Asymptotics

1 Definitions and Terminology

1.1 Admissibility and Limits

Define a function f to be admissable iff there is an integer n_{0} such that $f(n)$ is defined and $f(n)>0$ for all integers $n \geq n_{0}$.

We introduce here some terminology that reduces the need for explicitly quantifying mathematical statements. In the context of admissible functions, we will use the expression almost everywhere when applied to a statement to mean: " there is an integer n_{0} such that the statement is true for all $n>n_{0}{ }^{\prime \prime}$. Using this terminology we can re-state the definition of admissible function as follows:

A function f is admissable iff $f(n)>0$ almost everywhere.

We also use some simplifying terminology in the context of limits. If f is an admissible function we will take the statement " f trends to C " to mean that the limit of $f(n)$ as n tends to infinity is equal to C :

$$
\lim _{n \rightarrow \infty} f(n)=C
$$

means f trends to C.

1.2 Big Oh, Big Omega, and Big Theta

The asymptotic notations Big Oh $[\mathcal{O}]$, Big Omega $[\Omega]$ and Big Theta $[\Theta]$ are fundamental to the study of algorithms. These each relate to the "near infinity" behaviour of functions and are independent of multiplication by a constant and independent of any effects that relate only to a finite number of inputs.

Given an admissible function g, define $\mathcal{O}(g)$ to be the set of all admissible functions f such that there exists a positive constant C for which

$$
f(n) \leq C g(n)
$$

almost everywhere. That is, there exists $C>0$ and n_{0} such that $f(n) \leq C g(n)$ for all $n>n_{0}$. Similarly, define $\Omega(g)$ to be the set of all admissible functions f such that
there exists a positive constant C for which

$$
f(n) \geq C g(n)
$$

almost everywhere. And finally define define $\Theta(g)$ to be the set of all admissible functions f such that there exist positive constants C_{1}, C_{2} for which

$$
C_{1} g(n) \leq f(n) \leq C_{2} g(n)
$$

almost everywhere.

1.3 Asymptotic Equivalence and the Tilde Relation

For admissable functions f and g, define $f \sim g$ to mean that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

In Section 2 we show that \sim is an equivalence relation. The terminology used for $f \sim g$ is that f and g are asymptotically equivalent. We denote the asymptotic equivalence class of f as $\mathcal{A}[f]$.

Asymptotic equivalence is a more specialized notion that does not apply as broadly as Θ and also is a stronger relation than Θ when it does apply. We will typically use it as follows:

Suppose f is a function we wish to characterize asymptotically and that we know, or surmise, that $f \in \Theta(M)$ for some collection of "model functions" M. Then we may ask what specific model is asymptotically equivalent to f. For example, we may know that $f \in \Theta\left(n^{d}\right)$ and ask what positive constant A satisfies $f \sim A n^{d}$. In that circumstance, we could call A the growth factor of f and d the growth exponent of f.

We return to calculation of growth constants in a later section.

2 Properties of the relations $\mathcal{O}, \Omega, \Theta$, and \sim

Proposition 2.1 (Reflexive Property). An admissible function is asymptotically related to itself. That is: if f is admissible then $f \in \mathcal{O}(f), f \in \Omega(f), f \in \Theta(f)$, and $f \in \mathcal{A}[f]$.

Proof. Let $C=1$. Then plainly

$$
f(n)=C f(n)
$$

for all n, from which it is clear that the definitions of $f \in \mathcal{O}(f), f \in \Omega(f)$, and $f \in \Theta(f)$ are all satisfied.

Proposition 2.2. Assume that f and g are admissable functions. Then:
(a) (Anti-Symmetry) $f \in \mathcal{O}(g)$ if and only if $g \in \Omega(f)$.
(b) (Symmetry) $f \in \Theta(g)$ if and only if $g \in \Theta(f)$.
(c) (Symmetry) $f \sim g$ if and only if $g \sim f$.

