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1. Introduction

Recently there has been considerable debate that could be characterized as “Connec-

tionist vs symbolic approaches to AI”. (See, for example, [Searle (1990)] and [Churchland

and Churchland (1990)].) While this conflict continues at the theory level, pragmatic in-

vestigation is proving its futility. As an example, I present here a technological artifact

that can be viewed as both a symbolic and connectionist system.

At first, the artifact appears to be a pure symbolic system, a garden variety rule-based

expert system (production system). A change of representation discloses a striking re-

semblance to a connectionist system. Closer inspection reveals symbolic processing still

taking place in a connectionist disguise. A second metamorphosis produces a true con-

nectionist system of sub-symbolic neuronal processing. This last representation exactly

reproduces the inferential dynamics of the original rule-based representation. Thus the

same process can be viewed both as a symbolic rule-based system and as a sub-symbolic

neural network-based system. These two views add to, rather than detract from, capabil-

ity. The rule-based view makes it possible to analyze how conclusions are drawn, in effect

providing the complete inference process for review. The neural network view introduces

connectionist learning methods, allowing the system to learn from examples of correct

inferences.

The connectionist representation learns and stores metaknowledge in highly connected

subnetworks and domain knowledge in a sparsely connected expert network superstructure.

The total connectivity of the neural network representation approximates that of real

neural systems and hence avoids scaling and memory stability problems associated with

other connectionist models.

† Paper given to the symposium Approaches to Cognition, the fifteenth annual Sym-

posium in Philosophy held at the University of North Carolina, Greensboro, April 5-7,

1991.

‡ Research partially supported by the US Office of Naval Research and the Florida High

Technology and Industry Council.
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2. Expert Systems

An expert system (ES) captures domain-specific knowledge and uses this knowledge

to reason about problems in the domain. By far the most successful type of expert system

so far has been the rule-based system [Giarratano and Riley (1989)]. A rule-based expert

system consists of an inference engine that defines and executes the rules of inference and

a rule base that comprises the domain-specific knowledge of the system.

One of the early successes in this field was MYCIN, a medical diagnosis and treatment

advisory system in the domain of infectious diseases [Shortliffe (1976)], [Buchanan and

Shortliffe (1984)]. The MYCIN system has been abstracted to an “expert system shell” in

order to apply the same inference engine in other domains. A shell is just an expert system

with an empty knowledge base, and usually some user interface system to facilitate the

insertion and modification of rules. A shell that implements the MYCIN reasoning system

is often called EMYCIN (for “Empty MYCIN”). One commercially available EMYCIN

shell, M.1, is distributed by Teknowledge, Inc.1 The computational experiments discussed

below are based on M.1. The features of EMYCIN inferencing that are important in what

follows are the evidence accumulator and the various logical operations [Shortliffe and

Buchanan (1985)], [Giarratano and Riley (1989), pp. 533-536.].

A rule in EMYCIN has the form

IF a THEN b (cf) (1)

where a and b are assertions and cf ≡ cfb|a is a certainty or confidence factor associated

with the rule. The confidence factor is a static part of the rule and may have a value in the

range −1 ≤ cf ≤ 1. During inferencing, assertions a, b may take on dynamically assigned

and updated evidence values ya, yb in the range −1 ≤ y ≤ 1. The dynamically calculated

evidence value of an assertion may be interpreted as a degree of confidence or correctness

of the assertion. The evidence value yb is then converted to a firing value zb through the

use of a threshold or other postprocessing criterion. The firing value is restricted to the

range 0 ≤ z ≤ 1.

Evidence accumulation

Suppose that we have a current dynamic evidence value for assertion b and subsequently

encounter another assertion IF a THEN b (cf). Then EMYCIN adjusts the evidence value

for b using the following assignment, where xb|a = cfb|a × za:
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ynew
b :=











yb + xb|a(1 − yb) , if both yb and xb|a are positive,
yb + xb|a(1 + yb) , if both yb and xb|a are negative,

xb|a+yb

1−min{|yb|,|xb|a|}
, otherwise.

(2)

The output value zb for assertion b is obtained by applying the firing criterion to yb which

may vary somewhat from one EMYCIN shell to another. M.1 uses the linear-threshold

firing function

zb :=
{

yb , if yb ≥ 0.2;
0 , otherwise.

(3)

This firing value is then used as input to other rules of the form IF b THEN c (cf) using

xc|b = cfc|b × zb. The inference process begins with external setting of the firing values of

selected rule antecedents and spreads through the rule base under control of the inference

engine. After the inference process terminates, the values of consequents with non-zero

values constitute the conclusions of inference.

