertex computational unit
edge connection between units (synapse)
weight strength of connection

A connection transmits the output of the pre-synaptic unit to an input of the post-
synaptic unit. If a digraph represents an artificial neural network, we may refer to
its vertices as units and its edges as connections to indicate that they are understood
to have some functional capability.

While the nature and ability of M-P neurons varies significantly depending on
the particular choice of activation function, much of the power in neural network
computation is obtained by choice and variation of the digraph topology underlying
the network design. (This is often called the “network topology” even though it is
independent of the weights on the edges.) We now briefly consider notational and
representational devices commonly used to discuss network topologies.

Just as in graph theory, it is convenient in practice to enumerate the units in an
ANN. Usually, the computational ability of the ANN is completely independent of
the particular enumeration chosen, so one is free to select a notational scheme that
is convenient for some other purpose, be it exposition, simulation, specification, or
implemenation.

There are two broad classes of ANN that are in common use today. These are
mutually exclusive, but not quite exhaustive, categories based on network topology.

General Digraph Notation

A common representation scheme for digraphs simply enumerates the vertices
v1, v2, . . . , vn and then represents the existence of an edge from vi to vj by an ordered
pair of subscripts. The choice of order for this pair is arbitrary but must be consistent
in order to have meaning. Following IEEE suggested standards, we use the notation
(j, i) to represent an edge from vertex i to vertex j. This may seem inverse from the

11
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Figure 3.1. Three network topologies.

most intuitive choice, but it can be remembered by noting that the edge from vi to
vj in an ANN represents a transmission of data and thus may ultimately lead to an
assignment statement of the form vj := F (vi).

Following this idea, suppose we are given a digraph D and an ordering v1, . . . , vn

of its vertices. Define

aji =

{

1, if there is an edge from vi to vj ;
0, otherwise.

(3.1)

Then the matrix A = (aji) contains enough information to reconstruct the digraph.
It also contains the ordering information, which may be irrelevant. The adjacency
matrix is wasteful of storage in cases where D is sparse, i.e., when D has significantly
fewer than n2 edges (most entries of A are zero). Neverthless, this is very convenient
notation for exposition, called an adjacency matrix representation of D. There is one
for each ordering of the vertices of D.

If D is also a network, the weight matrix W is defined in a similar manner:

wji =

{

wt, if wt is the weight of the edge from vi to vj ;
0, otherwise.

(3.2)

If a weight of zero can be interpreted as “no connection”, then the weight matrix
determines the adjacency matrix in an obvious way. There are circumstances, par-
ticularly in ANN, where one may want to distinguish between “no connection” and
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“blocked connection” (connection with zero weight), in which case both an adjacency
matrix and a weight matrix must be known.

Examples. The three digraphs depicted in Figure 3.1 have the following adja-
cency matrices:

A1 =







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1






A2 =







0 0 0 1
1 0 0 0
1 1 0 1
0 1 0 0







A3 =



























1 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1



























(3.3)

Layered Feed-Forward Networks

Often there are constraints placed on network topology of ANN. One of the
most studied, and most useful, is the layered feed-forward topology, or LFF. The
assumptions underlying LFF networks are as follows:

1. Units are organized into layers indexed in increasing order.

2. Connections are allowed only from one layer to the next higher layer in the index
ordering.

Thus there are no intra-layer connections and no connections in the direction of
decreasing layer index, but full inter-layer connectivity in the direction of increasing
layer index is allowed.

Example. Suppose we have a 3-layer LFF network with units 1, 2, 3, 4, 5 in layer
1, units 6, 7, 8 in layer 2, and units 9, 10, 11, 12 in layer 3. Assume that we also have
full interlayer connectivity. (See Figure 3.2.) Then the adjacency matrix of this
network is



14 Neural Networks

Figure 3.2. A layered feed-forward network.

A =







































0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0







































. (3.4)

For example, a6,1 = 1 (underscored) indicates that output from unit 1 connects to
an input of unit 6, while a9,5 = 0 (underscored) indicates no (direct) connection from
unit 4 to unit 9.

Clearly there is wasted storage of 0 = ‘no information’ in A. Moreover, because
of the LFF topology, A has a regular block structure in which all connectivity infor-
mation is contained in two blocks, one for the connections from layer 1 to layer 2,
and one for the connections from layer 2 to layer 3. As it becomes important, we
will introduce special notation for LFF networks that takes advantage of this regular
structure.
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Acyclic v Recurrent Networks

A path in a digraph is a sequence of directed edges going from vertex to vertex
in a manner so that the end of one edge is the beginning of the next in the path.
A cycle is a path that begins and ends at the same vertex. A digraph is acyclic

if it has no (directed) cycles. A digraph with at least one cycle is called recurrent.
The acyclic/recurrent dichotomy is the principal watershed in most applications of
digraphs, including neural networks. Recurrent topologies have “feedback loops”
whereas acyclic topologies are “feedforward only”.

If an enumeration v1, . . . , vn of the vertices of a digraph results in an adjacency
matrix that is lower diagonal, i.e., in which all non-zero entries are below the main
diagonal of the matrix, then the digraph is acyclic: connections all go from lower
to higher in the vertex ordering, so no path can return to its starting vertex. An
important result in the theory of algorithms says that the converse also holds: If a
digraph is acyclic then its vertices can be enumerated in such a way that the adjacency
matrix is lower diagonal. Intuitively, this is accomplished by placing the digraph
in space and moving vertices to the right until all edges have a positive rightward
component to their direction and no two have the same vertical coordinate. Then
the desired ordering of the vertices is left-to-right. Such an enumeration is called a
topological sort [Aho, et al., 1983].

For neural networks, a recurrent topology guarantees feedback among the neu-
rons that could, and often does, reverberate forever in the network even while input
is held constant. This activity is interesting and, at times, useful, as in the Hopfield
associative memories and more specialized topologies considered later. On the other
hand, acyclicity in a neural net frees us from worries about possibly unpredictable re-
verberations and permits focus on learning methods. Layered feed-forward topologies
form a special case of acyclic nets that have received much attention in learning.
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4. Discrete Hopfield Networks.

In 1982, John Hopfield published what is probably the single most influential
paper in the field of artificial neural networks since the original work of McCulloch
and Pitts. Among many other things, this work brought researchers’ attention to
two: activation dynamics and energy minimization techniques. While neither of
these ideas was new, it was the confluence of these and other ideas that captured
the attention of a wide audience. This paper more than any other event reversed the
negative thinking engendered by the wrong and wrong-headed conjectures of Minsky
and Papert.

A discrete Hopfield network is an ANN of threshold units that is fully connected
and symmetric. That is, the adjacency matrix has every entry equal to 1, and the
weight matrix W = (wji) satisfies

wji = wij (4.1)

for each i and j. The underlying topology can be viewed as a fully connected digraph
with symmetrically weighted connections, or as simply a fully connected graph with
weighted 2-way (bi-directional) connections. Hopfield’s original used binary units,
but we find it more convenient to use sign units (see also Hertz, et al., 1991).

Thus we have n sign units indexed 1, 2, . . . , n. The internal state of unit j is yj

and the output of unit j is zj . The connection strength from unit i to unit j is wji.
Finally, the ith pre-synaptic input xji to unit j is the output of unit i: xji := zi. This
completes a discription of the basic architecture of a discrete Hopfield ANN. In order
to augment this to a specification of a computational network, we need to address
several issues:

How will the internal state and output value of a unit be updated?

What is the role of time in the computation?

How will the network be initialized, and how will values be retrieved from the
network after computation?

Update Rule. The update of a single unit is already determined by requiring
the unit be a sign unit. Applying various specifications from Section 2, we obtain
the update rule

zj := sgn
(

∑

i

wjizi

)

. (4.2)

(We assume that thresholds are zero throughout this section.)

17
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Time. Time is discrete. The update rule is applied with centrally controlled
random asynchronous updating in order to obtain activation of the entire network.
Centrally controlled random asynchronous updating means that at each time step,
one unit is selected at random and updated using (4.2). Locally controlled random
asynchronous updating means that each unit updates itself with probability 1/n at
each time step. These are essentially equivalent, since the probability of simultaneous
updating of two units is 1/n2, a very small number when n is large.

Successively applying the update rule is often called activation of the network.
We define the activation state of the network at a given time to be the vector
z = (z1, . . . , zn) of output values of the units. An activation state can be viewed
as a pattern of ±1 values. An activation state can be visualized as a string of lights,
with +1 signifying ‘on’ and −1 signifying ‘off’. The activation state (string of lights)
changes over time as the system updates. At each time during asynchronous updat-
ing, exactly one unit updates, meaning exactly one component in the pattern has the

potential of changing. The actual value may remain the same, depending on the sign
of the internal state of the unit at that time. We call a pattern that is not changed
by updating stable.

I/O. The system is initialized by “presenting” a pattern ζ = (ζ1, . . . , ζn) to the
network, i.e., setting the activation values externally using

zj := ζj , j = 1, . . . , n (4.3)

Then the system commences updating asynchronously using the update rule.

If, at some point, the output values of the units stop changing (even though
updating is still occurring), these values are retrieved and declared the output pattern
ζ̃.

Here is a synopsis of the process:

1. Present pattern to the network using (4.3).

2. Update the system using asynchronous updating and the update rule (4.2).

3. After the activation state of the network stops changing, retrieve this stable
activation state as output.

For the remainder of this section, we say that the retrieved pattern ζ̃ is evoked by ζ.

Associative Memory

The Hopfield network defines an association ζ 7→ ζ̃ that can be viewed as a model
of associative memory: the input pattern ζ (stimulus) evokes the output pattern ζ̃
(memory). The patterns that are stable under the activation rule are stored memo-
ries. In this context, what are some properties of associative memory that would be
desireable?



Section 4. Hopfield Networks 19

A stored memory µ should evoke itself. (µ is an equilibrium.)

If the input stimulus ζ is nearby a stored memory µ then ζ should evoke µ. (µ is
an attractor.)

We will see that the key to these properties lies in the connections, or more specifically
the connection strengths in the network.

Remembering One Pattern

Suppose we have a pattern µ = (µ1, . . . , µn) to embed in a Hopfield network.
Define the weight between units i and j to be

wji =
1

n
µjµi. (4.4)

This defines a Hopfield network of n units.

We now want to test this network as a memory for the pattern µ. First, initialize
with the pattern µ and apply the update rule (4.2) to unit j:

zj : = sgn
(

∑

i

wjiµi

)

= sgn
(

∑

i

1

n
µjµ

2
i

)

= sgn
(

∑

i

1

n
µj

)

= sgn
( 1

n
µj

∑

i

1
)

= sgn(µj)

= µj . (4.5)

This shows that the value of unit j does not change during update, i.e., the pattern
µ is an equilibrium (property 1).

Now suppose the network is initialized with another pattern ζ. Then when unit
j is updated, its internal state is given by

yj : =
∑

i

wjiζi

=
1

n

∑

i

µjµiζi
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=
1

n
µj

[

∑

i∈C

µ2
i −

∑

i∈I

µ2
i

]

=
1

n
µj

[

(# correct)− (# incorrect)
]

(4.6)

where C consists of the “correct” indices i where ζi = µi and I consists of the other
“incorrect” indices. The key to understanding these steps is that all values are ±1,
so either ζi = µi or ζi = −µi. Now, consideration of (4.6) shows that if more than
half of the components of ζ agree with the corresponding components of µ, then
zj = µj after updating unit j. After all units have been updated at least once, we
have z = µ. Thus µ is evoked by any pattern that agrees with µ in more than half
its components. In particular, µ is an attractor (property 2).

Note that the opposite of µ given by−µ = (−µ1, . . . ,−µn) also satisfies properties
1 and 2. This “spurious” memory is retrieved from any stimulus ζ that disagrees with
µ more than half the time (i.e., that agrees with −µ more than half the time).

The so-called Hamming distance between two n-bit patterns ξ and ζ is the number
of coordinates in which the two patterns differ. We can rephrase the observations in
terms of Hamming distance as follows: An input pattern ζ retrieves either µ or −µ
depending on which is closer to ζ in Hamming distance. We leave it as an interesting
point to contemplate what happens when these are equal.