Proof (b). From the definition of Θ there are positive constants C_{1} and C_{2} such that $C_{1} g(n) \leq f(n) \leq C_{2} g(n)$ almost everywhere. Using algebra, we have:

$$
\frac{1}{C_{2}} f(n) \leq g(n)
$$

and

$$
g(n) \leq \frac{1}{C_{1}} f(n)
$$

Taking $D_{1}=\frac{1}{C_{2}}$ and $D_{2}=\frac{1}{C_{1}}$ we have

$$
D_{1} f(n) \leq g(n) \leq D_{2} f(n)
$$

showing that $g \in \Theta(f)$. (We postpone the proof of part (c) to Prop 2.5.)
Exercise 1. Supply a proof of (a).

Proposition 2.3 (Transitivity). Assume that f, g, and h are admissable functions. Then:
(a) If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$ then $f \in \mathcal{O}(h)$.
(b) If $f \in \Omega(g)$ and $g \in \Omega(h)$ then $f \in \Omega(h)$.
(c) If $f \in \Theta(g)$ and $g \in \Theta(h)$ then $f \in \Theta(h)$.
(d) If $f \sim g$ and $g \sim h$ then $f \sim h$.

Proof (a). From the definition of \mathcal{O} there are positive constants C_{1} and C_{2} such that

$$
f(n) \leq C_{1} g(n)
$$

and

$$
g(n) \leq C_{2} h(n)
$$

almost everywhere. Substituting the second into the first, and applying the transitive property of \leq, we have

$$
f(n) \leq C_{1} C_{2} h(n)
$$

almost everywhere. Taking $C=C_{1} \times C_{2}$ the definition of $f \in \mathcal{O}(h)$ is satisfied.
(Proof of (d) is postponed to Prop 2.5.)
Exercise 2. Supply proofs of (b) and (c).

Proposition 2.4 (Dichotomy). If admissible functions f and g are Θ equivalent, then $f \in \mathcal{O}(g)$ and $f \in \Omega(g)$. Conversely, if $f \in \mathcal{O}(g)$ and $f \in \Omega(g)$ then $f \in \Theta(g)$.

A proof is a direct application of the definitions and is left as an exercise.

Propositions $1,2(\mathrm{~b}), 3(\mathrm{c})$ above show that $f \in \Theta(g)$ is an equivalence relation, thus the Θ equivalence classes partition the set of admissible functions into mutually disjoint sets. Propositions $1,2(\mathrm{a}), 3(\mathrm{a}), 3(\mathrm{~b}), 4$ show that \mathcal{O} and Ω behave analogously to the numerical order relations \leq and \geq, with Θ playing the role of equality.

Terminology surrounding \mathcal{O}, Ω and Θ ranges from the set-theoretic introduced above to more informal. For example, when $f \in \Theta(g)$ it is often said that " f is $\Theta(g)$ " and alternate notation $f=\Theta(g)$ may be used. To emphasize the properties analogous to numerical order relations we sometimes write $f \leq \mathcal{O}(g)$ or $g \geq \Omega(f)$. The set-theoretic versions, such as $\mathcal{O}(f) \subseteq \mathcal{O}(g)$, may also be used.

Proposition 2.5. \sim is an equivalence relation on the set of admissable functions.

To prove Prop 2.5 we need to verify that these three properties hold:

Reflexive: $f \sim f$ for all f
Proof. For any admissible function f, note that $\frac{f(n)}{f(n)}$ is defined and equal to 1 almost everywhere. Therefore

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{f(n)}=\lim _{n \rightarrow \infty} 1=1
$$

verifying that $f \sim f$.

Symmetric: $f \sim g$ implies $g \sim f$ for all f, g
Proof. Suppose that $f \sim g$ for two admissible functions f and g. Then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

Note that if $f(n)>0$ and if $g(n)>0$ then

$$
\frac{g(n)}{f(n)}=\frac{1}{\frac{f(n)}{g(n)}}
$$

and hence that

$$
\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\lim _{n \rightarrow \infty} \frac{1}{\frac{f(n)}{g(n)}}=\frac{1}{1}=1
$$

which verifies that $g \sim f$.