Logical Operations

EMYCIN shells differ somewhat in their treatment of logical operations, although they

typically use minimum and maximum for AND and OR, respectively, and some kind of

inversion for NOT:

AND(x1, . . . , xk) := min
i
{xi} (4)

OR(x1, . . . , xk) := max
i

{xi} (5)

NOT(x) := 1 − x. (6)

The differences among shells appear in the way these values are thresholded (or otherwise

postprocessed), after applying this common calculation, to determine whether the com-

pound assertion fires. Generally, rules are allowed to have compound antecedents (using

the defined logical operations) but compound consequents are discouraged.

M.1 recognizes three logical operations explicitly: AND, NOT, and UNK (for “un-

known”). The operation UNK is essentially NOR (NOT following OR) using the defini-

tions above and the M.1 firing functions.2 For AND, M.1 uses the same firing function as

for evidence combining, given above by (3). For NOT, M.1 uses a firing function that is a

strict threshold, with threshold value 0.8, resulting in discrete values for NOT and UNK

operations:
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zb :=
{

1 , if yb ≥ 0.8;
0 , otherwise.

(7)

Composing appropriate functions from (3) – (7) yields the following throughput functions

(from input to firing value) for logical operations in M.1:

AND(x1, . . . , xk) :=
{

min{xi} , if min{xi} ≤ 0.2;
0 , otherwise;

(8)

NOT(x) :=
{

1 , if x ≤ 0.2;
0 , otherwise;

(9)

UNK(x1, . . . , xk) :=
{

1 , if max{xi} ≤ 0.2;
0 , otherwise.

(10)

There are many points to address in order to understand the inferential dynamics of

EMYCIN systems, including order dependence of rules. The features discussed above are

those most relevant to the expert network technology that is the focus of this paper.

3. Computational Networks

Networks that can compute provide a general framework within which both symbolic

and sub-symbolic neural processing can be formulated. A (discrete) computational net-

work (CN) is essentially a directed graph with information processing capability that is

empowered by localized processing at its edges and vertices. Three distinct classes of local

functionality are recognized. The first two are associated with vertices: (1) a combin-

ing function Γ integrates vertex input x1, . . . , xn into an internal state y = Γ(x1, . . . , xn),

and (2) an output (or firing, or activation) function ϕ converts the internal state into an

activation value z = ϕ(y). Vertices so equipped are called computational nodes, or just

nodes. The third class of functionality is associated with directed edges: (3) a synaptic

function σ converts the output of the node at its initial end (pre-synaptic input) into an

input value for the node at its terminal end (post-synaptic input). Edges so equipped are

called connections. In many cases, the synaptic functions of a CN are defined as simple

multiplication by a weight or connection strength. These are called linear synapses.

Thus a CN consists of nodes and connections organized into a directed graph structure.

Given a labeling of the nodes, a single subscript indicates an association with the vertex so

labeled, and a double subscript indicates association with a directed edge, with “assignment

statement order”: a subscript ji indicates association with the edge from vertex i to vertex

j. In this notation, Γj and ϕj are the combining and firing function, respectively, of node j,

and σji is the synaptic function of the connection from node i to node j. If the ji synapse
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is linear, then σji(zi) = wjizi, where wji is the weight of the connection. For simplicity in

this discussion, it is assumed that the node labels constitute an enumeration 1, . . . , n.

In order to compute with a CN, we need to know how to initialize the network, perform

the computation, and retrieve results. Initialization and result retrieval are accomplished

through designated input and output nodes, respectively. Initialization consists of setting

the internal states of all input nodes to values designated outside the CN and setting all

other internal states to zero. Result retrieval consists of reading the activation values of

all of the designated output nodes.

The computational process itself is more complex. First a method of keeping time

must be specified. Discrete time has been built into the concept of CN used herein3,

but that still leaves several possibilities for deciding when to update a given local value

in the network. The biologically and psychologically motivated event-driven method is

preferred for expert networks, but other possibilities include synchronous (parallel update)

and several variations of asynchronous (where updating occurs randomly over the network).