Remembering Many Patterns

In order to extend the investigation of the previous paragraphs, suppose now that
we have p patterns µ1, . . . , µp. The definition of connection strength given in (4.4)
extends to

wji =
1

n

p
∑

q=1

µq
jµ

q
i . (4.7)

A calculation shows that

∑

i

wjiµ
q
i = µq

j +
1

n

∑

i

∑

r 6=q

µr
jµ

r
i µ

q
i . (4.8)

If the double sum on the right side of (4.8) is less than n in absolute value, then the en-
tire term cannot change the sign of the first term µq

j , and hence zj := sgn(
∑

i wjiµ
q
i ) =

µq
j . Thus, if the number p of patterns is relatively small, each memory stored by (4.7)

is an equilibrium (property 1). Also, if the double sum is small, and if only a few bits
of the pattern are changed, then the double sum will still be small, so the updated
output returns to the value µq

j , so the stored patterns are attractors (property 2).



Section 4. Hopfield Networks 21

The Energy Function

Energy minimization principles are common in physics. The introduction of
them into the study of neural networks was one of the most valuable contributions
of Hopfield’s paper. Given a Hopfield network of n units, define the energy of the
network at state z to be the value of

H(z) = −
1

2

∑

ji

wjizjzi. (4.9)

By the symmetry property (4.1), we have

H(z) = −
∑

j

wjjz
2
j −

1

2

∑

j 6=i

wjizjzi

= −D −
∑

j<i

wjizjzi (4.10)

where D =
∑

j wjj . Consider the effect on energy of updating unit k:

z′k := sgn
(

∑

i

wkizi

)

. (4.11)

If the updated value z′k is equal to the old value zk, clearly the energy computation
(4.9) does not change. If however z′k 6= zk then z′k = −zk, and we calculate the energy
change:

H ′ −H = −
∑

j<i

wjiz
′
jz

′
i +

∑

j<i

wjizjzi

(all terms cancel except j = k, i = k)

= −
∑

j 6=k

wjkz
′
jz

′
k +

∑

j 6=k

wjkzjzk

(z′j = zj for j 6= k)

= −
∑

j 6=k

wjkzjz
′
k +

∑

j 6=k

wjkzjzk

=
∑

j 6=k

wjkzjzk +
∑

j 6=k

wjkzjzk

= 2zk

∑

j 6=k

wjkzj

= 2zk

∑

j

wjkzj − 2wkkz
2
k

= 2zk

∑

j

wjkzj − 2wkk. (4.12)
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In the last expression, the first term is negative because z′k := sgn(
∑

j wjkzj) = −zk,

and the second term is negative because wkk =
∑

q(µ
q
k)

2 = p/n. This proves the
following

Fact. The energy H decreases whenever updating changes the activation state of
the network.

This energy principle allows us to view activation as a dynamical system that uses
a finite amount of energy each time it changes state. Since there are only finitely
many states, eventually the state reaches a level of energy that cannot be decreased.
Thus any initialization (input stimulus) eventually reaches a memory state (a local
minimum of energy). Moreover, (4.8) shows that memories stored using (4.7) are
such local energy minima.

Memory Capacity

The issue of exactly how many patterns can be stored stably (i.e., as local minima
of energy) in a Hopfield memory was glossed over in the discussion following (4.8).
Let pmax denote the “maximum” number of patterns the network can store stably.
What is pmax?

Answer 1: pmax ∼ n if we accept a small percent error in each retrieval, that
is, if we accept that all but a few bits in the retrieved memory are correct.

Answer 2: pmax ∼
n

log n if we insist that most of the stored patterns are recalled
exactly.

See Hertz, et al. (1991) for a more complete exposition.

Spurious Memory States

When memories are stored in a Hopfield network using (4.7), there are also
spurious, or unwanted, memories created. The so-called odd-mix states are examples.
Given one memory state µ, its opposit −µ is a spurious memory state, as we observed
earlier. This is a 1-mix state.

For three memories µ1, µ2, µ3, the 3-mix states are the states µ±±± defined by
the equations

µ±±±
j = sgn(±µ1

j ± µ2
j ± µ3

j ). (4.13)

The signs are held consistent for j = 1, . . . , n, so there are eight 3-mix states specified
by (4.13). Note, for example, that µ+++ has Hamming distance n/4 from µ1 because
µ+++

j 6= µ1
j one out of four times. For odd numbers greater than one, the odd-mix

states are memory states (local energy minima) and have higher energy levels than
the pure states µ1, µ2, µ3.
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Figure 4.1. Activation state space.

Figure 4.2. Energy versus activation state.

There are two graphical depictions of this situation. In Figure 4.1, the plane is
representative of the activation state space of a Hopfield network. Three memory
states are indicated, along with one mix state. The regions delineated by the curves
represent the basins of attraction of the four local energy minima. In Figure 4.2,
the horizontal scale represents activation state space and the vertical scale represents
energy level.
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5. Functional Capacity of Threshold Units.

Having taken a glimpse into the world of neural networks and collective compu-
tational behavior, we return to study individual neurons of the type used in Hopfield
nets.

Recall from Section 2 that a sign unit consists of the following components and
relations:

Name Notation Allowed Values
inputs x1, . . . , xm ±1
weights w1, . . . , wm real
net input y real
threshold τ real
biased net input ỹ real
output z ±1

y = w1x1 + w2x2 + . . . + wmxm =

m
∑

i=1

wixi (5.1)

ỹ = y − τ =
m

∑

i=1

wixi − τ (5.2)

z = sgn(ỹ) = sgn(y − τ) (5.3)

where sgn(ỹ) denotes the sign function whose value is +1 if ỹ > 0 and −1 if ỹ < 0.
Alternate terminology for a sign unit is binary neuron. Note that

z = sgn(ỹ) =
ỹ

|ỹ|
(5.4)

where |ỹ| denotes the absolute value of ỹ. This last equation emphasizes that z is not

defined when ỹ = 0. Therefore an implicit requirement on a sign unit is that y 6= τ ,
that is, that Σwixi 6= τ , for all possible binary inputs.‡ A sign unit is illustrated in
Figure 5.1.

‡ The output equation (5.3) can be enhanced by defining z = +1 whenever y =
τ , avoiding this restriction. For purposes of analysis, retention of the restriction
emphasizes the critical nature of the “at threshold” input. The inherent robustness

of sign units makes this point of little practical significance.
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x1 ©↗
w1

x2 ©↗
w2

−τ

x3 ©↗
w3 ∑

ỹ z

x4 ©↗
w4

x5 ©↗
w5

Figure 5.1. A sign unit with 5 inputs.

There are two views of a binary neuron, external and internal. Imagine that a
shell or membrane separates the external world from the internal structure of the unit.
The external world is discrete, and here a unit appears to be a binary-valued function
of several binary variables (inputs) whose nature is “tunable” by adjusting several
parameters (weights). (This function is called the transfer function of the neuron.)
The unit is a “black box”, however, and from the external discrete world the exact
nature of the unit is not discernable. To understand how the sign unit transforms
input to output, and to know exactly which binary function a given setting of the
weights defines, we must pierce its shell or membrane, dissecting the unit so to speak.
Inside the membrane we find an analog world and a precisely described mechanism
with which we can completely describe the external function of the unit.

Linear Separation

A geometric interpretation of how output is computed may be obtained by getting
inside the sign unit, into the analog (real) world. The value y is a real number that
can be computed for any real inputs x1, . . . , xm. The equation y = τ expands to a
linear equation whose solutions are the “illegal” inputs:

w1x1 + . . . + wmxm = τ. (5.5)

Equation (5.5) defines a hyperplane in real (x1, . . . , xm)-space Rm called the thresh-

old hyperplane. This hyperplane separates Rn into two components, one in which
ỹ has positive values and the other in which ỹ has negative values. The threshold
hyperplane, together with knowledge of which component is the positive side, com-
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a. Linear separation. b. Finding a separator.

Figure 5.2.

pletely determine the binary function defined by the unit: z = +1 for inputs on the
positive side and z = −1 for inputs on the negative side.

The Case m = 2. Consider the special case of a sign unit with two inputs. Then
Rn=2 is the euclidean (x1, x2)-plane. Equation (5.5), which specializes to

w1x1 + w2x2 = τ, (5.5.1)

defines the threshold line (hyperplane) that separates R2 into a ‘+’ side and a ‘−’
side. The four points in the plane whose coordinates are ±1 represent the possible
binary inputs. As long as the threshold line given by (5.5.1) does not intersect these
four points, z is defined and is the sign of ỹ, that is, z = +1 for inputs on the ‘+’
side and z = −1 for inputs on the ‘−’ side. See Figure 5.2.

A line such as given by (5.5.1) can be plotted in the (x1, x2)-plane by calculating
the intersections with the coordinate axes. (Recall these intersection points are called
intercepts. The x2-intercept, for example, is found by setting x1 = 0 and solving
(5.5.1) for x2.) If the line is not horizontal (i.e., if w1 6= 0) then the x1-intercept is
τ/w1, and if the line is not vertical (i.e., if w2 6= 0) then the x2-intercept is τ/w2. If
the line is not vertical, (5.5.1) can be rearranged into the slope-intercept form

x2 = mx1 + b (5.5.2)

where m = slope = −w1/w2 and b = x2-intercept = τ/w2.
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Example 1. Suppose n = 2 and the parameters have values w1 = +1, w2 =
−2, τ = +2. Then the threshold line has slope 1/2 and x2-intercept −1. The line
is illustrated in Figure 5.2a. From inspection of that figure, we see that the binary
inputs (+1, +1), (−1, +1), and (−1,−1) all lie on one side of the threshold line and
(+1,−1) lies on the other. To know what binary function this particular unit defines,
we need one more item of information: which side is the ‘+’ side of the threshold
line. This is easy to discover: just test the function ỹ = w1x1 + w2x2 − τ on some
convenient set of input values such as (x1, x2) = (+1, +1):

ỹ|(+1,+1) = w1x1 + w2x2 − τ

= w1 + w2 − τ

= (+1) + (−2)− (+2)

= −3 (5.5.3).

Thus ỹ is negative on (+1, +1) and, hence, on the entire half-plane containing that
point. And, ỹ must be positive on the other half-plane. Inspection of Figure 5.2a
now shows that z = sgn(ỹ) is the binary function that is +1 on (+1,−1) and −1 on
(+1, +1), (−1, +1) and (−1,−1).

The process illustrated in Example 1 can be reversed: given a binary function,
find what weight values realize that function as a sign unit. If we take +1 to mean
‘true’ and −1 to mean ‘false’, the question can be rephrased in terms of logical
functions.

Example 2. Suppose we want to realize the logical NAND operation as a sign
unit. NAND is specified by the following table of values (truth table):

NAND

x1 x2 x1|x2

+1 +1 −1

+1 −1 +1

−1 +1 +1

−1 −1 +1

We begin by finding the binary input pairs in the (x1, x2)-plane and labelling them
with the desired binary output values, as illustrated in Figure 5.2b. Then find a
(convenient) line that separates the ‘+’ value from all of the ‘−’ values. One such line
is illustrated in the figure. That line passes through the points (0, +1) and (+1, 0), so
it has slope −1 and x2-intercept +1. Plugging this information into equation (5.5.2)
and rearranging terms results in the equation

x1 + x2 = 1. (5.5.4)



Section 5. Functional Capacity 29

Comparing coefficients between (5.5.4) and (5.5.1) results in a trial set of values for
the parameters: w1 = 1, w2 = 1, τ = 1. These in turn determine a trial definition of
the function ỹ:

ỹ = x1 + x2 − 1. (5.5.5)

Either these make a correct set of parameters or their negatives do; we find out which
by testing the value of ỹ on a convenient input. Testing ỹ on the input (+1, +1) yields

ỹ|(+1,+1) = w1 + w2 − τ

= (1) + (1)− (1)

= +1 (5.5.6)

which is not the correct sign. Therefore we reverse the signs of each of the trial
parameters, obtaining

ỹ = −x1 − x2 + 1 (5.5.7)

which correctly realizes the NAND function. A similar analysis shows that the logical
AND and OR functions are also realized by sign units.

The General Case. The analysis of sign units using the threshold hyperplane
works in the general case of m input variables in much the same way. The threshold
hyperplane separates Rm into two half-spaces. The external binary inputs must not
lie on the plane, so they each lie in one of the two half-spaces. The biased net input
function ỹ is positive on one of the half-spaces and negative on the other, and the ‘+’
side can be determined by evaluating ỹ on the input (+1, . . . , +1), i.e., by adding up
all of the weights and subtracting the threshold:

ỹ|(+1,...,+1) =
m

∑

i=1

wi − τ. (5.6)

The sign of the number calculated by (5.6) indicates which half-space contains the
input point (+1, . . . , +1). The binary function z has the value +1 at each input that
is in the ‘+’ half-space and −1 at each input that is in the ‘−’ half-space.