Caution!

It's important to distinguish the above from the completely falacious argument:

$$
\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\frac{\lim _{n \rightarrow \infty} g(n)}{\lim _{n \rightarrow \infty} f(n)}=\frac{1}{1}=1
$$

Be sure you see why this argument is faulty.

Transitive: $f \sim g$ and $g \sim h$ implies $f \sim h$, for all f, g, h

Proof. Suppose that $f \sim g$ and $g \sim h$ for three admissible functions f, g, and h. Observe that whenever the denominators are non-zero

$$
\frac{f(n)}{h(n)}=\frac{f(n) g(n)}{h(n) g(n)}=\frac{f(n)}{g(n)} \times \frac{g(n)}{h(n)}
$$

from which it follows (using admissibility)

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{h(n)}=\lim _{n \rightarrow \infty}\left(\frac{f(n)}{g(n)} \times \frac{g(n)}{h(n)}\right)=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \times \lim _{n \rightarrow \infty} \frac{g(n)}{h(n)}=1 \times 1=1
$$

proving that $f \sim h$.

Advisory

In general, it is legitimate to make the leap

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\frac{\lim _{n \rightarrow \infty} f(n)}{\lim _{n \rightarrow \infty} g(n)}
$$

if and only if it is independently verified (or a given) that

$$
\lim _{n \rightarrow \infty} f(n)
$$

is a finite number and

$$
\lim _{n \rightarrow \infty} g(n)
$$

is a finite non-zero number. Otherwise you end up with undefined expressions such as $\frac{\infty}{\infty}, \frac{\infty}{0}, \frac{0}{\infty}$, and $\frac{0}{0}$.

3 Relationships among $\mathcal{O}, \Omega, \Theta$ and \sim

Proposition 3.1. Suppose that f and g are admissable and

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=C
$$

where C is a constant. Then $f=\mathcal{O}(g)$ and $g=\Omega(f)$. Moreover, if $C>0$ then $f=\Theta(g)$.

Proof. First note that C must be non-negative, because both $f(n)$ and $g(n)$ are non-negative almost everywhere and $g(n)$ must be positive almost everywhere in order for the limit to exist. By the definition of limit, $f(n) / g(n) \rightarrow C$, with $\epsilon=1$, there exists a positive integer n_{1} such that $f(n) / g(n) \leq C+1$ for $n \geq n_{1}$. Taking $C_{1}=1+C$ we have $f(n) / g(n) \leq C_{1}$ and after algebra

$$
f(n) \leq C_{1} g(n)
$$

for $n \geq n_{1}$. Therefore $f \leq \mathcal{O}(g)$.

If in addition $C>0$, again applying the definition of limit with $\epsilon=C / 2$, there is a positive integer n_{2} such that $f(n) / g(n) \geq C-\epsilon=C / 2$ for $n \geq n_{2}$. Taking $C_{2}=C / 2$ we have $f(n) / g(n) \geq C_{2}$ and after algebra

$$
C_{2} g(n) \leq f(n)
$$

for $n \geq n_{2}$. Therefore $f \geq \Omega(g)$.

Proposition 3.2. If f and g are admissible and $f \sim g$ then $\Theta(f)=\Theta(g)$.

Proof. $f \sim g$ means that the quotient $f(n) / g(n)$ trends to 1 . Since $1>0$ the result is a corollary to Prop 3.1.

Proposition 3.2 states exactly what was alluded to earlier, that \sim is a stronger relation than Θ. We also stated that \sim is applicable to a smaller class of functions, and the reason for that is that the quotient $\frac{f(n)}{g(n)}$ may not have a limit at all (i.e., may not have a unique "trend" value). In the case where there is a trend for the quotient, there is a partial converse to 3.2 as follows:

Proposition 3.3. Suppose that f and g are admissible and that $f(n) / g(n)$ trends to a positive constant C. Then $f \sim C \times g$.