(See [Hertz, Krogh, and Palmer (1991)] and [Lacher (1992a)] for more discussion of update

timing methods.) Once the timing method is selected, network computation proceeds as

described, applying the update assignment statements

xji := σji(zi) for i = 1, . . . , n (11)

yj := Γj(xj1, . . . , xjn) (12)

zj := ϕj(yj) (13)

repeatedly until some kind of stable activation state (z1, . . . , zn) is reached.4 For most

of the CNs considered herein, all of these methods of timekeeping are equivalent: If the

network topology is acyclic, that is, if the underlying digraph has no directed cycles, then

after finitely many applications of (11), (12), (13) the network reaches an activation state

that remains unchanged by further updating. This terminal activation state is independent

of the timing method used. (For further discussion and proof, see [Lacher (1992a)]). The

terminal activation values associated with output nodes constitute the network output.
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4. Expert Networks

Kuncicky et al. have shown how rule-based expert systems can be translated into “neu-

ral” networks [Kuncicky (1990)], [Kuncicky (1991)], [Kuncicky, Hruska, and Lacher (1992)].

The network topology is determined by the rule base, and the various node functionalities

are determined by the inference engine. The resulting computational network is called

an expert network (EN)5. The activation dynamics of the expert network are exactly the

same as the inferential dynamics of the original expert system, provided no learning has

occurred.

Regular Nodes

The expert network is constructed in two stages. First an inference network is created

from the rule base. Each vertex in this network represents an assertion (antecedent or

consequent of a rule) and each directed edge represents a rule. The certainty factor of the

rule is placed on the edge as a weight. Thus a rule of the form (1) defines a connection

a
cf
−→ b (14)

The evidence accumulation process of the inference engine defines functionality for these

vertices, and the edges process initial to terminal value by multiplication by cf . The

resulting computational network is the first order expert network defined by the expert

system. Note that all of the nodes in this network represent assertions; they are called

regular nodes.

If the original expert system shell is a version of EMYCIN, the EN is called an EMYCIN

network. The EMYCIN evidence accumulator given by equation (2) can be written in

closed form. The positive and negative evidence values for regular node b are given by

y+

b
= +1 −

∏

xb|a>0

(1 − xb|a) and

y−b = −1 +
∏

xb|a<0

(1 + xb|a), (15)

respectively; then positive and negative evidence are reconciled, yielding the internal state

of the node:

yb := Γb(xa|1, . . . , xb|n) ≡
y+

b
+ y−

b

1 − min{y+

b
,−y−

b
}

(16)

(where it is assumed that node names range over 1, . . . , n). The output function ϕb for a

regular node b is the firing function for assertions defined by equation (3):

zb := ϕb(yb) ≡
{

yb , if yb ≥ 0.2;
0 , otherwise.

(17)
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OP Nodes

The second order network is obtained by expanding the regular nodes representing

compound antecedent statements into subnetworks. A regular node antecedent such as in

the connection

OP(a1, . . . , ak)
cf
−→ b (18)

expands to the subnetwork

a1
1

−→ OP

. . .

ak
1

−→ OP

OP
cf
−→ b. (19)

Those ai that are consequents of other rules are already represented by existing nodes.

New nodes are created for the other ai. A connection of weight 1 is added from each

ai to the new OP node, and a connection of weight cf added from the OP node to the

consequent b replaces the original outgoing connection. All connections into OP nodes

have fixed weight 1 and are called hard connections. Connections into REG nodes have

weight originating as a certainty factor of a rule and are called soft connections.

The combining function Γ for an OP node performs the same logical computation

defined by the inference rules. For EMYCIN these are given in equations (4), (5), and (6).

The output function ϕ for an OP node is the same as the firing condition for the logical

operation. For M.1 these are given by (3) for AND and (7) for NOT and UNK.

The WA Testbed

There are four generic node types in an M.1 network, REG nodes as described above

and three OP node types corresponding to the three logical operations AND, NOT, and

UNK recognized by M.1. Thus an M.1-based expert system transforms into an expert

network with these four node types.

One well known EMYCIN-based expert system is designed to give advice on the choice

of wine with a meal. This system has evolved in the public domain for more than a decade.

A particularly refined version, WA, is distributed as a demonstration with M.1. WA has

44 rules, 23 input variables describing the proposed meal and related circumstances, and

13 outputs representing wine selections. WA captures a considerable amount of human

expertise and intuition. Translating and expanding WA results in an expert network with

97 nodes and 175 connections, 64 of which are soft. Of the 223 possible input values for
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WA, at least 6, 912 represent valid queries. The WA expert network is illustrated in Figure

1.

5. Learning

Creating a rule base such as WA often requires significant quantities of expertise-

intensive human labor, particularly when rule uncertainty must be quantified. Experts, by

definition, can come to correct conclusions when presented with a set of inputs within their

domain of expertise: they know what is correct. The problem with rule extraction is that it

requires experts to explain how they reason, and to do so within an unfamiliar and possibly

constraining system of inference rules. This costly and time-consuming task is referred as

the knowledge acquisition bottleneck and is a major limitation to the applicability of expert

systems.