Conversely, consider an arbitrary binary-valued function β of m binary variables
x1, . . . , xm. We say that β is linearly separable if there exists a hyperplane H in Rm

that separates the binary inputs (x1, . . . , xm) according to their value assigned by β:
β(x1, . . . , xm) = +1 for all inputs on one side of H and β(x1, . . . , xm) = −1 for all
inputs on the other side of H. An argument similar to the one outlined in Example 2
shows that if β is linearly separable then it is realizable by a sign unit. We summarize
these conclusions as follows:
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a. No linear separation. b. Separation by two lines.

Figure 5.3.

Theorem 1. The binary function β is realizable by a binary neuron if and only if
β is linearly separable.

The criterion of linear separability can be used to find non-realizable functions.

The XOR Problem

Consider the problem of realizing the logical exclusive-or operation with a sign
unit. A truth table for exclusive-or, also called XOR, is:

XOR

x1 x2 x1 ⊕ x2

+1 +1 −1

+1 −1 +1

−1 +1 +1

−1 −1 −1

After graphing the inputs in the (x1, x2)-plane and labelling the inputs with the
desired output sign, it becomes apparent that the ‘+’ inputs cannot be separated
from the ‘−’ inputs with a (straight) line. (See Figure 5.3a.) Since a sign unit
that realized the function would have a threshold line that separates the inputs, as
explained in the examples, there can be no such unit. That is, the XOR function
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x1 ◦ N1 z1

N3 z1 ∧ z2 x1 ⊕ x2

x2 ◦ N2 z2

Figure 5.4. A network of 3 sign units realizing XOR.

cannot be realized by a sign unit. This result is a precursor to a more complex result
of Minsky and Papert, discussed in a later section. But first, is there anything we
can do to remedy the problem?

Yes. We can separate the inputs appropriately with two lines, as illustrated by
L1 and L2 in Figure 5.3b. These lines, annotated with ‘+ side’ indicators as in the
figure, determine logical functions z1 and z2, respectively, that are each realizable
by sign units. Values for these functions can be read directly from the geometric
information displayed in the figure. A table of these values follows.

x1 x2 z1 z2

+1 +1 −1 +1

+1 −1 +1 +1

−1 +1 +1 +1

−1 −1 +1 −1

One interpretation of this table is that the two functions together can “recognize”
the XOR pattern (they are both +1 when XOR is +1). It is also apparent from the
table that the conjunction of the two functions is equal to XOR. That is, the function

z = z1 ∧ z2 (5.7)

is the XOR function. At this point we have shown that the binary functions z1 and
z2 are each realized by a sign unit. It is easy to check that the logical AND function
is linearly separable and is therefore also represented by a sign unit, completing an
argument for the following

Theorem 2. The function XOR can be realized by a network of three binary neurons.

The network is illustrated in Figure 5.4. We conclude with some comments.

Robustness. A sign unit is quite robust in the sense that small changes in its
weights and/or threshold do not change the binary function it realizes. There are two
sources for this freedom of choice of parameters, algebra and geometry. Algebraic
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freedom is created because, after the threshold hyperplane and ‘+ side’ have been
specified, the unit parameters are still underconstrained. In equation (5.5.7) above,
for instance, we could multiply all of the parameters (weights and threshold) by any
positive constant c and still describe exactly the same line. The new biased net input
function would be the product of c and ỹ, where ỹ is the original one. Since the
product cỹ has the same sign as ỹ, the resulting binary transfer function z = sgn(cỹ)
is unchanged.

There is also geometric freedom in the choice of the line itself. In Figure 5.2b,
for example, we could shift the chosen line slightly, obtaining a different line and a
different biased net input, yet, if the binary inputs are still separated in the same
way, we would end up with the same binary function z. All this freedom means that
sufficiently small changes, “tweeks”, and errors will not affect the binary function
realized by a sign unit.

Non-Linearity. History would ask that the descriptor “linear” be added to the
terminology for binary neural element, but we choose to differ with history: while
linear structures are used in the elegant analysis, binary neural elements are not

linear in the universally accepted meaning of that term: they are not linear functions
over either the real field or the 2-element field. In fact binary neural elements can be
thought of as the “infinite gain” case of a non-linear analog neuron. Moreover, it is
precisely their non-linearity that makes binary neurons useful in multi-layer networks.
This point is revisited in a later section, after we have made a study of feed-forward
networks of non-linear analog neurons.

The Sign Unit as a Model Neuron. Few would argue that a binary neuron is
a realistic model of a biological neuron. Real neurons are incredibly complex, both in
structure and behavior; they are objects of intense investigation in the neuroscience
community.

It is good to keep in mind where we are heading, however. Our artificial neurons
are not intended to be particularly useful devices by themselves, but rather are to
be used as the nodes in a network. These neurons will be “atomic” level components
in a model that derives its complexity from interconnection of many such elements.
The network itself, rather than the individual nodes, is anticipated to display complex
behavior. The question is one of scale. An analogy can be made with the use of models
of the earth. Studying a single neuron through models is analogous to studying the
earth itself, as in geology, oceanography, and meteorology, where extremely complex
models of earth must be adopted. Modeling a neural network, on the other hand, is
analogous to studying a celestial system, as in astrophysics, where modeling a planet
as a perfect sphere is an acceptable simplification.



6. The Perceptron Learning Rule.

The concept of collective behavior is a primary organizing force in the subject of
artificial neural networks. Collective behavior may be manifested in activation prop-
erties, as introduced with the Hopfield network in Section 4. It is also characteristic
of learning, which we introduce here.

A perceptron is a layered feed-forward network of threshold units. The termi-
nology was introduced by Rosenblatt (1962) along with the perceptron learning rule.
This rule is a method of incrementally adjusting the weights of a simple (1-layer)
perceptron so as to improve its ability to realize a given binary mapping.

A simple perceptron is a parallel layer of threshold units that each receive the
same inputs to the network. It is convenient to organize the network by putting the
inputs into a layer labelled “layer 0” and the threshold units into a layer labelled
“layer 1”. We think of the inputs as very simple “fanout” units that ramify the input
signal to each of the threshold units. Denote the inputs by x1 . . . xm and the outputs
of the threshold units by z1, . . . , zn. Finally, denote the weight of the connection from
input i to unit j by wji. Following the idea at the end of Section 2, we define x0 ≡ 1
and let wj0 denote the weight of the connection from x0 to unit j. Thus −wj0 is the
threshold of unit j. See Figure 6.1.

Vector notation is also convenient. Let x = (x0, . . . , xm) denote the vector of
inputs to the network, and let y = (y1, . . . , yn) and z = (z1, . . . , zn) denote the
vector of internal states and output values of the units, respectively. Let wj =
(wj1, . . . , wjm) denote the vector of weights on the inputs of unit j.

The supervised learning problem can now be stated. Suppose we have an input
pattern ξ = (ξ1, . . . , ξm) for the network and another pattern I = (I1, . . . , In) that we
would like to have for the network output. How can we increment the weights of the
network in order to better achieve the association by the network? In other words,
given a computed network output z and an ideal network output I for the input ξ,
how can we achieve z = I?

The problem generalizes to more than one pattern. Given a number p of input
patterns ξ1, . . . , ξp and ideal output patterns I1, . . . , Ip, how can we move change the
weights of the connections in order that zq = Iq for q = 1, . . . , p?

One Output

A simple perceptron, being in effect a collection of threshold units that each
receive the same input, has units that are independent of each other. For this reason,
we may as well discuss a single threshold unit to save some notational clutter. Then
we can add all the extra subscripts to generalize anything we derive to the case of
the simple perceptron. Thus we specialize to the case n = 1 and suppress the j
subscripts. We also specify that the threshold units are sign units.

33
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Figure 6.1. A simple perceptron.

Given input patterns ξq and associated ideal output values Iq, the perceptron
learning rule gives a prescription for changing the weights. It specifies an incremental
change for the ith weight as follows:

∆wq
i =

{

2ηIqξq
i , if zq 6= Iq;

0 , otherwise.
(6.1)

The idea was based on experimental work of Hebb (1949) who found that some simple
forms of learning are realized in biological synapses as increases in synaptic strength
in proportion to the pre-synaptic input signal and post-synaptic output signal. The
constant η is inserted to control size of the change, and the factor 2 is for convenience.
η is called the learning rate. The weight change can be written in other convenient
forms:

∆wq
i = η(1− Iqzq)Iqξq

i

= η(Iq − zq)ξq
i . (6.2)

(These use the fact that all three variables have only ±1 values.)

Given enough iterations of this suggested change, will the network evolve into
one that satisfies zq = Iq ? There are cases where we know the answer must be ‘no’:
if the problem ξq 7→ Iq, q = 1, . . . , p is not linearly separable then a solution cannot
exist. Rosenblatt (1962) and Block (1962) showed that in every case where a solution
does exist, the algorithm converges:
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Theorem. If the pattern association problem is linearly separable, then the percep-
tron learning algorithm given by (6.2) converges to a perceptron that computes the
desired association in a finite number of steps.

We have not as yet specified how (6.2) determines an algorithm. The idea is
straightforward. Loop through the patterns one at a time, presenting pattern ξq to
the network. If the output zq is not equal to the ideal output Iq, then immediately
make a change in each weight using

wnew
i := wi + ∆wq

i (6.3)

where ∆wq
i is given by (6.1) or (6.2). If zq = Iq, go on to the next pattern. Loop

through the patterns, making weight changes as specified, until output is correct
for each pattern. The theorem states that, if the pattern association problem has a
solution, then this algorithm will find one. The unstated qualifier is that the learning
rate constant must be sufficiently small. Note that, if there is one solution, there
are many. See the discussion of robustness at the end of Section 5. See Rosenblatt
(1962), Block (1962), Minsky and Papert (1969), or Hertz et al. (1991) for a proof.

Example. Consider the AND function. In Section 4 we discussed the problem
of finding such a unit and found algrebaic methods that work. Suppose now that we
want the unit to learn to calculate the correct output. The AND function is given
by

AND

x1 x2 z

+1 +1 +1

+1 −1 −1

−1 +1 −1

−1 −1 −1

Adding the clamped input line and pattern numbers to this information gives the
enhanced table

Pattern Association Problem

q xq
0 xq

1 xq
2 Iq

1 1 +1 +1 +1

2 1 +1 −1 −1

3 1 −1 +1 −1

4 1 −1 −1 −1
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The algorithm initializes with random weight settings. Suppose these are (w0, w1, w2)
= (1, 0, 2) and that η = 0.15. Applying the function z = sgn(w0 + w1x1 + w2x2) to
the input patterns for q = 1 and q = 2 produces correct output. For q = 3, however,
we obtain z = +1, where the ideal output is I = −1.

First Loop Through Patterns

q xq
0 xq

1 xq
2 Iq

1 1 +1 +1 +1

2 1 +1 −1 −1

3 1 −1 +1 +1 X

4 1 −1 −1 −1

This triggers a trip through the weight change loop. In vector notation, the weight
changes triggered by pattern 3 in loop 1 are (using (6.2)):

∆w3 = .15(−1− (1))(1,−1, 1)

= −.3(1,−1, 1)

= (−.3, .3,−.3) (6.4.1)

and the resulting new weights are

wnew : = w + ∆w3

= (1, 0, 2) + (−.3, .3,−.3)

= (.7, .3, 1.7). (6.4.2)

After this change, z is computed for pattern 4 and found to be correct.

Three more loops through the patterns produce similar results: The value of z
for pattern 3 is incorrect, and a weight change is triggered. On the fifth loop through
the patterns, it is found that the value of z is correct on patterns 1,3,4 but incorrect
on pattern 2, triggering a different weight change

∆w2 = (−.3,−.3, .3) (6.4.3)

and a corresponding new weight. At the end of the next (sixth) loop through the
patterns, it is found that all values are correct.