Proof. Calculating with limits: $\lim _{n \rightarrow \infty} \frac{f(n)}{C g(n)}=\frac{1}{C} \times \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\frac{1}{C} \times C=1$.
Exercise 3. Is the following inverse of Proposition 3.3 true? Suppose f and g are admissable and $f=\Theta(g)$. Then $f \sim C g$ for some positive constant C. (True or false, with answer justified.)

4 Simplification Rules

Proposition 4.1. If f and g are admissable and $f \leq \mathcal{O}(g)$ then $\mathcal{O}(f+g) \leq \mathcal{O}(g)$ and $\Theta(f+g)=\Theta(g)$.

Proof. Applying the definition of big-O, we find that there is a positive constant C and a positive integer n_{1} such that

$$
f(n) \leq C g(n)
$$

for $n \geq n_{1}$. Therefore we have

$$
f(n)+g(n) \leq C g(n)+g(n)=(C+1) g(n)
$$

for $n \geq n_{1}$. Taking $C_{1}=1+C$ we have

$$
f(n)+g(n) \leq C_{1} g(n)
$$

and thus $f+g \leq \mathcal{O}(g)$.

On the other hand, note that by admissibility there exists a positive integer n_{2} such that $f(n) \geq 0$ and therefore

$$
g(n) \leq f(n)+g(n)
$$

for all $n \geq n_{2}$. Taking $C_{2}=1$, we then have

$$
C_{2} g(n) \leq f(n)+g(n)
$$

for all $n \geq n_{2}$ and thus $f+g \geq \Omega(g)$. It now follows that $f+g=\Theta(g)$.
Exercise 4. Prove or supply a counterexample: $\Theta(1+g)=\Theta(g)$ for any admissable g.

Proposition 4.2. Suppose f and g are admissable and

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Then $f+g \sim g$.
Proof. Before taking limits, observe that

$$
\frac{f(n)+g(n)}{g(n)}=\frac{f(n)}{g(n)}+\frac{g(n)}{g(n)}=\frac{f(n)}{g(n)}+1
$$

and therefore
$\lim _{n \rightarrow \infty}\left(\frac{f(n)+g(n)}{g(n)}\right)=\lim _{n \rightarrow \infty}\left(\frac{f(n)}{g(n)}+1\right)=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}+\lim _{n \rightarrow \infty} 1=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}+1=0+1=1$.
Therefore $f+g \sim g$.

Proposition 4.3. For admissible functions f_{1}, f_{2}, g : If $f_{1} \leq \mathcal{O}(g)$ and $f_{2} \leq \mathcal{O}(g)$ then $f_{1}+f_{2} \leq \mathcal{O}(g)$.

Proposition 4.4. For admissible functions f, g, h : If $f \leq \mathcal{O}(g)$ then $f \times h \leq \mathcal{O}(g \times h)$. Exercise 5. Prove true or false:
(a) $n \log n+\log n \sim n \log n$
(b) $n \log n+n \sim n \log n$
(c) $n \log n+n \log n \sim n \log n$

Exercise 6. Prove Proposition 4.3.
Exercise 7. Prove Proposition 4.4.

5 Polynomials

Look at these two functions of n :

$$
\begin{aligned}
& P(n)=a_{0} n^{d}+a_{1} n^{d-1}+\ldots+a_{n} \\
& Q(n)=n^{d}
\end{aligned}
$$

(where we assume the leading coefficient $a_{0}>0$). $P(n)$ is the general form of an admissible polynomial of degree d, whereas $Q(n)$ is the much simpler form of the highest power term.

Proposotion 5.1. With the definitions above, $P(n) \sim a_{0} n^{d}$.