The translation of an expert system into an expert network opens the possibility of

applying connectionist learning methods to the expert system. The general connectionist

supervised learning approach requires a pool of desired, or known, I/O data, and uses

this pool to train the network to reproduce the correct I/O through network computation.

In the case of expert networks, I/O is inferencing. Thus, to train an expert network

requires a pool of correct inferences in the form of pairs (values for input variables, correct

conclusions). For WA this would mean pairs (meal specification, wine selected). This kind

of data is the result of an expert reasoning about the domain of expertise and is relatively

easy to acquire, because that is precisely what experts do: given input, they come to

conclusions about the input. Experts know what is correct but not necessarily how they

know it.

We have developed two supervised learning methods particularly suited to expert net-

works and other high-level CNs with linear synapses. The first is a reinforcement method

based loosely on the shaping technique of behavioral psychology, and the second is an

adaptation of the well-known backpropagation method.

Goal-Directed Monte Carlo

Goal-directed Monte Carlo was introduced by Kuncicky (1991) using by-now standard

concepts in reinforcement training of neural networks. The basic idea is to analogize with

methods used to train or “shape” an animal’s behavior. One such training session might

begin with a completely untrained pigeon and the goal of training the pigeon to peck a

target for food. At first, the pigeon exhibits completely random behavior with respect to

the target. The trainer reinforces the pigeon with a food pellet when the pigeon faces the
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target side of the cage. This tends to focus the pigeon’s attention, resulting temporarily

in smaller range of random behavior and higher probability that the pigeon will face the

target side. As the behavior is modified, the goals for reinforcement become more stringent,

until the pigeon must actually peck the target for reward.

The analogies are as follows. The pigeon corresponds to a computational network with

linear synapses. Random behavior of the pigeon corresponds to random variation (“noise”)

in the synaptic weights of the CN about a base value. Decrease in attention, occurring in

the pigeon as the time since last reinforcement increases, corresponds to an increase in the

amplitude of noise in the synapses. Reinforcement corresponds to a resetting of the base

values of synaptic weights to the particular noisy value that resulted in rewardable behav-

ior. Attention is reset to high (zero noise level) at the time of reinforcement. Reinforcable

behavior is determined by calculating error at output nodes. Reinforcability is based on a

decreasing error criterion – the better the network is trained, the more is expected of it.

Mathematical specification of this analogy has been worked out. (See [Kuncicky

(1991)], [Kuncicky, Hruska, and Lacher (1991)] for details.) A significant virtue of the

method is its independence of node combining and output functions, which may be quite

non-linear in some CNs.

Computational Network Back-Propagation

Introduced by Werbos (1974) and rediscovered and popularized by the PDP group

in the late 80’s [Rumelhart and McClelland (1986)], backpropagation is one of the most

widely known and successfully used connectionist learning methods. Normally, however,

backpropagation is applied to layered feedforward computational networks with very simple

(low-level) processing functionality: linear synapses, additive combining functions, and

sigmoidal or gaussian output functions. To generalize backpropagation to acyclic CNs, it

is necessary to (1) localize forward and backward activation to free the algorithm of the

layer structure, and (2) decouple the process of node error assignment from the weight

correction step. Step (1) is easily accomplished and described previously and in [Lacher,

Hruska, and Kuncicky (1992)]. Step (2) is accomplished through the concept of “influence”.

In a general CN, how does the output of node j influence the output of an immediate

successor node k? The answer is the influence factor εkj = ∂zk/∂zj given by

εkj = ϕ′
k(yk) ×

∂Γk

∂xkj

(xk1, . . . , xkn) × σ′
kj(xj). (20)

Influence factors are dependent on particular network input: The derivative of ϕk is evalu-

ated at the terminal internal state of node k, the partial of Γk is evaluated at the terminal
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post-synaptic input to node k, and the derivative of σkj is evaluated at the terminal out-

put of node j. Influence factors are associated with connections and are calculated during

forward activation of the network.

Once influence factors have been calculated for all the connections of an acyclic CN

during forward activation, error can be assigned to all of the nodes in the CN during a

reverse activation. Suppose a presentation of input data ξ results in network output ζ and

influence factors εkj . Then we assign error to each output node j using

ej := Ij − ζj, (21)

where I is ideal output, and to all other nodes in the network using

ej :=
∑

k

εkjek. (22)

Applying this last equation recursively is in essence a reverse activation of the network (the

reversed network is still acyclic) using influence factors as reverse connection strengths,

addition as reverse combining functions, and identity as reverse output functions. The

resulting terminal reverse activation state is an error assignment throughout the network.