The weight changes, new weights, and output values are summarized in Table
6.1. The threshold lines are depicted in Figure 6.2. This particular example has
only one weight change triggered during each loop through the pattern set. Not all

problems will have this property.
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Table 6.1. Weight Changes During Perceptron Learning

Loop Pattern Current Weight New

Number Index Weights Changes Weights

1 3 1 0 2 −.3 .3 −.3 .7 .3 1.7

2 3 .7 .3 1.7 −.3 .3 −.3 .4 .6 1.4

3 3 .4 .6 1.4 −.3 .3 −.3 .1 .9 1.1

4 3 .1 .9 1.1 −.3 .3 −.3 −.2 1.2 .8

5 2 −.2 1.2 .8 −.3 −.3 .3 −.5 .9 1.1

6 - −.5 .9 1.1 0 0 0 −.5 .9 1.1

Avoiding Close Calls

After a small amount of experimentation it soon becomes apparent that, while
the algorithm outlined above works, the resulting sign unit may be very close to one
that does not give correct output. The reason for this is that the algorithm stops
as soon as the linear separator is in the correct location with respect to the input
patterns in pattern space. If the last step is small, then the resulting threshold unit
cannot have its seperator very far away from at least the last pattern that triggered
a weight change.

In order to make the resulting threshold unit more robust, the algorithm can be
enhanced to keep the separator a small distance away from each pattern. Requiring
that the output be correct is equivalent to requiring that the sign of the net input be
equal to the sign of the ideal output, that is, the condition zq = Iq is equivalent to
the condition yqIq > 0. This last condition is one that we can modify to make the
perceptron rule more robust. We require:

yqIq > r (6.5)

for some positive number r. Thus instead of simply requiring the separator to be
on the correct side of the pattern ξq, we require that it be on the correct side and

outside the circle of radius r centered at ξq. See Figure 6.3. The improved version
of perceptron learning replaces the condition zq 6= Iq in (6.1) with the negation of
(6.5).

∆wq
i =

{

2ηIqξq
i , if yqIq ≤ r;

0 , otherwise.
(6.6)

Using (6.6) in place of (6.1) or (6.2) in the algorithm gives the improved perceptron
learning rule.
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Figure 6.2. Thresholds of units approaching the AND function.

Multiple Outputs

The general perceptron learning algorithm (for simple, i.e., 1-layer) perceptrons is
obtained by applying the procedure for one output to each unit in the network. The
units being independent, the process may be applied in parallel or in any convenient
order of the units.

The perceptron consists of a vector x = (x0, x1, . . . , xm) providing input to n sign
units with output z = (z1, . . . , zn). The internal state for unit j is yj and the weight
between input xi and unit j is wji.

We are given a pattern association problem ξq 7→ Iq, q = 1, . . . , p where each ξq

is an m-component pattern and each Iq is an n-component pattern. We desire to
train the perceptron by incrementally changing its weights so that it reproduces the
pattern association with a robust system (the separators are not too close to the
input patterns). The algorithm is:

Perceptron Learning Algorithm

Repeat

For q = 1 . . . p do

1. Present ξq to the network inputs: For i = 1 to m do xi := ξq
i ; set x0 = 1

2. Compute the internal states yj of the threshold units: For j = 1 to n do
yj :=

∑m
i=0 wjixi

3. Compute the weight changes for pattern q: For i = 1 to m and j = 1 to
n, if yjI

q
j ≤ r then ∆wq

ji := 2ηIq
j xj else ∆wq

ji := 0
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Figure 6.3. Zones of avoidance shown around input patterns.

4. Take corrective step: For i = 1 to m and j = 1 to n do wnew
ji := wji+∆wq

ji

Endfor

Until correct and robust: yjI
q
j > r for each j and each pattern q.

Theorem. If the pattern association problem ξq 7→ Iq, q = 1, . . . , p is linearly sepa-
rable, then for sufficiently small η and r the Perceptron Learning Algorithm converges
in a finite number of iterations.
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7. Supervised Learning Algorithms.

The perceptron learning rule was introduced in 1960. Independently, and more
or less simultaneously, Widrow and Hoff introduced gradient descent learning as the
adaptive mechanism of adaline. These milestones introduce a general paradigm for
supervised training methods in neural networks. Before proceeding with discussions
of analog neurons, adaline and other developments such as backpropagation, it is
helpful to standardize supervised learning algorithms.

We assume given p patterns

x(1),x(2), . . . ,x(q), . . . ,x(p) (7.1)

where x(q) has m components, i.e., x(q) = (x
(q)
1 , . . . , x

(q)
m ). Assume also given ideal

output patterns

I(1), I(2), . . . , I(q), . . . , I(p) (7.2)

where I(q) = (I
(q)
1 , . . . , I

(q)
n ). The desired pattern association is

x(q) 7→ I(q), q = 1, 2, . . . (7.3)

The given pattern associations are often referred to as the training set for a given
learning task.

A neural network with m inputs and n outputs defines a mapping (or association)
from m-component patterns to n-component patterns, and thus has the potential to
associate the given patterns as specified by (7.3). The perceptron rule, and other
supervised learning methods, provide a basic mechanism by which the weights in
a neural network are successively modified toward the ideal association given by
(7.3). Each of these methods has a specific weight change computation and stopping
criterion. Excepting these details, the primary learning methods that have been
found useful are essentially the same.

On-Line Training

The method introduced in Section 6 with perceptron learning is called on-line

training and is given by the following outline:

Repeat

For q = 1 . . . p do

1. Present x(q) to the network inputs
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2. Compute the network outputs z(q)

3. Compute the weight change ∆wq for pattern q

4. Take corrective step wnew := w + ∆wq

Endfor

Until stop condition is satisfied

Notice that two details are required in order have a precise method: The calculation
of the weight change ∆wq for pattern q and the stop condition. For the perceptron
learning algorithm, these are given by (6.6) and (6.5), respectively.

This method is named for its appropriateness in situations where the incoming
data stream is encountered in real time. The pattern index then represents increasing
time, so that at a given instant one does not know what the next pattern will be. A
training step is taken at every opportunity.

Batch Training (Off-Line Training)

When all desired pattern associations are known in advance, other methods may
be more efficient. For example, it may be that the individual associations generate
weight changes that are fairly large and in widely disparate directions in weight space.
In such circumstances stability and speed of training may be enhanced by, in effect,
averaging or summing all the weight changes suggested by the individual pattern
associations and taking one corrective step after all patterns have been considered.
Modifying on-line learning by extricating the weight corrective step from the inner
loop results in a frequently used method called batch training:

Repeat

For q = 1 . . . p do

1. Present x(q) to the network inputs

2. Compute the network outputs z(q)

3. Compute the weight change ∆wq for pattern q

Endfor

Accumulate weight changes ∆w :=
∑p

q=1 ∆wq

Take corrective step wnew := w + ∆w

Until stop condition is satisfied

Again, all that is required to make this algorithm precise is the details of how the
weight corrective step and stopping condition are defined. The cycling through p
patterns in the For loop may be replaced with a random selection of p patterns from
a larger pool.



Section 7. Supervised Learning Algorithms 43

Overtraining

A third possibility would be to bring the For loop outside of the Repeat loop,
in effect training on one pattern until learned, then proceeding to the next pattern,
and so on through the training set. This method does not work well because of the
“memory instability” problem inherent in most neural networks: training on a new
pattern tends to destroy previously learned associations. Thus overtraining on a fixed
pattern tends to negate the effects of training on previous patterns, necessitating a
third outer-most loop that again cycles through all patterns repeatedly. The net
result is a training method that works, but is inordinately slow.
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8. Analog Units and Graded Pattern Classification.

There are situations in which it is useful to have binary I/O for an artificial
neuron, and they admit to a clean and elegant analysis elucidating their capabilities.
On the other hand, neurological realism can be improved by allowing analog I/O. The
analog input components can be thought of as levels of rudimentary signals, either
from other neurons or from external stimuli, and the analog output is something like
the average spike rate of a neuron.

We define an analog neuron to be a McCulloch-Pitts neuron with a continuous
activation function. Analog neurons are found to be more useful in applications
where some kind of graded response is appropriate, such as in neurocontrol devices
or networks whose output levels are interpreted as levels of certainty, and training
methods such as backpropagation use smoothness of output functions in a critical
way.

Linear vs Sigmoidal Activation: Scaling the Output

As long as the activation function of an analog neuron is a strictly monotone
function, such as in either the linear or sigmoidal case, the effect can be thought of
as a scaling of the net input. If the output is not used as input to another neuron,
this scaling effect is only one of convenience for the user: the scaling can be reversed
and/or modified to any other scale. Suppose, for example, that f(y) is a strictly
monotone activation function and that g(y) is a desired re-scaling of the net input y.
Since f is monotone, it is a one-to-one mapping and as such has an inverse function
f−1 with the property that the composition f followed by f−1 is the identity function:

(f−1 ◦ f)(y) = f−1(f(y)) = y (8.8)

for all y. We can re-scale the output z using the function h = g ◦ f−1 with the effect
that net input is scaled by g instead of f :

h(z) = g(f−1(z)) = g(f−1(f(y))) = g(y) (8.9)

i.e., the activation function has been changed from f to g by externally manipulating
the output data. In particular, we can switch back and forth between logistic and
linear activation functions, or between two different sigmoidals, by re-scaling the
output. (We saw in Section 2 that the logistic and hyperbolic tangent functions are
related by a linear change of scale.)

In applications, the modeler may for reasons of convenience or realism prefer that
output should be scaled to reside in some interval other than 0 ≤ z ≤ 1 and/or should
be a decreasing instead of increasing function of net input. These changes of scale
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can be accomplished using ideas like the ones illustrated in the previous paragraph
and will be discussed as they arise in applied settings. The theory is not affected by
such scale changes, so we will restrict theoretical discussions to the canonical cases
described above.

Pattern Classification

In the previous section we saw that a given binary function can be realized by a
binary neuron if and only if it is linearly separable. This result has an interpretation in
terms of pattern classification as follows. We call a particular choice of binary inputs
(x1, . . . , xn) an n-dimensional binary pattern. Then the set of all n-dimensional binary
patterns is the set on which a logical function β of n variables is defined. Thus β
divides the n-dimensional binary patterns into two classes, those on which β has value
+1 and those on which β has value −1: β “classifies” the n-dimensional patterns.
The classification can be realized by a sign unit if and only if β is linearly separable.

Similarly, a choice of inputs for an analog neuron can be thought of as an n-

dimensional analog pattern (x1, . . . , xn), and one naturally questions what is the
capacity of an analog neuron to classify such patterns. The output of an analog
neuron is a real number instead of a binary value, reflecting a graded response ap-
propriate for the continuous variation in possible input patterns. It follows that a
pattern classification by an analog neuron is graded rather than binary, and such
gradation must be taken into account in answering our question.

The observation that an analog neuron with strictly monotone activation function
can be re-scaled to one with a linear activation function means that analog linear
neurons have the same pattern classification capacity as the more general type. For
convenience, then, we may restrict our investigation of pattern classification capacity
to linear neurons. We return to this investigation after a short detour into linear
algebra.

Vectors and the Dot Product

Concepts from linear algebra are extremely useful in both neural networks and
pattern recognition. We regard Rn as an n-dimensional vector space. Points in Rn

are then vectors and denoted with bold face characters, as u = (u1, . . . , un). A vector
u has coordinates u1, . . . , un and length or magnitude |u| = [(u1)

2 + . . .+(un)2]1/2. A
vector also has an absolute direction which is defined in terms of its direction cosines,
but for our purposes we need only consider relative directions in terms of the angle
between two vectors.

The inner or dot product of two vectors u and v in Rn is defined by the equation

u · v = u1v1 + . . . + unvn =

n
∑

i=1

uivi. (8.10)
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The similarity between equations (8.10) and (8.1) is immediately apparent and has
an interpretation. We think of the weights w1, . . . , wn that specify an analog neuron
as the coordinates of the weight vector w of the unit, and the inputs x1, . . . , xn for
an analo neuron as the coordinates of an input vector x. Then the net input is just
the dot product of the weight vector and the input vector: y = w · x.

Equation (8.10) gives a very handy way to compute the dot product, in effect
an “algebraic” definition. There is an alternate “geometric” definition of the dot
product given by

u · v = |u||v| cos θ (8.11)

where θ is the angle between the two vectors u and v. That is, the dot product is the
product of the magnitudes of the vectors and the cosine of the angle between them.
While (8.10) provides a convenient way of computing the dot product, (8.11) provides
a convenient way of interpreting the dot product. The usefulness of the dot product
stems from this dual ability to algebraically compute and geometrically interpret its
value.