Proof. First note the calculation

$$
\begin{aligned}
\frac{P(n)}{Q(n)} & =\frac{a_{0} n^{d}}{n^{d}}+\frac{a_{1} n^{d-1}}{n^{d}}+\ldots+\frac{a_{d-1} n}{n^{d}}+\frac{a_{d}}{n^{d}} \\
& =a_{0}+\frac{a_{1}}{n}+\frac{a_{2}}{n^{2}}+\ldots+\frac{a_{d-1}}{n^{d-1}}+\frac{a_{d}}{n^{d}}
\end{aligned}
$$

from which it is apparent that $\frac{P(n)}{Q(n)}$ tends to a_{0} as n becomes large. Since P and Q are admissible, the result follows from Prop 3.3.

Corollary 5.2. $\Theta(P(n))=\Theta\left(n^{d}\right)$.
Example applications of the various simplifying rules:

$$
\begin{aligned}
n(n+1) / 2 & =\Theta\left(n^{2}\right) \\
n^{2}+\log n & =\Theta\left(n^{2}\right) \\
n+\log n & =\Theta(n) \\
5000 n^{2}+2300 \sqrt{n} & =\Theta\left(n^{2}\right)
\end{aligned}
$$

6 Estimating the growth constants from Data

In many cases a growth exponent and a growth factor associated with the asymptotic class of an algorithm can be estimated from data. Start by assuming that the algorithm runtime has Θ class one of these forms (aka "abstract models"):

$$
\begin{array}{ll}
A n^{d}+B \phi(n) & {[\text { Model } 0]} \\
A n^{d} \log n+B \phi(n) & {[\text { Model } 1]}
\end{array}
$$

where $A>0$ and $\phi(n)$ is dominated by the first term: $\frac{\phi(n)}{n^{d}} \rightarrow 0$ as $n \rightarrow \infty$ [Model 0] or $\frac{\phi(n)}{n^{d} \log n} \rightarrow 0$ as $n \rightarrow \infty$ [Model 1].

Proposition 6.1. The abstract models have Θ class as follows:

$$
\begin{array}{ll}
A n^{d}+B \phi(n)=\Theta\left(n^{d}\right) & {[\text { Model 0] }} \\
A n^{d} \log n+B \phi(n)=\Theta\left(n^{d} \log n\right) & {[\text { Model 1] }}
\end{array}
$$

The proof is a direct application of Prop 4.1.
Thus we can "ignore" the second term (which might in fact be quite complicated, like the tail of a polynomial) when finding the exponent d and constant A in the models. In both cases we can find these growth constants using actual runtime data.

6.1 Estimating the Growth Exponent - Model 0

Assume that the asymptotic growth of an algorithm is modelled by $F(n)=A n^{d}$ [Model 0] and that we have data gathered from experimentation to evaluate F at size n and again at size $10 n$:

$$
\begin{aligned}
F(10 n) & =(10 n)^{d} \\
& =n^{d} 10^{d} \\
& =10^{d} F(n)
\end{aligned}
$$

which shows that raising the input size by one order of magnitute increases the runtime by d orders of magnitude. For instance, when $d=2$ (the quadratic case), increasing the size of the input by one decimal place increases the runtime by two decimal places. Another way to phrase the result is as a ratio:

$$
\frac{F(10 n)}{F(n)}=\frac{(10 n)^{d}}{n^{d}}=10^{d}
$$

which can be stated succintly as

$$
d=\log _{10}\left(\frac{F(10 n)}{F(n)}\right)
$$

If we have actual timing data $T(n)$ for an algorithm modelled by F we can use the ratio to estimate d.

Example 1 - insertion_sort

Consider for example the insertion_sort algorithm, and use "comps", the number of data comparisons, as a measure of runtime. We know from theory that insertion_sort is modelled by F and we wish to know the exponent d. We have collected runtime data

$$
\begin{aligned}
T(1000) & =244853 \\
T(10000) & =24991950
\end{aligned}
$$

The ratio $T(10000) / T(1000)$ is

$$
\begin{aligned}
\frac{T(10000)}{T(1000)} & =\frac{24991950}{244853} \\
& =102.07 \ldots \\
& \approx 100 \pm \\
& =10^{2}
\end{aligned}
$$

yielding an estimate of $d=2$, or quadratic runtime. Your eye might have noticed this in the data itself: $T(10000)$ is about 100 times $T(1000)$.