The error assignment process works in any acyclic CN.

Now assume error has been assigned to all the nodes as described. For any node with

linear incoming synapses, local gradient descent can be applied selectively to that node.

The gradient of square error at node j with respect to synaptic weights wj1, . . . , wjn is the

vector of partial derivatives

∂E

∂wji
= −2ejϕ

′
j(yj)

∂Γj

∂xji
(xj1, . . . , xjn)zi. (23)

A step with learning rate η and momentum µ in the direction of steepest descent of square

error is given by

∆wji = ηejϕ
′
j(yj)

∂Γj

∂xji
(xj1, . . . , xjn)zi + µ∆wprev

ji . (24)

The resulting learning method is called Computational Network Back-Propagation, or

CNBP. It applies in any acyclic CN at any nodes with linear incoming synapses. All that

is required to complete an implementation of CNBP is calculation of the various derivatives

appearing in (20) and (24). Details of the theory of influence factors, acyclic activation,

and CNBP may be found in [Lacher (1992a)].

Expert Network Back-Propagation
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An EMYCIN expert network satisfies all the requirements for GDMC and CNBP learn-

ing: an acyclic CN with linear synapses. Learning can take place only at soft connections

(connections into regular nodes), but of course all connections must be used in the error

assignment process.

Of the derivatives appearing in (20) and (24), σ′
kj is just the weight wkj of the kj

connection, and ϕ′
j is easily calculated, but may vary because of choices of ϕ made during

a particular implementation. Except in the case of REG nodes, the partials of the various

combining functions are also easily computed from the definitions. For REG nodes these

are given as follows:

∂Γj

∂xji
(xj1, . . . , xjn) =















































1

1−xji

1−y+

j

1+y−
j

, if y+

j ≥ |y−j | and xji > 0;

1

1−xji

1+y−
j

1−y+

j

, if y+

j < |y−j | and xji > 0;

1

1+xji

1−y+

j

1+y−
j

, if y+

j ≥ |y−j | and xji < 0;

1

1+xji

1+y−
j

1−y+

j

, if y+

j < |y−j | and xji < 0

(25)

provided xji 6= ±1. This calculation, along with the formula in the boundary cases, may

be found in [Lacher, Hruska, and Kuncicky (1992)].

Another technical problem arises in the context of expert networks: the knowledge

space (the set of possible weight vectors) is a hypercube rather than an open subset of

euclidean space, so boundary knowledge states exist. As usual, calculus doesn’t work well

at the boundary, so more primitive means must be devised. My colleagues and I have

proposed several ways of dealing with the boundary, including the shrink-and-test loop

described in [Lacher, Hruska, and Kuncicky (1992)], “doubt” and “caution” parameters.

The version of CNBP that implements influence factors and uses the shrink-and-test loop

is the specific version used in the learning experiments discussed below. We refer to this

as Expert Network Back-Propagation (ENBP).
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Learning Experiments

The methods described have been tested on several M.1-based expert systems, includ-

ing the wine advisor WA described at the end of Section 4 [Lacher, Hruska, and Kuncicky

(1991)] and the Control Chart Selection Advisor of [Dagli and Stacey (1988)], [Hruska and

Kuncicky (1991)]. The following experimental procedure was used.

For testing purposes we have a functioning expert system which is used to define expert

knowledge. Using the test expert system, or the functionally identical expert network

described in Section 4, we generate specific examples of correct reasoning. Then the EN is

ablated by setting some of the soft connection weights to zero. Then supervised learning is

applied to the ablated network. The object of the test is to determine whether the ablated

network can recover the knowledge embodied in the connection weights.

Supervised learning proceeds in two stages. First GDMC is applied to the ablated

network. When GDMC gets bogged down, usually after error has been reduced by about

90% on the training set, the resulting network is handed over to ENBP for further training.

Use of these two learning methods in this order tends to take advantage of the strengths

of each: GDMC is better at long traversals through knowledge space, where ENBP may

find the going rough due to the presence of local minima; and ENBP is better at sharp

convergence to a global minimum when given a start within the basin of attraction of

that minimum. Thus GDMC in effect initializes ENBP, which then converges to a good

knowledge state.

Figure 2 shows the learning curve resulting from one such experiment, performed

recently by Susan Hruska, David Kuncicky and myself, in which 25 soft connections were

set to zero in WA and the resulting ablated network was trained with 22 correct inferences.