An example of this algebra-geometry interplay is the characterization of when two
vectors are perpendicular. Suppose u and v are vectors in Rn. Note that the two
vectors are perpendicular if and only if the angle θ between them is π/2 (90 degrees),
and that the cosine of π/2 is zero. In fact, π/2 is the only angle in the range 0 ≤ θ ≤ π
whose cosine is 0. It follows from (8.11) that u and v are perpendicular if and only
if u · v = 0. Applying (8.10), we have an easily checked criterion: u ⊥ v if and only
if Σuivi = 0.

The dot product is also useful in interpreting the projection of one vector along
the other. Let p denote the projection of u along v. Then, using basic trigonometry,
p can be computed to be the vector that lies a portion |u| cos θ along the vector
v. Thus p = (|u| cos θ)(v/|v|). Rephrasing making use of the dot product equation
(8.11), we have: The projection p of u along v is given by the equation

p =
u · v

|v|2
v. (8.12)

In the special case where v has magnitude 1, p = (u · v)v. See Figure 8.2a.

Graded Pattern Classification

Return now to the question of how a linear analog neuron classifies input patterns.
We assume the unit has n-dimensional weight vector w and receives an n-dimensional
input vector (pattern) x. The output is z = w · x = |w||x| cos θ. To simplify the
notation, let us assume that the weight vector has magnitude 1 (this assumption does
not restrict the pattern classification capacity of the neuron) and let us also restrict
the input patterns to those of magnitude 1 (the magnitude of a pattern is a measure
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a. p = projection of u along v. b. The four vectors in Example 1.

Figure 8.2.

of its overall intensity, so we are simply restricting our consideration to patterns of
the same overall intensity = 1). Under these assumptions, we have

z = cos θ (8.13)

where θ is the angle between w and x.

The angle θ is restricted to the interval 0 ≤ θ ≤ π, the endpoints representing
the two extreme cases (θ = 0 means the vectors point in the same direction and
θ = π means they point in opposite directions). Thus the cosine of θ varies from +1
to −1 and uniquely determines the angle θ. Since by assumption w and x have the
same magnitude, the two extreme cases are cos θ = +1, meaning that x = w, and
cos θ = −1, meaning that x = −w. The intermediate case is cos θ = 0, meaning
that x ⊥ w. Thus the unit classifies patterns according to how well they match the
internal pattern stored as its weight vector. See Figure 8.2.

Example 1. Let w = (0.9000,−0.4359). Then

|w| = [(0.9000)2 + (−0.4359)2]1/2

= [0.8100 + 0.1900]1/2

= [1.0000]1/2 = 1 (8.14.1)

so w defines a linear unit with 2 inputs and weight vector of magnitude 1. Consider
three input vectors

x(1) = (0.8500,−0.5268)
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x(2) = (−0.8800, 0.4750)

x(3) = (0.4300, 0.9028). (8.14.2)

It should be checked that each of these patterns has magnitude 1 and that the various
dot products with w are as given in (8.14.3) below:

w · x(1) = 0.9946

w · x(2) = −0.9991

w · x(3) = −0.0065. (8.14.3)

These output values z(p) = w · x(p), p = 1 . . . 3, may be interpreted as follows. z(1) is
close to 1 so x(1) is nearly the same pattern as w; z(2) is close to −1 so x(2) is nearly
the opposite of w; and z(3) is close to 0 so x(3) has nearly nothing in common with
w. See Figure 8.2b.

We depart this section with a cautionary note. The figures one draws to illustrate
these concepts are usually two-dimensional, as in Figure 8.2, thus representing the
case n = 2. There is one aspect of such pictures that is misleading: the size of the
subspace orthogonal to w. In general, the weight vector w defines a 1-dimensional
subspace of pattern space Rn, which means that the subspace orthogonal to w is
(n − 1)-dimensional. A single linaer unit is forced to have the value z = 0 for all
input vectors x that lie in that orthogonal subspace. A single analog neuron thus
has nothing to say about most of the input patterns.
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9. Adaline.

This section introduces a method for training or adapting networks of analog
units. The method was introduced by Widrow and Hoff (1962) around the same
time as Rosenblatt brought forth the perceptron learning method. Widrow and Hoff
called the method the “delta rule” or “LMS” algorithm (for least mean squares).
LMS is an example of what is now called gradient descent learning, or GDL. We will
cover background theory and applications in later sections. Here we concentrate on
describing the algorithm, writing prototype code, and suggesting some experiments
in supervised learning.

Adaline

Widrow and Hoff coined the term “Adaline” from the phrase “ADAptive LIN-
ear Element” for an analog unit equipped with LMS learning. Consider a sin-
gle linear unit. Thus we have an input vector x = (x1, . . . , xm), a weight vector

w = (w1, . . . , wm), and output equal to net input given by the dot product

y = w · x =

m
∑

i=1

wixi. (9.1)

Suppose we are given a pattern x(0) and an ideal output I(0) for the unit. To get
the unit to perform correctly, that is, to have the desired output on x(0), we could
use linear algebra techniques to calculate values for the weights that would work. An
alternative approach is to allow the unit to adapt its own weights over time toward a
weight vector that gives the desired behavior. In this alternate approach we consider
the unit to adapt or learn by changing its internal state (its weights) rather than the
more traditional view of finding a unit that has the correct knowledge. A linear unit,
together with this adaptation algorithm, is called an “Adaline” (for adaptive linear
neuron).

The adaptation procedure goes as follows. First present Adaline with the input
pattern x(0) and compute Adaline’s output y(0). Next compare this result with the
ideal output I(0). The error is given by

e = I(0) − y(0). (9.2)

If the error is zero then Adaline has the correct behavior. Otherwise we change
weights in an attempt to reduce the magnitude of error and try again.

The error reduction process is built around an attempt to to minimize square

error

E = e2. (9.3)
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Note that minimizing square error results in zero error, whereas (since error may
be negative) it is not appropriate to attempt to minimize error itself. The iterative
modification of Adaline’s weights takes a “step” in the weight space. The step is
given by one of the formulae

∆w =
ηe

|x(0)|2
x(0) (9.4.1)

∆w =
ηe

|x(0)|
x(0) (9.4.2)

∆w = ηex(0) (9.4.3)

where |x(0)| is the magnitude of x(0), e is error, and η is a learning rate parameter to
be set externally. As is becoming usual, the step given by (9.4) is then added to the
existing weights before commencing a new trial:

wnew = w + ∆w. (9.5)

Note that the recipe (9.4.3) is identical in form to the perceptron update rule
(6.2). We will derive each of these in the next section using criteria completely
different from the Hebb rule. The three update rules above differ only in the scalar
denominator, so they each take a step in the same direction in weight space. When
the input vector x(0) is not extremely long or short, all three of these recipes give
essentially the same results. The distinction among them is how they react to wide
ranges of input vector sizes.

Formalizing the procedure described above results in the following supervised
learning algorithm for training a single unit on a single pattern x(0):

Repeat

1. Present x(0) to the unit inputs;

2. Compute the output z(0) using (9.1);

3. Compute the error e using (9.2);

4. Compute the weight change ∆w using (9.4);

5. Take corrective step wnew using (9.5);

Until E is small.

A depiction of Adaline is given in Figure 9.1. Values of the weights at the beginning
of this procedure are assumed given. These initial weight values are usually either se-
lected at random or input from some previous training experience. A multiple output
Adaline network consists of a number of Adaline elements (one for each independent
output value) receiving the same input vector in parallel and is trained by simply
carrying out the procedure above for each element.
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x1 ©↗
w1

x2 ©↗
w2

. .
∑

y
. .
. .

xm ©↗
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adaptive step e
∑

I

Figure 9.1. Adaline.

Programming Adaline

We now present generic computer code that implements the Adaline learning
algorithm discussed above. The term “generic” means two things: (1) the code is
readily translated into actual computer code written in a declarative modular lan-
guage such as FORTRAN, Pascal, and C; and (2) the generic code is comprehensible
and self-explanatory when read carefully by humans. These two properties, translate-

ability and readability, are important characteristics of generic code. We will build
on the code introduced here in later sections.

It is highly recomended that the reader take time now to encode a rapid pro-
totype version of Adaline. We suggest setting up the program so that it receives
matrices as input arrays, allowing interpretation as patterns in two spatial dimen-
sions. (Note that this does not mean 2-dimensional patterns: The dimension of a
pattern is the number of degrees of freedom in the pattern. Thus the patterns dis-
cussed in the experiments below are 25-dimensional.) For readers who want to avoid
coding, however, source code for Adaline is available free through electronic mail. In
the experiments suggested below, we assume that the input matrix is read into the
input array in column-major order, i.e., by reading the first row, then the second
row, and so on, until the entire matrix is read.
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Adaline Code

The first function predict uses Adaline in its current state, as defined by a set
of weight values, to compute a value for the input pattern. The activation function
phi is assumed programmed somewhere. Of course, phi may be the identity function
(the strict linear case) which requires no program. We suggest either letting phi be a
logistic function with threshold equal to zero and gain equal to four or simply letting
phi be the identity. In any case, the learning process is independent of phi.

function predict

import m {number of inputs}
n {number of outputs}
x[i], i=1..m {input to network}
w[j,i], j=1..n, i=1..m {weights}

export z[j], j=1..n {output from network}
begin

for j = 1 to n do

y[j] ← 0 {initialize}
for i = 1 to m do

y[j] ← y[j] + w[j,i]∗x[i]
endfor {dot product loop}
z[j] ← phi(y[j]) {apply activation function}

endfor

end

The next procedure correct modifies the weights of the network using a given
set of errors between ideal and actual output values.

procedure correct

import m {number of inputs}
n {number of outputs}
x[i], i=1..m {input to network}
z[j], j=1..n {output from network}
e[j], j=1..n {error in output from network}
eta {learning rate}

effect w[j,i], j=1..n, i=1..m {weights}
begin

mag squared ← 0

for i = 1 to m do

mag squared ← mag squared +x[i]∗x[i]
endfor

for j = 1 to n do

for i = 1 to m do
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delta w[j,i] ← eta ∗e[j]∗x[i]/mag squared

endfor

endfor

for j = 1 to n do

for i = 1 to m do

w[j,i] ← w[j,i] + delta w[j,i]

endfor

endfor

end

The learning process itself consists of iteratively making prediction and correction
until a desired level of accuracy is reached or the loop times out. Procedure learn

calls predict and correct as subroutines.

procedure learn

{implements single pattern learning for Adaline network}
import epsilon {desired level of accuracy}

maxits {maximum iterations allowed}
eta {learning rate}
m {number of inputs}
n {number of outputs}
x[i], i=1..m {input to network}
I[j], j=1..n {ideal network output}
w[j,i], j=1..n, i=1..m {initial weights}

export stop condition {minimized, timed out}
effect w[j,i], j=1..n, i=1..m {change state of weights}
begin

predict

for j = 1 to n do {compute errors}
e[j] ← I[j] - z[j]

endfor

square error ← 0

for j = 1 to n do {compute square error}
square error ← square error + e[j]∗e[j]

i ← 0

while

square error > epsilon

and i < maxits

do {learnung loop}
correct

predict

for j = 1 to n do {compute errors}
e[j] ← I[j] - z[j]

endfor
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square error ← 0

for j = 1 to n do {compute square error}
square error ← square error + e[j]∗e[j]

endfor

i ← i + 1 {count iteration}
endwhile

if square error <= epsilon

then stop condition ← minimized

else stop condition ← timed out

endif

end

Adaline can be used in two modes. In learning mode, weights are modified to
change the outcomes of predictions. After learning to recognize appropriate input
patterns, the net can then be used to evaluate any other pattern using the function
predict by itself, with learning “turned off”. Learning to associate more than one
pattern simultaneously requires building another loop (through the pattern training
set) that implements on- line or batch learning as discussed in Section 7.

Experimenting With Adaline

Once having Adaline code available, experimentation is inevitable, instructive,
and fun. We recommend some specific experiments for a single Adaline (i.e., an
Adaline network with one output). These can be modified, with similar results, for
a multiple output net. The activation function is assumed to be the identity. η is
assumed to lie in the interval 0 ≤ η ≤ 1 with η ≈ 0.1 recommended. The suggested
experiments refer to the following five input patterns.

F =











1 1 1 1 1
1 0 0 0 0
1 1 1 1 1
1 0 0 0 0
1 0 0 0 0











, P =











1 1 1 1 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 0
1 0 0 0 0











, X =











1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1











U =











0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











, and F̃ =











1 1 1 1 1
1 0 0 0 ε
1 1 1 1 1
1 0 0 0 0
1 0 0 0 0











.

