
April 29, 2021

Asymptotics

1 Definitions and Terminology

1.1 Admissibility and Limits

Define a function f to be admissable iff there is an integer n0 such that f(n) is defined
and f(n) > 0 for all integers n ≥ n0.

We introduce here some terminology that reduces the need for explicitly quanti-
fying mathematical statements. In the context of admissible functions, we will use
the expression almost everywhere when applied to a statement to mean: “ there is an
integer n0 such that the statement is true for all n > n0”. Using this terminology we
can re-state the definition of admissible function as follows:

A function f is admissable iff f(n) > 0 almost everywhere.

We also use some simplifying terminology in the context of limits. If f is an
admissible function we will take the statement “f trends to C” to mean that the limit
of f(n) as n tends to infinity is equal to C:

lim
n→∞

f(n) = C

means f trends to C.

1.2 Big Oh, Big Omega, and Big Theta

The asymptotic notations Big Oh [O], Big Omega [Ω] and Big Theta [Θ] are funda-
mental to the study of algorithms. These each relate to the “near infinity” behaviour
of functions and are independent of multiplication by a constant and independent of
any effects that relate only to a finite number of inputs.

Given an admissible function g, defineO(g) to be the set of all admissible functions
f such that there exists a positive constant C for which

f(n) ≤ Cg(n)

almost everywhere. That is, there exists C > 0 and n0 such that f(n) ≤ Cg(n) for
all n > n0. Similarly, define Ω(g) to be the set of all admissible functions f such that

1



2

there exists a positive constant C for which

f(n) ≥ Cg(n)

almost everywhere. And finally define define Θ(g) to be the set of all admissible
functions f such that there exist positive constants C1, C2 for which

C1g(n) ≤ f(n) ≤ C2g(n)

almost everywhere.

1.3 Asymptotic Equivalence and the Tilde Relation

For admissable functions f and g, define f ∼ g to mean that

lim
n→∞

f(n)

g(n)
= 1.

In Section 2 we show that ∼ is an equivalence relation. The terminology used for
f ∼ g is that f and g are asymptotically equivalent. We denote the asymptotic
equivalence class of f as A[f ].

Asymptotic equivalence is a more specialized notion that does not apply as broadly
as Θ and also is a stronger relation than Θ when it does apply. We will typically use
it as follows:

Suppose f is a function we wish to characterize asymptotically and that we know,
or surmise, that f ∈ Θ(M) for some collection of “model functions” M . Then we
may ask what specific model is asymptotically equivalent to f . For example, we may
know that f ∈ Θ(nd) and ask what positive constant A satisfies f ∼ And. In that
circumstance, we could call A the growth factor of f and d the growth exponent of f .

We return to calculation of growth constants in a later section.

2 Properties of the relations O, Ω, Θ, and ∼

Proposition 2.1 (Reflexive Property). An admissible function is asymptoti-
cally related to itself. That is: if f is admissible then f ∈ O(f), f ∈ Ω(f), f ∈ Θ(f),
and f ∈ A[f ].

Proof. Let C = 1. Then plainly

f(n) = Cf(n)

for all n, from which it is clear that the definitions of f ∈ O(f), f ∈ Ω(f), and
f ∈ Θ(f) are all satisfied. �



3

Proposition 2.2. Assume that f and g are admissable functions. Then:
(a) (Anti-Symmetry) f ∈ O(g) if and only if g ∈ Ω(f).
(b) (Symmetry) f ∈ Θ(g) if and only if g ∈ Θ(f).
(c) (Symmetry) f ∼ g if and only if g ∼ f .

Proof (b). From the definition of Θ there are positive constants C1 and C2 such
that C1g(n) ≤ f(n) ≤ C2g(n) almost everywhere. Using algebra, we have:

1

C2

f(n) ≤ g(n)

and

g(n) ≤ 1

C1

f(n).

Taking D1 = 1
C2

and D2 = 1
C1

we have

D1f(n) ≤ g(n) ≤ D2f(n)

showing that g ∈ Θ(f). (We postpone the proof of part (c) to Prop 2.5.) �

Exercise 1. Supply a proof of (a).

Proposition 2.3 (Transitivity). Assume that f , g, and h are admissable func-
tions. Then:
(a) If f ∈ O(g) and g ∈ O(h) then f ∈ O(h).
(b) If f ∈ Ω(g) and g ∈ Ω(h) then f ∈ Ω(h).
(c) If f ∈ Θ(g) and g ∈ Θ(h) then f ∈ Θ(h).
(d) If f ∼ g and g ∼ h then f ∼ h.

