
Florida State University

Course Notes

MAD 3105 Discrete Mathematics II

Florida State University

Tallahassee, Florida 32306-4510

Copyright c©2004 Florida State ULniversity

Written by Dr. John Bryant and Dr. Penelope Kirby All rights reserved. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without permission from the authors or a license from
Florida State University.

Contents

Chapter 1. Relations 8
1. Relations and Their Properties 8
1.1. Definition of a Relation 8
1.2. Directed Graphs 9
1.3. Representing Relations with Matrices 10
1.4. Example 1.4.1 10
1.5. Inverse Relation 11
1.6. Special Properties of Binary Relations 11
1.7. Examples of Relations and their Properties 12
1.8. Theorem 1.8.1: Connection Matrices v.s. Properties 14
1.9. Combining Relations 15
1.10. Example 1.10.1 15
1.11. Definition of Composition 17
1.12. Example 1.12.1 18
1.13. Theorem 1.13.1: Characterization of Transitive Relations 19
1.14. Connection Matrices v.s. Composition 20
2. Closure of Relations 21
2.1. Definition of the Closure of Relations 21
2.2. Reflexive Closure 21
2.3. Symmetric Closure 22
2.4. Examples 22
2.5. Relation Identities 24
2.6. Characterization of Symmetric Relations 25
2.7. Paths 26
2.8. Paths v.s Composition 26
2.9. Characterization of a Transitive Relation 27
2.10. Connectivity Relation 28
2.11. Characterization of the Transitive Closure 28
2.12. Example 29
2.13. Cycles 30
2.14. Corollaries to Theorem 2.13.1 31
2.15. Example 10 31
2.16. Properties v.s Closure 32
3. Equivalence Relations 33
3.1. Definition of an Equivalence Relations 33
3.2. Example 33

3

CONTENTS 4

3.3. Equivalence Classes 34
3.4. Partition 35
3.5. Intersection of Equivalence Relations 36
3.6. Example 36
3.7. Example 38
3.8. Isomorphism is an Equivalence Relation 39
3.9. Equivalence Relation Generated by a Relation R 40
3.10. Using Closures to find an Equivalence Relation 41
4. Partial Orderings 43
4.1. Definition of a Partial Order 43
4.2. Examples 43
4.3. Pseudo-Orderings 44
4.4. Well-Ordered Relation 44
4.5. Examples 45
4.6. Lexicographic Order 46
4.7. Examples 4.7.1 and 4.7.2 46
4.8. Strings 47
4.9. Hasse or Poset Diagrams 47
4.10. Example 4.10.1 48
4.11. Maximal and Minimal Elements 50
4.12. Least and Greatest Elements 51
4.13. Upper and Lower Bounds 51
4.14. Least Upper and Greatest Lower Bounds 52
4.15. Lattices 52
4.16. Example 4.16.1 53
4.17. Topological Sorting 53
4.18. Topological Sorting Algorithm 54
4.19. Existence of a Minimal Element 54

Chapter 2. Graphs 58
1. Introduction to Graphs and Graph Isomorphism 58
1.1. The Graph Menagerie 58
1.2. Representing Graphs and Graph Isomorphism 58
1.3. Incidence Matrices 60
1.4. Example 1.4.1 60
1.5. Degree 61
1.6. The Handshaking Theorem 62
1.7. Example 1.7.1 62
1.8. Theorem 1.8.1 63
1.9. Handshaking Theorem for Directed Graphs 64
1.10. Graph Invariants 64
1.11. Example 1.11.1 66
1.12. Proof of Section 1.10 Part 3 for simple graphs 68
2. Connectivity 70