Experiment 1. (Basic training.) Learn to recognize each of the patterns F , P ,
and X by associating F → 1, P → 2, and X → 3. Begin with a randomly selected
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set of weights in each case. Look at the weights before and after training. Are any
predictable things happening?

Experiment 2a. (Learning more than one pattern.) Teach Adaline to associate
all three patterns simultaneously. Try different techniques for instruction, including
on-line, batch, and “overtraining”.

Experiment 2b. Repeat Experiment 2a with the three associations F → 1,
P → 2, and U → 3. Note any difficulties you may have as compared to Experiment
2a and attempt to explain them.

Experiment 3. (Generalization.) Train Adaline to associate patterns F → 1
and U → 2 simultaneously. What is the predicted value for P? What about the
pattern F̃ where ε is a number representing corruption? Try the same with corruption
of F in a different place.

Results of these experiments can be explained using the theory in Section 11 and
the observation that F , P , and X are linearly independent patterns while F , P , and
U satisfy the linear equation F + U = P .



58 Neural Networks



10. Gradients and Steepest Descent.

There are three related topics covered in this section. First we review concepts
surrounding the gradient of a function of several variables. Next we apply these
concepts to derive the damped gradient descent method for minimizing such a func-
tion. We conclude with a generalization to mappings appropriate for neural net
applications, the same method used in the earlier introduction to supervised learning
(Adaline).

The Gradient

Suppose that f is a real-valued continuously differentiable function defined on

some open set in euclidean n-space Rn. If x(0) = (x
(0)
1 , . . . , x

(0)
n ) is a point (vector)

in the domain of f and u = (u1, . . . , un) is a unit vector, the directional derivative of
f at x(0) in the direction u is given by

Duf(x(0)) =

[

d

ds
f(x(0) + su)

]

s=0

. (10.1)

Consider the variable x(0) + su for a moment. As the real parameter s moves from
−∞ to +∞, this variable parametrizes the line through the point x(0) with u as its
positive direction. Therefore the function s −→ (x(0) +su, f(x(0)+su)) parametrizes
the curve on the graph of f that lies over this line. The derivative in (10.1) is then
the slope of this curve. The derivative at s = 0 is the slope of the curve at the point
where it is directly over x(0). Thus, the directional derivative is the slope of the line
that is tangent to the graph of f over the point x(0) in the u direction.

There are several facts that are useful in understanding directional derivatives.
The first says that reversing the direction of u results in changing the sign of the
directional derivative; it is easily verified by direct substitution into (10.1):

D−uf(x(0)) = −Duf(x(0)). (10.2)

The second is obtained by applying the chain rule to the derivative in equation (10.1)
as follows:

d

ds
f(x(0) + su) =

∑

i

∂f

∂xi
(x(0) + su)

d

ds
(x

(0)
i + sui)

=
∑

i

∂f

∂xi
(x(0) + su)ui.

Taking the limit as s→ 0 we obtain
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Duf(x(0)) =
∑

i

∂f

∂xi
(x(0))ui (10.3)

which is the basis of the following

Definition. The gradient of f at the point x(0) is the vector

∇f(x(0)) = (
∂f

∂x1
(x(0)), . . . ,

∂f

∂xn
(x(0))). (10.4)

The directional derivative can then be expressed as a dot product of the gradient and
the direction vector:

Duf(x(0)) = ∇f(x(0)) · u (10.5)

which follows by direct application of (2.8), (10.3) and (10.4).

Recall that the dot product of two vectors u and v has the alternate definition
u·v = |u||v| cos θ, where θ is the angle between u and v (see equation (2.9)). Applying
this result to equation (10.5), we see that the directional derivative is maximized when
cos θ = 1, i.e., when θ = 0. Thus, Duf(x(0)) is maximized when u and ∇f(x(0)) have
the same direction. This proves the first part of the following fundamental property
of the gradient.

Theorem 1. The gradient of a function f at a point x(0) is the vector whose direction
is in the direction of maximum increase of f at x(0) and whose magnitude is that
maximal rate of increase.

Proof. The direction part has been proved above. For the second part we
calculate the directional derivative (using equation (10.5)) in the direction of the
gradient, that is, we take u = ∇f(x(0))/|∇f(x(0))|:

Duf(x(0)) = ∇f(x(0)) · u

= ∇f(x(0)) ·
∇f(x(0))

|∇f(x(0))|

=
|∇f(x(0))|2

|∇f(x(0))|

= |∇f(x(0))|

which proves the magnitude assertion.

If we think of the graph of f as a landscape over the ground plane Rn, then
Theorem 1 may be interpreted as saying that the gradient vector at a given point
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Figure 10.1. Gradient Descent. When standing on the ground plane at x(0), the
negative gradient at x(0) points the way to decrease f(x) most rapidly.

x(0) (which is a vector in the ground plane) is always pointing in the direction of
steepest ascent available at x(0).

Similarly we can observe that the directional derivative at x(0) is minimized when
θ = π or cos θ = −1, and the argument proceeds in a similar manner to show:

Theorem 2. The negative gradient −∇f(x(0)) points in the direction of maximum
rate of decrease of f at x(0) and has magnitude equal to this maximum rate of
decrease.

(Keep in mind that a positive rate of decrease is a negative rate of increase.) Again
using the landscape analogy, we would say that the negative gradient points in the
direction of steepest descent of f . The topic of gradient descent is discussed further
in the later section Numerical Considerations.

Gradient Descent Learning

Suppose we have a single analog neuron with weight vector w = (w1, . . . , wm),
strictly monotone activation function ϕ, input vector x = (x1, . . . , xm), net input
y = w · x, and output or response z = ϕ(y).

In training the neuron, we consider both x and w to be variable; variation in x
represents variation in patterns presented to the unit, while variation in w represents
changing or adapting the unit in order to obtain a desired response to one or more
input patterns. After training, the weight vector w is held constant and the response
z is determined as before from variable input x. In order to train the unit to produce
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a “correct” response to a given input pattern x(0), we assume that an ideal response
I(0) is given. Thus we desire to train the unit so that z(0) = I(0). The Widrow-Hoff
“delta rule” method of training the unit uses gradient descent applied to the square
error function with the goal of reducing square error to zero.

At this point, purely for convenience and without any loss of generality, we assume
that the unit is linear, i.e., that ϕ(y) = y. The general case is recovered by simply
replacing the ideal output with its inverse ϕ−1(I(0)) under ϕ. (See the discussion
Scaling the Output in Section 8.) Thus z = y = w · x.

Define the error associated with the situation described above by the equation

e = I(0) − z(0) = I(0) −

n
∑

i=1

wix
(0)
i . (10.6)

We want to minimize square error E = e2 using gradient descent, where E is con-
sidered as a function of w and input is held constant. Applying the chain rule and
(10.6), the gradient of E is calculated as

∇E = 2e∇e

= 2e(
∂e

∂w1
, . . . ,

∂e

∂wn
)

= 2e(−x
(0)
1 , . . . ,−x

(0)
n )

= −2ex(0). (10.7)

Therefore the negative gradient has direction equal to the unit vector ±(x(0)/|x(0)|)
with the sign given by sgn(e). This completes a proof of the following

Theorem 3. The direction of fastest decrease in square error E = e2 for an analog
neuron is plus or minus the direction of the input x(0), the sign being the same as
the sign of the error e.

It remains to derive an algorithm for modifying the weights. The algorithm will
consist of moving one step a certain distance in the direction indicated by Theorem 3.
The size of the step should be dependent on the relative error (the ratio of magnitude
of error and magnitude of input), giving a small step when error is small. Taking
relative error as the step length yields the following computation of the step vector:

[

length
][

direction
]

=

[

|e|

|x(0)|

][

sgn(e)
x(0)

|x(0)|

]

= e
x(0)

|x(0)|2
. (10.8)
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The gradient descent learning (GDL) update rule is obtained by inserting a learning
rate constant η into (10.8) as a damping factor:

∆w = wnew −w

= ηe
x(0)

|x(0)|2
. (10.9.1)

The learning rate parameter η is discussed further below.

Equation (10.9.1) is derived using relative error. If absolute error were used
instead, we would obtain

∆w = ηe
x(0)

|x(0)|
(10.9.2)

and if we simply use the gradient itself we obtain

∆w = ηex(0). (10.9.3)

Note that these are the three update rules given in (9.4).

The Widrow-Hoff Algorithm

The Widrow-Hoff GDL algorithm is a ramification of the gradient descent method
to a network consisting of a number of analog neurons acting in parallel on the same
input vector. It is strikingly similar in form to the perceptron learning rule. Both
GDL and perceptron learning were derived around 1960, but they use completely
different bases for derivation and were discovered independently (Rosenblatt, 1962;
Widrow and Hoff, 1962). The perceptron update rule came from Hebb’s biological
experiments. The GDL update rule comes from the geometry of the square error
surface.

Thus we have an input vector x = (x1, . . . , xm) whose components fan out to
each of p units. The jth unit has input vector x, weight vector wj = (wj,1, . . . , wj,m),
net input yj , activation function fj , and output zj , as described previously in Section
9. The Widrow-Hoff algorithm applies the delta rule to each unit in parallel fashion.
Again and for the same reasons, we assume the units are linear, so that zj = yj for
each j.

When presented with a particular input x(0) for which we have an ideal output

I
(0)
j for the jth unit, we can define the error as

ej = I
(0)
j − z

(0)
j = I

(0)
j −

m
∑

i=1

wjix
(0)
i (10.10)

and the total square error as

E = (e1)
2 + . . . + (ep)

2. (10.11)
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Then applying equation (10.9.1) to each unit separately yields the delta rule

∆wj = ηej
x(0)

|x(0)|2
(10.12)

for each j = 1 . . . p. Restating (10.12) in scalar form gives

∆wji = ηej
x

(0)
i

∑m
k=1(x

(0)
k )2

. (10.13)

The delta rule (10.13) applies to update the weights using

wnew
ji = wji + ∆wji. (10.14)

Supervised learning for a single pattern x(0) then proceeds as follows.

1. Present the network with the (non-zero) pattern x(0);

2. Compute the network outputs z
(0)
1 , . . . , z

(0)
n as in Section 8;

3. Compute the errors and total square error using (10.10) and (10.11);

4. If total square error is small go to step 7;

5. Modify the weights according to (10.13) and (10.14);

6. Return to step 1;

7. Stop.

This is the learning procedure that was used in the experimental discussions of Ada-
line in Section 9.

The damping constant η, often referred to as the “learning rate”, is a parameter
that facilitates some external control on step size and is assumed to be in the range
0 ≤ η ≤ 1; typically η is smaller than 1/2. Another external parameter, a kind
of “artificial mass” denoted here by µ, has also been found useful in the form of a
“momentum term” added to the right side of (10.13), yielding a modified delta rule

∆wnew
ji = ηej

x
(0)
i

∑m
k=1(x

(0)
k )2

+ µ∆wji. (10.15)

Momentum is discussed further in a later section. The problem of learning multiple
associations is taken up in the next section.

Stepsize Normalization

The factor |x(0)|2 in the denominator of (10.12) is a scalar and hence does not
effect the direction of weight change, just the stepsize. As long as the training pattern
is not very small or very large in magnitude, this normalizer has little effect. We have
argued that in theory it is beneficial especially when the pattern is large. In practice,
often this may be omitted, however, simplifying the calculation. See the discussion
of (10.9) above.



11. General Theory of Linear Associators.

The theory of linear associators (Adaline networks) is quite complete and compre-
hensible and provides an excellent microcosm in which to examine several questions
related to more general neural networks. These questions are: What is the capacity
of a network to learn more than one task? What is the capacity to generalize to un-
learned but similar tasks? And how does the gradient descent method work on the
problem of multiple learning? These questions are answered precisely in the context
of Adaline. The answers may provide intuitive guidelines for more complex networks.

Matrix Operations and The Vector Box Product

Matrices provide an extremely useful notational language for dealing with large
quantities of vector information and linear transformations of such information. We
review here those concepts and notations that are essential for our discussion of linear
associators. We begin with some definitions.