The graph shows epochs of training (an epoch is one cycle through the training set) versus

orders of magnitude of total square error. In this particular run, GDMC reduced error one

order of magnitude in 10,575 epochs, after which ENBP reduced error three more orders

of magnitude in 183 epochs.6,7 This level of error can be considered zero for M.1, since

only two decimal place accuracy is reported from the system. Thus the training session

resulted in a network that correctly inferences on the training set.

A somewhat surprising outcome of such experiments on WA has been that, not only

does the process described above produce an expert network that correctly inferences

on the original training set, but it recovers the original weights (which, recall, are the

original certainty factors on rules). This means that after training, the network exhibits

perfect generalization: It correctly reproduces all inferences that are possible for the original
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system to make. For the specific experiment discussed above, training on 22 examples of

correct inferences resulted in a system that correctly processes all of the more than 6,900

valid inputs. Of course, in a real application, there would be no a priori “correct” values for

rule certainty factors, and the training set would consist of examples of correct inferences

from real experts. Nevertheless, this experimental outcome can be taken as evidence that

expert networks have good generalization ability. A likely source of this phenomenon is

the sparseness of the network. This subject is under investigation.

A full and exhaustive set of learning tests on WA is currently under way, including

experimenting with parameter settings and efficient selection of training sets. Complete

results will be reported elsewhere.

Expert Network Learning: Further Remarks

An expert network represents knowledge in its synaptic weights. Expert network learn-

ing, as discussed above, involves changing the values of these weights, changing the knowl-

edge state of the network. The learning experiments actually begin with “ablation” –

setting weights to zero. There is a hidden implication here of a distinction between zero

weight on a connection and no connection at all. In the experiments, weights are allowed

to grow from zero, but connections are not allowed to emerge from non-existence: the

network topology is assumed as a substrate for learning.

The connection topology clearly also represents knowledge, however. When an expert

network is derived from an expert system, as in Section 4, the network topology comes

from the rule structure while the weights come from rule certainty factors. A new rule,

including certainty factor, can be learned with the methods here, but only if the connection

is made in some sense.

In an EMYCIN system, a rule consists of an implication and an associated confidence

factor. Call a rule with zero weight a virtual rule (or, in an expert network, a virtual

connection). What is the effect of adding or deleting a virtual rule in an ES (or a virtual

connection in an EN)? A virtual rule has zero output value no matter what its input.

Thus addition (or deletion) of a virtual rule would leave the inferential dynamics of the

system unchanged: there would be no difference in functionality after insertion/deletion

of a virtual rule. In some sense, then, a virtual rule does not represent knowledge.

On the other hand, if the certainty factor of a virtual rule is changed (through the

learning process, as discussed above) then the virtual rule begins to affect the results of

inferencing. The system could well learn to inference correctly with the new connection

where such was impossible without it (or discover that proper inferencing can be learned
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without the deleted connection, thus removing redundancy from the rule base). Thus a vir-

tual rule represents potential new knowledge that can only be realized through refinement:

a potential for learning.

Virtual rules may be much easier to extract from experts than real rules, especially

rules quantified with certainty factors. A virtual rule is essentially a statement like “a

may have something to do with outcome b”, which is more likely to be enunciated than a

statement like “a implies b with certainty 0.6”. Thus a virtual rule structure represents

a kind of “first draft” of expertise. In some cases, virtual rules may be obvious even to a

novice using a textbook. Once a set of virtual rules is found, the expert network can be

trained as above.

At other times, a virtual rule structure may be inherent or generic to a class of inference

problems that vary only in their fine knowledge structure. Examples of such situations

include (1) medical advice systems for chronic diseases where treatment follows a well-

known set of general guidelines but varies in subtle ways with individual patients and

(2) control systems that must adapt to environments that are as yet unencountered. In

the latter case, the virtual rule structure is derived from properties of the device, say an

unmanned exploration vehicle, and general facts about the environment. In (1), the virtual

rules come from the “textbook” treatment of the generic patient. My group is currently

investigating the use expert network technology as adaptive advisors for treatment of

diabetes.

Finally, (virtual) rules are the product of many classical machine learning techniques

as well as some new connectionist learning mechanisms ([Fu and Fu (1990)], [Hall and

Romaniuk (1990)]). In fact, in the context of crisp8 rule-based expert systems, “learning”

is synonymous with rule creation, modification, or deletion. And constructive connection-

ist methods such as Cascade Correlation [Fahlman and Lebiere (1990)] build a network

topology concomitant to adjusting connection weights. Any or all of these methods can

be brought to bear in building an original expert network topology on which to begin

learning.