Proof (a). From the definition of O there are positive constants C1 and C2 such
that

f(n) ≤ C1g(n)

and

g(n) ≤ C2h(n)

almost everywhere. Substituting the second into the first, and applying the transitive
property of ≤, we have

f(n) ≤ C1C2h(n)

almost everywhere. Taking C = C1 × C2 the definition of f ∈ O(h) is satisfied. �

(Proof of (d) is postponed to Prop 2.5.)

Exercise 2. Supply proofs of (b) and (c).

Proposition 2.4 (Dichotomy). If admissible functions f and g are Θ equivalent,
then f ∈ O(g) and f ∈ Ω(g). Conversely, if f ∈ O(g) and f ∈ Ω(g) then f ∈ Θ(g).



4

A proof is a direct application of the definitions and is left as an exercise.

Propositions 1,2(b),3(c) above show that f ∈ Θ(g) is an equivalence relation,
thus the Θ equivalence classes partition the set of admissible functions into mutually
disjoint sets. Propositions 1,2(a),3(a),3(b),4 show that O and Ω behave analogously
to the numerical order relations ≤ and ≥, with Θ playing the role of equality.

Terminology surrounding O, Ω and Θ ranges from the set-theoretic introduced
above to more informal. For example, when f ∈ Θ(g) it is often said that “f is
Θ(g)” and alternate notation f = Θ(g) may be used. To emphasize the properties
analogous to numerical order relations we sometimes write f ≤ O(g) or g ≥ Ω(f).
The set-theoretic versions, such as O(f) ⊆ O(g), may also be used.

Proposition 2.5. ∼ is an equivalence relation on the set of admissable functions.

To prove Prop 2.5 we need to verify that these three properties hold:

Reflexive: f ∼ f for all f

Proof. For any admissible function f , note that f(n)
f(n)

is defined and equal to 1

almost everywhere. Therefore

lim
n→∞

f(n)

f(n)
= lim

n→∞
1 = 1

verifying that f ∼ f . �

Symmetric: f ∼ g implies g ∼ f for all f, g

Proof. Suppose that f ∼ g for two admissible functions f and g. Then

lim
n→∞

f(n)

g(n)
= 1.

Note that if f(n) > 0 and if g(n) > 0 then

g(n)

f(n)
=

1
f(n)
g(n)

and hence that

lim
n→∞

g(n)

f(n)
= lim

n→∞

1
f(n)
g(n)

=
1

1
= 1

which verifies that g ∼ f . �



5

Caution!

It’s important to distinguish the above from the completely falacious argument:

lim
n→∞

g(n)

f(n)
=

limn→∞ g(n)

limn→∞ f(n)
=

1

1
= 1

Be sure you see why this argument is faulty.

Transitive: f ∼ g and g ∼ h implies f ∼ h, for all f, g, h

Proof. Suppose that f ∼ g and g ∼ h for three admissible functions f , g, and h.
Observe that whenever the denominators are non-zero

f(n)

h(n)
=
f(n)g(n)

h(n)g(n)
=
f(n)

g(n)
× g(n)

h(n)

from which it follows (using admissibility)

lim
n→∞

f(n)

h(n)
= lim

n→∞

(
f(n)

g(n)
× g(n)

h(n)

)
= lim

n→∞

f(n)

g(n)
× lim

n→∞

g(n)

h(n)
= 1× 1 = 1

proving that f ∼ h. �

Advisory

In general, it is legitimate to make the leap

lim
n→∞

f(n)

g(n)
=

limn→∞ f(n)

limn→∞ g(n)

if and only if it is independently verified (or a given) that

lim
n→∞

f(n)

is a finite number and
lim
n→∞

g(n)

is a finite non-zero number. Otherwise you end up with undefined expressions
such as ∞∞ , ∞

0
, 0
∞ , and 0

0
.

3 Relationships among O, Ω, Θ and ∼

Proposition 3.1. Suppose that f and g are admissable and

lim
n→∞

f(n)

g(n)
= C

where C is a constant. Then f = O(g) and g = Ω(f). Moreover, if C > 0 then
f = Θ(g).



6

Proof. First note that C must be non-negative, because both f(n) and g(n) are
non-negative almost everywhere and g(n) must be positive almost everywhere in order
for the limit to exist. By the definition of limit, f(n)/g(n) → C, with ε = 1, there
exists a positive integer n1 such that f(n)/g(n) ≤ C+1 for n ≥ n1. Taking C1 = 1+C
we have f(n)/g(n) ≤ C1 and after algebra

f(n) ≤ C1g(n)

for n ≥ n1. Therefore f ≤ O(g).