Matrices. A p× n matrix is a rectangular array A = (aji) of real numbers with
p rows and n columns:

A =









a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
ap1 ap2 . . . apn









. (11.1)

A is said to have dimension p× n. p is equal to the number of rows, or dimension of
each column, and is called the column dimension of A. n is equal to the number of
columns, or dimension of each row, and is called the row dimension of A. The quantity
aji is called the (ji) entry of A; this entry occurs at the intersection of the j th row
and the ith column of A. The various rows and columns of a matrix define vectors.
For example, the first column of A above defines the vector (a11, a21, . . . , ap1) and
the jth row of A defines the vector (aj1, aj2, . . . , ajn). Often the distinction between
the row or column of A and the vector it defines is blurred. Conversely, a vector
v = (v1, . . . , vn) can be thought of as a 1× n matrix. Several operations are defined
on matrices (of appropriate dimension) including matrix sum, scalar multiplication,
matrix product, and matrix transpose.

Matrix Addition. Given two p × n matrices A = (aji) and B = (bji), the
matrix sum is defined by adding the individual entries:

A + B =









a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
...

...
. . .

...
ap1 + bp1 ap2 + bp2 . . . apn + bpn









. (11.2)

65
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Addition is not defined for matrices not of the same dimension. Note that if u and
v are vectors then the vector sum u + v is identical with the matrix sum u + v.

Scalar Multiplication. If A is a matrix and α is a scalar, the scalar product is
defined by mutliplying each entry of A by the scalar α:

αA =









αa11 αa12 . . . αa1n

αa21 αa22 . . . αa2n
...

...
. . .

...
αap1 αap2 . . . αapn









. (11.3)

Again, the product of a scalar and a vector is the same as the product of the scalar
and the matrix defined by the vector.

The Matrix Product. Suppose that A = (akj) and B = (bji) are matrices of
dimension p × n and n ×m, respectively. The product of A and B is defined to be
the matrix C = (cki) whose (ki) entry is the dot product of the kth row of A with
the ith column of B:

cki =
n

∑

j=1

akjbji. (11.4)

For example,

(

1 2 −1
3 0 −2

)





1 −2
0 4
−1 −1





=

(

row1 · col1 row1 · col2
row2 · col1 row2 · col2

)

=

(

1× 1 + 2× 0 + (−1)× (−1) 1× (−2) + 2× 4 + (−1)× (−1)
3× 1 + 0× 0 + (−2)× (−1) 3× (−2) + 0× 4 + (−2)× (−1)

)

=

(

2 7
5 −4

)

.

Note that the row dimension of A (second dimension factor) must be equal to the
column dimension of B (first dimension factor) in order for the definition to make
sense, and that the dimension of the product is p×m.

The Matrix Transpose. Let A = (aji) be a p× n matrix. The transpose of A,
denoted by AT = (aT

ji), is obtained by “flipping” A about its main diagonal:

aT
ji = aij. (11.5)

Two special cases of transpose matrices are of interest. Normally a vector is written
in the form v = (v1, . . . , vn) so that it is in the form of a 1×n matrix. To distinguish
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this case a 1 × n matrix is often called a row vector. An n × 1 matrix consists of a
single column of n numbers and obviously contains exactly the same information as a
1×n matrix. An n× 1 matrix is often referred to as a column vector. The transpose
operation switches back and forth from one vector form to the other:

(v1 v2 . . . vn)T =









v1

v2
...

vn









(11.6.1)

and









v1

v2
...

vn









T

= (v1 v2 . . . vn). (11.6.2)

-2

The Vector Box Product. Suppose that u = (u1, . . . , un) and v = (v1, . . . , vn)
are (row) vectors. We have defined and used to advantage the inner or dot product

(see Section 10). The dot product formula (10.8) can be restated in terms of matrix
operations as follows:

u · v = uvT (11.7)

That is, the dot product of u and v is the unique entry of the 1× 1 matrix obtained
as the matrix product of the row vector u and the column vector vT . Another useful
vector product is obtained by a small modification of (11.7). The outer or box product

of the vectors u and v is given by the equation

u v = uTv (11.8).

Note that the distinction between (11.7) and (11.8) is in which vector is transposed.
The small change in notation makes a large change in the outcome, however: in the
case of dot product, we multiply matrices of dimension (1 × n)(n × 1) obtaining a
1× 1 matrix (a single number). In the case of box product, we multiply matrices of
dimension (n× 1)(1× n) obtaining an n× n matrix (n2 numbers).

For example, let u = (1, 2, 3) and v = (1,−2, 2). Then

u · v = ( 1 2 3 )





1
−2
2



 = 3



68 Neural Networks

and

u v =





1
2
3



 ( 1 −2 2 ) =





1 −2 2
2 −4 4
3 −6 6



 .

The box product is a square array consisting of all possible products of a coordinate
of u with a coordinate of v.

Linear Associators

Equipped now with the powerful language of matrix and vector products, we can
give a comprehensible explanation of the general case of linear pattern classification
begun in Section 10. We start with the case of a single input pattern (assumed
non-zero, i.e., of some positive intensity).

One Pattern. The point of view is that we are given a pattern x(0) together

with a set of n desired or “ideal” responses I
(0)
j , j = 1 . . . n, and we seek n linear units

that associate the input patterns with the n ideal outputs. The jth linear unit we
seek has input vector x and computes its output value zj = wj · x, where wj is the

weight vector of the unit. We think of the input pattern x(0) and the ideal outputs

I
(0)
j as given and the weight vectors as unknowns to be sought. If we find correct

weights, the resulting units collectively associate the input pattern with the desired
output; they form a linear associator.

The notation can be simplified considerably by grouping the output values zj

into a single output vector z = (z1, . . . , zn) and considering the weight vectors wj as
the rows of a weight matrix W . The linear associator can then be described in terms
of matrix operations as

zT = WxT . (11.9)

(Recall that the transpose just writes vectors in column form.) Therefore the linear

associator problem is to find weights W = (wji) so that if z(0)T = Wx(0)T then

z(0) = I(0), where I(0) is the vector of ideal outputs for the pattern.

The linear associator problem for a single pattern can be solved exactly using

dot products. We seek (for each j) a weight vector wj for which wj · x
(0) = I

(0)
j .

Using equation (10.9) we write the dot product as wj ·x
(0) = |wj||x

(0)| cos θ where θ

is the angle between wj and x(0). Interpreting this last equation trigonometrically,

we conclude that we seek a vector wj which projects a distance I
(0)
j /|x(0)| along the

vector x(0). (See Figure 11.1.) There are two important observations to make about
this constraint on wj .



Section 11. Linear Associators 69

Figure 11.1. The hyperplane H of solutions to the single pattern associator problem.

Observation 1. The vector wj = (I
(0)
j /|x(0)|2)x(0) works.

This observation is verified by direct computation:

wj · x
(0) =

(

I
(0)
j

|x(0)|2
x(0)

)

· x(0)

=
I

(0)
j

|x(0)|2

(

x(0) · x(0)
)

= I
(0)
j (11.10)

Observation 2. There are many other vectors that also work.

This follows from the geometric fact that if a vector lies in the hyperplane perpendic-
ular to x(0) passing through the point of projection then the vector will also project
to the same point. (See Figure 11.1. This hyperplane is important when we discuss
gradient descent learning.)

We can now write down an exact solution to the linear associator problem for
one pattern. Let W = (wji) be the matrix defined by

wji =
I

(0)
j x

(0)
i

|x(0)|2
(11.11)
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(where i = 1, . . . , m and j = 1, . . . , n). Then the calculation in (11.10) above shows
that

Wx(0)T = I(0)T (11.12)

which is the condition required by (11.9). Thus, in particular, there is no need for
an iterative learning algorithm in this case, we can just compute a solution using
(11.11).

A final observation is appropriate as we move to the case of learning multiple
patterns. Suppose that the pattern x(0) has magnitude equal to one. (This simply
means we assume x(0) has unit intensity.) Then the formula given by (11.11) defining
the weight matrix W reduces to the box product:

W = I(0) x(0). (11.13)

Orthonormal Patterns. Now suppose we are given a number p of input pat-
terns x(1), . . . ,x(p) along with ideal output vectors I(1), . . . , I(p) and we desire to
associate output I(k) with x(k) for each k using a single Adaline network. That is,
we seek a single weight matrix W = (wji) such that

Wx(k)T = I(k)T (11.14)

holds for each k = 1 . . . p. This is the linear associator problem for multiple patterns.

We begin with a set of input patterns that is orthonormal, that is, we assume that
the input patterns (1) have unit length and (2) are mutually perpendicular. The first
of these assumptions is just a simplification to unit intensity, but the second implies
a constrained geometry that is unrealistic. We shall remove these constraints later
in this section, but they provide an essential link in the theory.

The assumption of orthonormality can be phrased in terms of the dot product as

x(j) · x(i) = δji (11.15)

where δji is the Kronecker delta function (equal to 1 when j = i and equal to 0 when
j 6= i). One consequence of orthonormality is that the set of input patterns is linearly
independent and, in particular, p ≤ n.

Using the observation of (11.13), we define a weight matrix

W (k) = I(k) x(k) (11.16)

for each k. We know from the discussion above that the matrix W (k) associates the
pattern x(k) with the ideal output I(k). Now define W to be the matrix sum
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W = W (1) + W (2) + . . . + W (p) (11.17)

and check how W associates, say, the lth pattern:

Wx(l)T =

(

∑

k

W (k)

)

x(l)T

=

(

∑

k

I(k) x(k)

)

x(l)T

=
∑

k

(

I(k)Tx(k)
)

x(l)T

=
∑

k

I(k)T
(

x(k)x(l)T
)

=
∑

k

I(k)T
(

x(k) · x(l)
)

= I(l)T . (11.18)

That is, the association is perfect! Again, we have simply written down a formula
for the weight matrix W and there is no need for an iterative learning scheme. This
is the point at which the ability to “write down” the solution breaks down, however.
Notice that the assumption of orthonormality plays a critical role in the computation
of (11.18). In the last line, all interaction in the sum disappears because of our
assumption that (11.15) holds. Without orthonormality, the calculation would be
hopelessly complicated.

Independent Patterns. Now replace the assumption of orthonormality by the
assumption of linear independence. This is a realistic constraint on a set of input
patterns (and an essential one in the case of linear associators). The theory is affected
significantly. It is still possible to prove the existence of a solution to the associator
problem, but there is no longer a simple method of computing what the solution is.
We examine both of these effects. The proofs are somewhat intuitive but require
some background in linear algebra to follow them completely.

Claim 1. There is a solution to the linear associator problem for linearly independent
patterns.

A proof of this claim goes as follows. Assume the input patterns x(1),x(2), . . . ,x(p)

are linearly independent. Then we can expand them to a basis for Rm and then map
this basis to an orthonormal basis via a linear transformation. This linear transfor-
mation has a matrix A which must satisfy: The patterns Ax(1)T , Ax(2)T , . . . , Ax(p)T

form an orthonormal set. Therefore, using the results above, we can find a weight
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Figure 11.2. The error surface for a linear associator problem is a parabolic trough
whose bottom is the hyperplane of solutions.

matrix W̃ such that W̃ (Ax(k)T ) = I(k)T for k = 1, . . . , p. If we define W to be the
product matrix W̃A, it follows that Wx(k)T = I(k)T for each k, proving the claim.

The problem now is how to compute W . One approach would be to find a matrix
A making the input patterns orthonormal. This is a computationally expensive task
(order O(p2n)) and implementationally complex. Another approach is to use iterative
methods such as gradient descent. These can be much better than the direct linear
algebra approach. The gradient descent update rule, in particular, is nice in that it
generalizes directly to the case of non-linear multilayer networks.

Claim 2. Gradient descent learning will always converge to a solution to the linear
associator problem for a collection of linearly independent input patterns.

A proof of Claim 2 emerges from the following general discussion of gradient descent.

Remarks On Gradient Descent Learning

Recall from our discussion in Section 10 that gradient descent update rule applied
to the jth unit establishes a corrective step for the jth weight vector. If the input

pattern is x(0) and the ideal output is I
(0)
j , this corrective step has direction equal to

plus or minus the direction of x(0), the sign being the sign of error ej = I
(0)
j − z

(0)
j .

The magnitude of the step is proportional to the magnitude of relative error.