6.2 Estimating the Growth Exponent - Model 1

The somewhat more complex Model 1 works in the same way. Assume that the asymptotic growth of an algorithm is modelled by $G(n)=A n^{d} \log n$ [Model 1] and that we have data gathered from experimentation to evaluate G at size n and again at size $10 n$:

$$
\begin{aligned}
\frac{G(10 n)}{G(n)} & =\frac{(10 n)^{d} \log (10 n)}{n^{d} \log n} \\
& =\frac{n^{d} 10^{d} \log (10 n)}{n^{d} \log n} \\
& =\frac{10^{d} \log (10 n)}{\log n} \\
& =10^{d}\left(\frac{\log 10+\log n}{\log n}\right) \\
& =10^{d}\left(\frac{1+\log n}{\log n}\right) \\
& =10^{d}\left(1+\frac{1}{\log n}\right) \\
& \rightarrow 10^{d}
\end{aligned}
$$

because $\frac{1}{\log n} \rightarrow 0$ as $n \rightarrow \infty$. As in the pure exponential case, this conclusion can be stated in terms of logarithms:

$$
d \approx \log _{10}\left(\frac{F(10 n)}{F(n)}\right)
$$

Together with the knowledge that d must be an integer or a simple fraction (denominator 2 or 3) a value can be nailed down exactly.

Example 2-List::Sort

Consider the bottom-up merge_sort specifically for linked lists, implemented as List::Sort. It is known from theory that the algorithm is modelled by G, and we have collected specific timing data as follows:

$$
\begin{aligned}
T(10000) & =123674 \\
T(100000) & =1566259
\end{aligned}
$$

Then:

$$
\begin{aligned}
\frac{T(100000)}{T(10000)} & =\frac{1566259}{123674} \\
& =11.66 \ldots \\
& \approx 10 \pm \\
& =10^{1}
\end{aligned}
$$

predicting $d=1$. Note here that the data will not likely be enough to discriminate between Models 0 and 1, so we must base that choice on other considerations, typically a theoretical estimate of Θ.

6.3 Estimating the Growth Factor

We can refine an abstract model to a "concrete" version by finding the constant A such that $A \times \operatorname{Model}(n)$ more accurately predicts runtime. The goal is to make timing data and the concrete model match as closely as possible:

$$
T(n) \approx A \times M(n) \text { for all } n
$$

At this point, we are assuming one of two "abstract" models for the runtime cost of an algorithm:

$$
\begin{aligned}
& F(n)=n^{d} \\
& G(n)=n^{d} \log n
\end{aligned}
$$

and further we have estimated a value for the (integer) exponent d. Given that, we want to calculate an estimate for the constant A for either of our models M by solving one of the evaluated equations obtained from data for A :

$$
A=\frac{T(n)}{M(n)}
$$

where T is timing data and M is the growth model (F or G). In fact, we get different estimates for A for each known pair ($n, T(n)$) in our collected data - a classic overconstrained system. Ideally we would use a method such as least squares (linear regression) to optimize a value for A using all of the collected runtime data. A decent substitute would be to interpolate a value using the two data points we used to estimate the exponent. Here are those calculations using the two examples already given above.

Example 1 (continued)

We have this data for insertion_sort:

$$
\begin{aligned}
T(1000) & =244853 \\
T(10000) & =24991950
\end{aligned}
$$

The data points give estimates of A as

$$
\begin{aligned}
A & =\frac{T(1000)}{F(1000)}=\frac{244853}{1000^{2}} \\
& =0.2485 \\
A & =\frac{T(10000)}{F(10000)}=\frac{24991950}{10000^{2}} \\
& =0.2499
\end{aligned}
$$

It is reasonable to settle for $A=0.25$ to complete our concrete model:

$$
M(n)=0.25 \times n^{2} \quad \text { Concrete Model for insertion_sort }
$$

This model can be used to estimate runtimes for values of n where actual data is lacking. Note that the choice of the quadratic abstract model is based on theory and known to be a correct abstract model for insertion_sort operating on random data.