The situation is analagous to learning to drive an automobile. The first draft system

is a set of rules obtained by reading a simplistic manual. Actually driving by following

these rules is cumbersome, slow, and error prone. Only refinement of these rules through

training (practice) produces driving expertise.
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6. From Symbolic To Sub-Symbolic Processing

I have discussed expert systems and expert networks and shown how a single system

can be viewed as either or both and how this view can facilitate the migration of ideas

back and forth between symbolic and connectionist AI. The main example, discussed in

detail, was connectionist learning applied to EMYCIN-based expert systems. But clearly

there are others in both directions, and similar ideas will work with inference systems

other than EMYCIN. The question remains, is this a complete transition from symbolic

to connectionist models?

The answer is, not really. An expert network, and more generally a computational net-

work, has the appearance of a connectionist system, complete with artificial “neurons” and

“synapses”. But the artificiality is perhaps too abstract. In particular, specific meaning

can be assigned to the processing of an individual node in an expert network. And al-

though an active concept in the form of an assertion does get distributed across the expert

network during inferencing, some analysis shows that this distribution follows predictable

pathways based on the syntax of the concept. Thus, though an expert network has some

of the attributes of a connectionist system, it is still processing on a symbolic level: It is

possible to assign meaning to the input, processing functionality, and output of a single

node in the network.

Define an (artificial) neural network (NN) to be a computational network with par-

ticularly simple processing functionality: linear synapses; node combining functions that

simply sum the post-synaptic input; and bounded, non-decreasing output functions. A

model based on NN would be a genuine connectionist model. Can an expert network be

realized as such a model?

The answer is, generally yes. Consider an EMYCIN network. The synapses are linear,

so the symbolic-level node functionality is the main problem. Now, each node in an

EMYCIN network can be realized as a self-contained neural network, where the input

of the NN is the input for the node, the output of the NN is the output of the node,

and the connections into and out of the NN are weighted exactly as into and out of the

node. The NN replacing the node may be either a feedforward back-prop network or a

recurrent network, at the choice of the builder.9 The NN learns how to do its processing

using standard NN supervised learning methods.

Thus, an expert network can be realized as a NN with two levels of organization:

a lower level consisting of networks of sub-symbolic processors self-organized for general

conceptual reasoning, all organized at a higher level by interconnections representing in-

ference rules. Call the higher level organization the “EN superstructure” on the NN. This
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can be visualized for WA by imagining each node in Figure 1 replaced with a small neural

net. With this realization, an expert system is transformed into a genuine sub-symbolic

connectionist system whose activation dynamics are identical to the inferential dynamics

of the ES. The ability to learn domain knowledge is retained in the EN superstructure of

the NN.

Note that there are now two kinds of knowledge in the NN model. At the symbolic

level is the domain knowledge embodied in the EN superstructure. At the sub-symbolic

level is metaknowledge: the NN components have captured knowledge about how to rea-

son. There are two learning processes also. The system learns how to reason by training

its NN components and learns domain knowledge by training the EN superstructure. The

EN/NN two-level organization of the connectionist expert systems discussed here is a key

distinguishing feature from previous work such as [Gallant (1988)], [Fu and Fu (1990)], and

[Towell, Shavlik, and Noordewier (1990)] where an emphasis is placed on regularity of the

NN connection topology (e.g., a regular layer structure for backprop nets) either for con-

venience or because regularity is a normal requirement of standard learning mechanisms.

Our approach uses knowledge to guide the architectural decisions – domain knowledge for

the superstructure and metaknowledge for the substructure. The two levels of organization

also allow learning to take place at two levels – domain and meta.

The EN/NN two-level organization discussed here is proven to exist. The proof is “top-

down” constructive: First build the EN, and then use approximation theory to replace the

symbolic nodes of the EN with densely connected NNs. The principal value of this approach

is to show that symbolic processing can be done on a certain kind of sub-symbolic computer

and that knowledge can be found (and updated) at distinct levels. The NN structure may

also lead to efficient hardware implementations of expert networks using existing neural

network hardware chip technology [Eberhardt et al. (1989a,b; 1991)].

A related question, of more interest to cognitive science, is whether a two-level sym-

bolic/ sub-symbolic structure can self-organize from a disorganized (or homogeneously

organized) NN: Can the EN/NN organization be realized by a “bottom-up” construction.