This corrective step is obtained from the gradient of the square error Ej = e2
j as a

function of wj . Due to the quadratic nature of Ej , its graph is a “parabolic trough”,
a trough with parabolic cross-section whose “bottom” is the (m − 1)-dimensional
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hyperplane of correct solutions to the associator problem depicted in Figure 11.1.
The direction of the corrective step is perpendicular to, and toward, the trough
bottom. The magnitude of the corrective step is proportional to the distance away
from the bottom. It will be helpful to give this hyperplane, the trough bottom, a

name. It depends on the input pattern and the output node, so we name it H
(0)
j after

each. H
(0)
j is perpendicular to x(0) and consists of all solutions w to the associator

problem defined by x(0) and I
(0)
j . The hyperplane and the line through x(0) intersect

at the vector mentioned in Observation 1 above. See Figure 11.2.

Thus gradient descent update rule is an iteration that produces a path of steps
from any point in weight space directly to the hyperplane of correct solutions. The
particular correct solution so obtained depends on the particular weight used to ini-
tiate the process. Now consider the case of multiple input patterns x(1),x(2), . . . ,x(p)

(assumed linearly independent), with ideal output vectors I(1), I(2), . . . , I(p). Gradient
descent learning may be applied to each of these desired associations. For the kth

input pattern and the jth output node, we obtain a parabolic trough with bottom

H
(k)
j as above.

Observation 3. Because these hyperplanes are perpendicular to vectors (the input
patterns) that are linearly independent, the hyperplanes have a non-void intersection.
Any weight in this intersection will satisfy all of the associator problems simultane-
ously.†

If GDL update rule is applied for each of the patterns in some order, the result
will be a path toward a point in the intersection. The nature of the path is dependent
on the order in which the various GDL updates are applied, but convergence to a
solution is guaranteed in any case (assuming the damping factor is small enough to
keep the iteration from blowing up). Two such paths are depicted in Figure 11.3 for
the case of two patterns. These paths correspond to two different training schemes.
The first alternates between patterns until a (simultaneous) solution is found; the
second trains on pattern 1 until learned, then trains on pattern 2 until learned, then
returns to pattern 1, repeating until converged to a simultaneous solution.

Conclusions

We return to the questions raised at the beginning of the section. Q: What is the
capacity of Adaline to learn multiple patterns? A: An m-input Adaline can learn up
to m linearly independent patterns.

† This provides a geometric proof of Claim 1. It also shows why the sum in (11.18)
works: when the patterns are orthogonal, the sum of the weight vectors (rows of W ),
when calculated by the parallelogram rule, ends up in the intersection of the trough

bottoms, because they are mutually perpendicular.
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Figure 11.3. Paths defined by applying GDL for two different patterns in different
ways.

Q: How well does the gradient descent method work for learning multiple pat-
terns? A: Quite well in the linear case. Some researchers have reported best per-
formance begins to drop off when the number p of training patterns excedes 30–40%
of capacity (i.e., when p ∼ .4n) but there is no reason in principle why p = n is
unattainable. Depending on the angles involved in the intersecting trough bottoms
in weight space, some variation in choice of path (learning scheme) and convergence
constants (learning rate and artificial mass) may be helpful.

Q: What is the capacity of Adaline to generalize to unlearned patterns? A:
Adaline uses linear interpolation to generalize. For example, if she has the value .99
on the pattern x(1) and the value .01 on the pattern x(2) then, for a pattern that is
95% x(1) and 5% x(2) she has the value .95× .99 + .05× .01 = .941. Note, however,
that if Adaline has not been trained on a complete set of n independent patterns then
her values will be non-sensical for any pattern with a component that is outside the
space spanned by the training set. Thus, for example, if Adaline has been trained on
x(1) and x(2) but not x(3), then for a pattern that is 5% x(3) Adaline’s prediction may
be nonsense since it may still be influenced by the random choices made to initialize
GDL in training on the first two patterns.

What about the non-linear case? If the network topology remains as considered
here, that is, a single layer of analog units with no feedback, the capacity of the
network is unchanged. The addition of logistic activation functions cannot add any
new ability not already possessed by the linear version. (See the remarks on scaling
the output in Section 10.) As we shall soon see, the situation changes dramatically
when we expand to a multilayer topology.



12. Case Study: Adaptive Filters.

Some of the earliest and most successful applications of neural network technol-
ogy fall in the area of adaptive signal processing using Adaline networks. This is
pioneering work fathered by Bernard Widrow and dating back to the early 1960’s. It
is in this early work that the name “Adaline” was coined, standing for “ADAptive
LInear NEuron” or “ADAptive LINear Element” (depending on whether artificial
neural networks were in or out of fashion at the time). The term was first applied
to threshold units but has expanded its scope over the years to include various ana-
log units. Thus Adaline refers to a single McCulloch-Pitts neuron together with the
Widrow-Hoff supervised learning algorithm.

There are now many examples of the effective use of Adaline networks in adaptive
control or modification of signals. A review of some of these was recently given by
Widrow and Winter. (See Widrow and Winter (1988) or Widrow and Stearns (1985).)
We describe the generic adaptive filter and give three illustrations of its use.

Adaptive Filters

Consider the adaptive filter whose configuration is depicted in Figure 12.1. A
digital signal (time-dependent bit stream) s is sampled in time by the application of
delays in the signal. Thus at a given instant t, s(t) is the current signal, s(t − 1) is
the signal one delay unit in the past, s(t−2) is the signal two delay units in the past,
and so on, until s(t− T ) is the signal T delay units in the past. The output y of the
filter is the dot product of the weight vector w = (w0, . . . , wT ) and the time-sampled
signal vector s(t) = (s(t), . . . , s(t− T )):

y(t) = w · s(t). (12.1)

Clearly this is structurally equivalent to a linear analog neuron with (T + 1) inputs.
The output signal consists of the input signal as “filtered” according to the values of
the weights. By varying the weights, the output signal is directly controllable.

The filter of Figure 12.1 is called adaptive because the weights are modified over
time so as to reduce the error between the output signal and some ideal signal. In
particular, we assume that the Widrow-Hoff gradient descent learning rule is used to
reduce square error. Thus an adaptive filter is one manifestation of an Adaline.
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s(t) s(t) ©↗
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w1

delay
∑

y
. .
. .
. .

delay

s(t− T ) ©↗
wT

adaptive step
∑

I(t)

Figure 12.1. Adaptive Filter.

The Fourier Transform

The discrete Fourier transform of a time-sampled digital signal

s(t) = (s(t), . . . , s(t− T )) (12.2)

breaks s into its periodic components. Each of these components is defined by an
amplitude and frequency. The result ŝ of applying the Fourier transform to s can be
considered a vector indexed by frequency:

ŝ = (ŝ1, ŝ2, . . .) (12.3)

where ŝk is the amplitude of the periodic component φk with frequency k. (In prac-
tice, frequency higher than some value may be ignored, so a “truncated” Fourier
transform vector contains all information necessary to reconstruct the signal.) The
inverse Fourier transform just sums the pure periodic components, recovering the
original signal:

s(t) =
∑

k

ŝkφk(t). (12.4)

The classical idea behind correcting a noisy signal is to break the signal apart
into its periodic components using the Fourier transform, identify the frequencies
associated with the noise, and omit these frequencies when the transform is inverted,
obtaining a purified signal. Because the Fourier transform and the adaptive filter
operate on the same time-sampled signal, the filter has all the information necessary
to directly modify the frequency structure of the signal.
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Figure 12.2. Adaptive Noise Canceller.

Noise Cancelling

The typical communications channel (microwave, copper wire, fiber optic) trans-
mits signals consisting of a sum of sinusoidal functions that may be thought of as
direct analogs of components of sound. (These are the Fourier components of the
signal.) Thus “pure” sound is represented by a single component while a complex
sound may have many components. If the channel is analog, we assume that digital-
to-analog conversion is made immediately before sending and that analog-to-digital
conversion is made immediately on receipt; all pre- and post-processing of the sig-
nal is done on the digital version. Interpretation of a received signal is complicated
considerably by the fact of life that communication channels are not perfect media:
they are subject to noise, interference, and other degradation from both external
and internal sources. External noise is usually a complex sound (“white” noise refers
to a uniform mix of Fourier components) while internal degradation is often more
predictable in character, given channel characteristics such as medium and length.
(These are not characteristics that are constant, even during the course of a single
telephone connection.)

Consider a channel with transmitted signal s and noise n0. The received signal
is represented by the sum s + n0. The objective is to recover s, in real time of
course. The classical non-adaptive method of reducing noise is to “filter” the noise
components using some version of the Fourier analysis alluded to above, detecting
the periodic components of noise and omitting them from the reconstructed signal.
The adaptive method of Widrow uses “cancelling” of the noise components. Noise
cancelling is an additive process in which the negative of the noise is added to the
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Figure 12.3. Adaptive Echo Canceller.

noisy signal effectively cancelling the noise components exactly, thus (received signal)
+ (−noise) = (s + n0) + (−n0) = s. The problem is that we do not know either s or
n0.

A device for adaptive noise cancelling is depicted in Figure 12.2. This device uses
a known reference noise n1 as input to an adaptive filter whose output y is added to
the corrupted signal, producing e = s+n0 + y as the final output of the device. This
output e is used as the “error” in the adaptive algorithm. Because both noises n0

and n1 are assumed uncorrelated with the uncorrupted signal s, the output y of the
filter cannot reduce the strength of s. Thus, square error cannot minimize below the
value s2. When this minimum is attained, that is, when full adaptation has occurred,
we have

e = s + n0 + y = s (12.5)

which means that the adaptive filter has learned how to convert the noise n1 into
the negative of the noise n0 and that the output of the noise canceller is the original
uncorrupted signal s. Widrow goes on to show that if s is uncorrelated with both
n0 and n1 and if n0 and n1 are correlated then the adaptation algorithm converges
as expected. These methods work extremely well when the general range of noise is
somewhat predictable and in different frequency ranges from the transmitted signal.

Echo Cancellation

Echo in telephone channels is created by the use of two circuits, one for each
direction of the two-way communication. Two circuits are required because the one-
way signal must be amplified to overcome power loss during transmission. The two
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Figure 12.4. Adaptive Channel Equalizer.

one-way circuits consititute a closed directed loop. Echo is caused by an incoming
signal bleeding across the terminal transformer and re-propogating as an outgoing
signal on the other half of the loop. The delay is normal transmission delay in
long-distance circuits.

A pair of adaptive filters, bypassing each transformer, can be used to effectively
cancel echo as indicated in Figure 12.3. The input for the filter is the incoming signal,
the output is subtracted from the outgoing signal, and this output plays the role of
error. The convergence of the filter to a best adaptive state is guaranteed by the same
theory as described for the noise canceller above. Square error cannot minimize to
zero but only to the power of the uncorrupted outgoing signal, so after adaptation
the error signal consists of the outgoing signal with echo cancelled. Use of adaptive
echo cancellation in long-distance telephone circuits is increasing rapidly.

Channel Equalization

The basic idea behind sending binary information along a channel is to convert
the bit stream into a pulsed signal, where each bit is represented by a pulse. The
actual signal may be analog or digital, but the pulses represent discrete information
superimposed on the signal. If the channel itself is digital, it is helpful to keep in mind
that the information pulse is superimposed macroscopically on the digital stream.
The dual send/receive functions of a computer “modem” (MODulator-DEModulator)
are (1) to convert an outgoing bit stream to a signal for transmission and (2) to
convert an incoming transmitted signal to a bit stream. (There is digital-to-analog
conversion at the end of step (1) and analog-to-digital conversion at the beginning
of step 2. The signal is superimposed on a pure tone carrier wave that is subtracted
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away upon receipt.) The first of these tasks is relatively straightforward, since the
only information required is a specification of the channel. The second is complicated
by inevitable corruption during transmission.

A form of corruption particularly detrimental to binary information is inter-
symbol interference, caused by a degradation of the pulse in the time direction, a
phenomenon called “smearing”. Smearing can result in error rates as high as 10%
in recovering binary data from telephone channels. An adaptive channel equalizer,
which uses an idea of R.W. Lucky called “decision-directed” learning together with
an adaptive filter and a quantizer, can reduce error rates to 10−6 or less. (See Lucky
(1965).) Adaptive equalization circuits are virtually universal components in today’s
data modems.

An adaptive equalizer is depicted in Figure 12.4. One of the central weights in
the filter is initialized to 1 and the others to zero, a state which would allow an
unsmeared signal to pass through unchanged. The output of the quantizer would
be the transmitted pulse. With smearing the quantized output may at first differ
significantly from the input to the quantizer, causing adaptation to reduce the error.
Once adapted, the quantized output is the original quantized signal uncorrupted by
smearing.
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