Example 2 (continued)

We have this data collected for List::Sort:

$$
\begin{aligned}
T(10000) & =123674 \\
T(100000) & =1566259
\end{aligned}
$$

The data points give estimates of A as

$$
\begin{aligned}
A & =\frac{T(10000)}{G(10000)}=\frac{123674}{10000 \log 10000}=\frac{123674}{10000 \times 4} \\
& =3.09185 \\
A & =\frac{T(100000)}{G(100000)}=\frac{1566259}{100000 \log 100000}=\frac{1566259}{100000 \times 5} \\
& =3.132518
\end{aligned}
$$

It is reasonable to settle for $A=3.1$ to complete our concrete model:

$$
M(n)=3.1 \times n \log n \quad \text { Concrete Model for List::Sort }
$$

This model can be used to estimate runtimes for values of n where actual data is lacking. Note that the choice of the linear $\times \log$ abstract model is based on theory and known to be a correct abstract model for List::Sort (a version of bottom-up merge_sort).

Exercise 8. Extend the results of Sections 6.1-6.3 to include Model 2:
$H(n)=A n^{d}(\log n)^{2}+B \phi(n)$.

6.4 Cautions and Limitations

The reader was likely surprised that using the data as in 6.1-6.3 above is unable to distinguish between the pure power model F and the model G that is a power model multiplied by a logarithm. The reason at one level is simple: the quotients $G(10 n) / G(n)$ and $F(10 n) / F(n)$ differ by $10^{d} / \log n$. The numerator 10^{d} is a fixed number, whereas the denominator $\log n$ grows infinitely large with n (albeit rather slowly), so the difference gets ever smaller as n grows large. Given that data inevitably has some variation due to randomness, teasing out such a diminishingly fine distinction is problematic.

Another observation the reader likely made is that we used the base 10 logarithm instead of the more common base 2 logarithm. Any base could have been used. We chose base 10 because multiplying by 10 is a visually simple process - just move the decimal point - whereas if we used base 2 (and doubled our input size instead of multiplying it by 10) the results are similar, except it is less easy visually to recognize "approximately" $2 n$ than "approximately" $10 n$.

Different base logarithmic functions have the same Θ class, so when discussing Θ we are free to use any base log:

Lemma 6.2. $\log _{a} x=\log _{a} b \times \log _{b} x$
which tells us that $\log _{2} n=\Theta\left(\log _{10} n\right)$, the first being a constant multiple of the second, that constant being $\log _{2} 10$.

Finally, and most important, we need to keep in mind that using the techniques of 6.1-6.3 are (1) only estimates - "estimate" being another word for "educated guess" and (2) dependent on a choice of model. The choice of model may also be an educated guess, or it could be from theoretical considerations, or it could be a simplification from known theoretical constraints.

As in all of science, a model is an approximation of reality.

The Bottom Line

Simplifying formulas

- An admissible polynomial of degree d is $\Theta\left(n^{d}\right)$ and $\mathcal{A}\left[a_{0} n^{d}\right]$
- When finding Θ, ignore \mathcal{O} terms
- When finding \sim, ignore terms of strictly lower asymptotic class

Finding model constants

- Growth Exponent $d \approx \log _{10} T\left(10 n_{0}\right) / T\left(n_{0}\right)$
- Growth Factor $A \approx T\left(n_{0}\right) / M\left(n_{0}\right)$
where n_{0} is a specific size for which we have data, T is actual runtime data, and M is the abstract model. The concrete modelling formula is then

$$
T(n) \approx A \times M(n)
$$