If in addition C > 0, again applying the definition of limit with ε = C/2, there is a
positive integer n2 such that f(n)/g(n) ≥ C − ε = C/2 for n ≥ n2. Taking C2 = C/2
we have f(n)/g(n) ≥ C2 and after algebra

C2g(n) ≤ f(n)

for n ≥ n2. Therefore f ≥ Ω(g). �

Proposition 3.2. If f and g are admissible and f ∼ g then Θ(f) = Θ(g).

Proof. f ∼ g means that the quotient f(n)/g(n) trends to 1. Since 1 > 0 the
result is a corollary to Prop 3.1. �

Proposition 3.2 states exactly what was alluded to earlier, that ∼ is a stronger
relation than Θ. We also stated that ∼ is applicable to a smaller class of functions,

and the reason for that is that the quotient f(n)
g(n)

may not have a limit at all (i.e., may

not have a unique “trend” value). In the case where there is a trend for the quotient,
there is a partial converse to 3.2 as follows:

Proposition 3.3. Suppose that f and g are admissible and that f(n)/g(n) trends
to a positive constant C. Then f ∼ C × g.

Proof. Calculating with limits: limn→∞
f(n)
Cg(n)

= 1
C
× limn→∞

f(n)
g(n)

= 1
C
×C = 1. �

Exercise 3. Is the following inverse of Proposition 3.3 true? Suppose f and g are
admissable and f = Θ(g). Then f ∼ Cg for some positive constant C. (True or false,
with answer justified.)



7

4 Simplification Rules

Proposition 4.1. If f and g are admissable and f ≤ O(g) then O(f + g) ≤ O(g)
and Θ(f + g) = Θ(g).

Proof. Applying the definition of big-O, we find that there is a positive constant
C and a positive integer n1 such that

f(n) ≤ Cg(n)

for n ≥ n1. Therefore we have

f(n) + g(n) ≤ Cg(n) + g(n) = (C + 1)g(n)

for n ≥ n1. Taking C1 = 1 + C we have

f(n) + g(n) ≤ C1g(n)

and thus f + g ≤ O(g).

On the other hand, note that by admissibility there exists a positive integer n2

such that f(n) ≥ 0 and therefore

g(n) ≤ f(n) + g(n)

for all n ≥ n2. Taking C2 = 1, we then have

C2g(n) ≤ f(n) + g(n)

for all n ≥ n2 and thus f + g ≥ Ω(g). It now follows that f + g = Θ(g). �

Exercise 4. Prove or supply a counterexample: Θ(1 + g) = Θ(g) for any admissable
g.

Proposition 4.2. Suppose f and g are admissable and

lim
n→∞

f(n)

g(n)
= 0.

Then f + g ∼ g.

Proof. Before taking limits, observe that

f(n) + g(n)

g(n)
=
f(n)

g(n)
+
g(n)

g(n)
=
f(n)

g(n)
+ 1

and therefore

lim
n→∞

(
f(n) + g(n)

g(n)

)
= lim

n→∞

(
f(n)

g(n)
+ 1

)
= lim

n→∞

f(n)

g(n)
+ lim
n→∞

1 = lim
n→∞

f(n)

g(n)
+1 = 0+1 = 1.

Therefore f + g ∼ g. �



8

Proposition 4.3. For admissible functions f1, f2, g: If f1 ≤ O(g) and f2 ≤ O(g)
then f1 + f2 ≤ O(g).

Proposition 4.4. For admissible functions f, g, h: If f ≤ O(g) then f×h ≤ O(g×h).

Exercise 5. Prove true or false:

(a) n log n+ log n ∼ n log n

(b) n log n+ n ∼ n log n

(c) n log n+ n log n ∼ n log n

Exercise 6. Prove Proposition 4.3.

Exercise 7. Prove Proposition 4.4.



9

5 Polynomials

Look at these two functions of n:

P (n) = a0n
d + a1n

d−1 + . . .+ an

Q(n) = nd

(where we assume the leading coefficient a0 > 0). P (n) is the general form of an
admissible polynomial of degree d, whereas Q(n) is the much simpler form of the
highest power term.

Proposotion 5.1. With the definitions above, P (n) ∼ a0n
d.