This question is the focus of on-going work [Lacher (1992b)].
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7. Conclusion

It is interesting to make some quantitative estimates based on human anatomy. First

observe that the two-level organization of the connectionist realization of an expert system

generally consists of densely intraconnected subnetworks at the sub-symbolic level and

sparse connectivity at the symbolic level. It is a big NN organized as a sparsely intercon-

nected collection of densely intraconnected subnetworks. Assume that the subnetworks

each have about k nodes and the NN has a total of n subnetworks. Taking O(n) as sparse

and O(k2) as dense connectivity, the NN has n × k nodes and about n × k2 total con-

nections. Taking a crude estimate of about 1010 neurons and 1013 connections for the

human cerebral cortex, straightforward calculation yields n = 107 and k = 103: an organi-

zation consisting of about 10,000,000 sparsely interconnected subnetworks of about 1,000

densely connected neurons each. Initial investigation indicates that 1,000 sub-symbolic

nodes is more than enough to realize any one of the various logical processing networks of

an EMYCIN system, with room left over to add small connectionist associative memories

that might be used for concept binding during inferencing under a model where the logical

subnetworks are re-used across knowledge domains.

It is now well within scientific plausibility to design a complete connectionist reason-

ing system that learns how to reason and learns domain knowledge. A sparse symbolic

superstructure over a dense sub-symbolic substructure may be a key component. Not

only does this reflect the organization of real neural networks, it solves such problems as

scaling and memory stability that have been associated with the more simple mono-level

connectionist models. The system is chameleon-like – it can appear to be either symbolic

or sub-symbolic, at the pleasure of the viewer. Perhaps most important, these ideas would

remain inactivated had researchers confined themselves to debate on whether one “pure”

theory is better than another.
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Notes

1. M.1 Reference Manual (Software version 2.1), Teknowledge, Palo Alto, CA, 1986.

2. There is an implied conjunction of all the rules in an EMYCIN rule base. In some

versions, notably M.1, replacement of a rule of the form ‘IF a1 OR a2 THEN b (cf)’

with the two rules ‘IF a1 THEN b (cf)’ and ‘IF a2 THEN b (cf)’ is allowed. This

identity effectively defines ‘OR’ in terms of the evidence accumulation rule. Often,

there is also an explicit or implicit definition of ‘OR’ as the maximum operator, giving

two different concepts for disjunction of assertions. In any case, using the evidence

definition, de Morgan’s laws fail in the system. Such systems seem to be able to muddle

through rather nicely, however, and almost never bother the human experts who are

using them.

3. Continuous time computational networks are also useful. The various local function-

alities are specified by differential equations, in the spirit of [Hirsh (1989)], [Kosko

(1992)].

4. Without further assumptions, it cannot be concluded that the activation state of the

CN will approach equilibrium. In such generality, the network output might be better

defined as some appropriate description of the asymptotic dynamics.

5. Another use of expert network appears in [Eberhart and Dobbins (1990), Chapter 9

(by M. Caudill)], where the term means a standard neural network of sub-symbolic

processors that is trained so as to replace or enhance the expert system.

6. Epochs required is not an accurate method of comparison of the two learning meth-

ods, since one epoch of GDMC requires far less computational work than one epoch

of ENBP. We ran GDMC on a 386 PC, where several hours were required for this

particular experiment. ENBP required about 20 minutes on a Sun sparkstation. There

has been little attempt to optimize these programs for speed.

7. Several projects are currently underway to produce faster implementations of these

learning algorithms, including parallel versions on the Thinking Machines Corp. CM-2

[Nguyen, et al. (1992)] and distributed versions running on Parallel Virtual Machine

(PVM) and networked workstations.

8. That is, without a notion of uncertainty.

9. For backprop nets, these results follow from [Funahashi (1989)]. A complete investiga-

tion, including theory and computational experimentation, is under way at FSU.
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Figure Captions

Figure 1. The wine advisor expert network. Node type is coded as follows: plain fill:

REG nodes; circled circles: AND nodes; triangles: UNK nodes; squares: NOT nodes.

Created with TONGS software [Rocker (1991)].

Figure 2. Learning curve for a 25-connection ablation of WA using 22 training examples.

The scales represent epochs v orders of magnitude of reduction of mean absolute error.
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Figure 1. The wine advisor expert network. Node type is coded as follows: plain fill:

REG nodes; circled circles: AND nodes; triangles: UNK nodes; squares: NOT nodes.

Created with TONGS software [Rocker (1991)].
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Figure 2. Learning curve for a 25-connection ablation of WA using 22 training examples.

The scales represent epochs v orders of magnitude of reduction of mean absolute error.
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