Proof. First note the calculation

P (n)

Q(n)
=
a0n

d

nd
+
a1n

d−1

nd
+ . . .+

ad−1n

nd
+
ad
nd

= a0 +
a1
n

+
a2
n2

+ . . .+
ad−1
nd−1

+
ad
nd

from which it is apparent that P (n)
Q(n)

tends to a0 as n becomes large. Since P and Q

are admissible, the result follows from Prop 3.3. �

Corollary 5.2. Θ(P (n)) = Θ(nd).

Example applications of the various simplifying rules:

n(n+ 1)/2 = Θ(n2)

n2 + log n = Θ(n2)

n+ log n = Θ(n)

5000n2 + 2300
√
n = Θ(n2)



10

6 Estimating the growth constants from Data

In many cases a growth exponent and a growth factor associated with the asymp-
totic class of an algorithm can be estimated from data. Start by assuming that the
algorithm runtime has Θ class one of these forms (aka “abstract models”):

And +Bφ(n) [Model 0]

And log n+Bφ(n) [Model 1]

where A > 0 and φ(n) is dominated by the first term: φ(n)
nd → 0 as n→∞ [Model 0]

or φ(n)
nd logn

→ 0 as n→∞ [Model 1].

Proposition 6.1. The abstract models have Θ class as follows:

And +Bφ(n) = Θ(nd) [Model 0]

And log n+Bφ(n) = Θ(nd log n) [Model 1]

The proof is a direct application of Prop 4.1.

Thus we can “ignore” the second term (which might in fact be quite complicated,
like the tail of a polynomial) when finding the exponent d and constant A in the
models. In both cases we can find these growth constants using actual runtime data.

6.1 Estimating the Growth Exponent - Model 0

Assume that the asymptotic growth of an algorithm is modelled by F (n) = And

[Model 0] and that we have data gathered from experimentation to evaluate F at size
n and again at size 10n:

F (10n) = (10n)d

= nd10d

= 10dF (n)

which shows that raising the input size by one order of magnitute increases the run-
time by d orders of magnitude. For instance, when d = 2 (the quadratic case),
increasing the size of the input by one decimal place increases the runtime by two
decimal places. Another way to phrase the result is as a ratio:

F (10n)

F (n)
=

(10n)d

nd
= 10d

which can be stated succintly as

d = log10

(
F (10n)

F (n)

)
.



11

If we have actual timing data T (n) for an algorithm modelled by F we can use
the ratio to estimate d.

Example 1 - insertion sort

Consider for example the insertion sort algorithm, and use “comps”, the number of
data comparisons, as a measure of runtime. We know from theory that insertion sort
is modelled by F and we wish to know the exponent d. We have collected runtime
data

T (1000) = 244853

T (10000) = 24991950

The ratio T (10000)/T (1000) is

T (10000)

T (1000)
=

24991950

244853

= 102.07 . . .

≈ 100±
= 102

yielding an estimate of d = 2, or quadratic runtime. Your eye might have noticed
this in the data itself: T (10000) is about 100 times T (1000).

6.2 Estimating the Growth Exponent - Model 1

The somewhat more complex Model 1 works in the same way. Assume that the
asymptotic growth of an algorithm is modelled by G(n) = And log n [Model 1] and
that we have data gathered from experimentation to evaluate G at size n and again
at size 10n:



12

G(10n)

G(n)
=

(10n)d log(10n)

nd log n

=
nd10d log(10n)

nd log n

=
10d log(10n)

log n

= 10d
(

log 10 + log n

log n

)
= 10d

(
1 + log n

log n

)
= 10d

(
1 +

1

log n

)
→ 10d

because 1
logn
→ 0 as n→∞. As in the pure exponential case, this conclusion can be

stated in terms of logarithms:

d ≈ log10

(
F (10n)

F (n)

)
.

Together with the knowledge that d must be an integer or a simple fraction (denom-
inator 2 or 3) a value can be nailed down exactly.

Example 2 - List::Sort

Consider the bottom-up merge sort specifically for linked lists, implemented as
List::Sort. It is known from theory that the algorithm is modelled by G, and we have
collected specific timing data as follows:

T (10000) = 123674

T (100000) = 1566259

Then:
T (100000)

T (10000)
=

1566259

123674

= 11.66 . . .

≈ 10±
= 101

predicting d = 1. Note here that the data will not likely be enough to discriminate
between Models 0 and 1, so we must base that choice on other considerations, typically
a theoretical estimate of Θ.



13

6.3 Estimating the Growth Factor

We can refine an abstract model to a “concrete” version by finding the constant A
such that A×Model(n) more accurately predicts runtime. The goal is to make timing
data and the concrete model match as closely as possible:

T (n) ≈ A×M(n) for all n

At this point, we are assuming one of two “abstract” models for the runtime cost
of an algorithm:

F (n) = nd

G(n) = nd log n

and further we have estimated a value for the (integer) exponent d. Given that, we
want to calculate an estimate for the constant A for either of our models M by solving
one of the evaluated equations obtained from data for A:

A =
T (n)

M(n)

where T is timing data and M is the growth model (F or G). In fact, we get different
estimates for A for each known pair (n, T (n)) in our collected data - a classic over-
constrained system. Ideally we would use a method such as least squares (linear
regression) to optimize a value for A using all of the collected runtime data. A decent
substitute would be to interpolate a value using the two data points we used to
estimate the exponent. Here are those calculations using the two examples already
given above.

Example 1 (continued)

We have this data for insertion sort:

T (1000) = 244853

T (10000) = 24991950

The data points give estimates of A as



14

A =
T (1000)

F (1000)
=

244853

10002

= 0.2485

A =
T (10000)

F (10000)
=

24991950

100002

= 0.2499

It is reasonable to settle for A = 0.25 to complete our concrete model:

M(n) = 0.25× n2 Concrete Model for insertion sort

This model can be used to estimate runtimes for values of n where actual data is
lacking. Note that the choice of the quadratic abstract model is based on theory and
known to be a correct abstract model for insertion sort operating on random data.

Example 2 (continued)

We have this data collected for List::Sort:

T (10000) = 123674

T (100000) = 1566259

The data points give estimates of A as

A =
T (10000)

G(10000)
=

123674

10000 log 10000
=

123674

10000× 4

= 3.09185

A =
T (100000)

G(100000)
=

1566259

100000 log 100000
=

1566259

100000× 5

= 3.132518

It is reasonable to settle for A = 3.1 to complete our concrete model:

M(n) = 3.1× n log n Concrete Model for List::Sort

This model can be used to estimate runtimes for values of n where actual data is
lacking. Note that the choice of the linear×log abstract model is based on theory
and known to be a correct abstract model for List::Sort (a version of bottom-up
merge sort).



15

Exercise 8. Extend the results of Sections 6.1-6.3 to include Model 2:
H(n) = And(log n)2 +Bφ(n).

6.4 Cautions and Limitations

The reader was likely surprised that using the data as in 6.1-6.3 above is unable
to distinguish between the pure power model F and the model G that is a power
model multiplied by a logarithm. The reason at one level is simple: the quotients
G(10n)/G(n) and F (10n)/F (n) differ by 10d/ log n. The numerator 10d is a fixed
number, whereas the denominator log n grows infinitely large with n (albeit rather
slowly), so the difference gets ever smaller as n grows large. Given that data in-
evitably has some variation due to randomness, teasing out such a diminishingly fine
distinction is problematic.

Another observation the reader likely made is that we used the base 10 logarithm
instead of the more common base 2 logarithm. Any base could have been used. We
chose base 10 because multiplying by 10 is a visually simple process - just move the
decimal point - whereas if we used base 2 (and doubled our input size instead of
multiplying it by 10) the results are similar, except it is less easy visually to recognize
“approximately” 2n than “approximately” 10n.

Different base logarithmic functions have the same Θ class, so when discussing Θ
we are free to use any base log:

Lemma 6.2. loga x = loga b× logb x

which tells us that log2 n = Θ(log10 n), the first being a constant multiple of the
second, that constant being log2 10.

Finally, and most important, we need to keep in mind that using the techniques of
6.1-6.3 are (1) only estimates - “estimate” being another word for “educated guess” -
and (2) dependent on a choice of model. The choice of model may also be an educated
guess, or it could be from theoretical considerations, or it could be a simplification
from known theoretical constraints.

As in all of science, a model is an approximation of reality.



16

The Bottom Line

Simplifying formulas

• An admissible polynomial of degree d is Θ(nd) and A[a0n
d]

• When finding Θ, ignore O terms
• When finding ∼, ignore terms of strictly lower asymptotic class

Finding model constants

• Growth Exponent d ≈ log10 T (10n0)/T (n0)
• Growth Factor A ≈ T (n0)/M(n0)

where n0 is a specific size for which we have data, T is actual runtime data,
and M is the abstract model. The concrete modelling formula is then

T (n) ≈ A×M(n).