CONTENTS 5

2.1. Connectivity 70
2.2. Example 2.2.1 70
2.3. Connectedness 72
2.4. Examples 72
2.5. Theorem 2.5.1 73
2.6. Example 2.6.1 74
2.7. Connected Component 74
2.8. Example 2.8.1 75
2.9. Cut Vertex and Edge 76
2.10. Examples 77
2.11. Counting Edges 78
2.12. Connectedness in Directed Graphs 78
2.13. Paths and Isomorphism 79
2.14. Example 2.14.1 80
2.15. Theorem 2.15.1 81
3. Euler and Hamilton Paths 82
3.1. Euler and Hamilton Paths 82
3.2. Examples 82
3.3. Necessary and Sufficient Conditions for an Euler Circuit 83
3.4. Necessary and Sufficient Conditions for an Euler Path 85
3.5. Hamilton Circuits 86
3.6. Examples 86
3.7. Sufficient Condition for a Hamilton Circuit 87
4. Introduction to Trees 88
4.1. Definition of a Tree 88
4.2. Examples 88
4.3. Roots 90
4.4. Example 4.4.1 90
4.5. Isomorphism of Directed Graphs 90
4.6. Isomorphism of Rooted Trees 91
4.7. Terminology for Rooted Trees 91
4.8. m-ary Tree 92
4.9. Counting the Elements in a Tree 92
4.10. Level 93
4.11. Number of Leaves 93
4.12. Characterizations of a Tree 94
5. Spanning Trees 96
5.1. Spanning Trees 96
5.2. Example 5.2.1 96
5.3. Example 5.3.1 97
5.4. Existence 97
5.5. Spanning Forest 98
5.6. Distance 99
6. Search and Decision Trees 101

CONTENTS 6

6.1. Binary Tree 101
6.2. Example 6.2.1 102
6.3. Decision Tree 103
6.4. Example 6.4.1 103
7. Tree Traversal 106
7.1. Ordered Trees 106
7.2. Universal Address System 106
7.3. Tree Traversal 107
7.4. Preorder Traversal 107
7.5. Inorder Traversal 109
7.6. Postorder Traversal 110
7.7. Infix Form 111

Chapter 3. Boolean Algebra 115
1. Boolean Functions 115
1.1. Boolean Functions 115
1.2. Example 1.2.1 115
1.3. Binary Operations 116
1.4. Example 1.4.1 117
1.5. Boolean Identities 117
1.6. Dual 118
2. Representing Boolean Functions 119
2.1. Representing Boolean Functions 119
2.2. Example 2.2.1 119
2.3. Example 2.3.1 120
2.4. Functionally Complete 121
2.5. Example 2.5.1 121
2.6. NAND and NOR 122
3. Abstract Boolean Algebras 123
3.1. Abstract Boolean Algebra 123
3.2. Examples of Boolean Algebras 123
3.3. Duality 126
3.4. More Properties of a Boolean Algebra 126
3.5. Proof of Idempotent Laws 127
3.6. Proof of Dominance Laws 127
3.7. Proof of Theorem 3.4.1 Property 4 128
3.8. Proof of DeMorgan’s Law 129
3.9. Isomorphism 130
3.10. Atoms 131
3.11. Theorem 3.11.1 133
3.12. Theorem 3.12.1 133
3.13. Basis 134
3.14. Theorem 3.14.1 135
4. Logic Gates 139

CONTENTS 7

4.1. Logic Gates 139
4.2. Example 4.2.1 139
4.3. NOR and NAND gates 141
4.4. Example 4.4.1 142
4.5. Half Adder 143
4.6. Full Adder 143
5. Minimizing Circuits 146
5.1. Minimizing Circuits 146
5.2. Example 5.2.1 146
5.3. Karnaugh Maps 146
5.4. Two Variables 146
5.5. Three Variables 148
5.6. Four Variables 149
5.7. Quine-McCluskey Method 151

CHAPTER 1

Relations

1. Relations and Their Properties

1.1. Definition of a Relation.

Definition 1.1.1. A binary relation from a set A to a set B is a subset

R ⊆ A×B.

If (a, b) ∈ R we say a is Related to b by R.

A is the domain of R, and

B is the codomain of R.

If A = B, R is called a binary relation on the set A.

Notation.

• If (a, b) ∈ R, then we write aRb.

• If (a, b) 6∈ R, then we write a 6R b.

Discussion

We recall the basic definitions and terminology associated with the concept of
a relation from a set A to a set B. You should review the notes from MAD 2104
whenever you wish to see more examples or more discussion on any of the topics we
review here.

A relation is a generalization of the concept of a function, so that much of the
terminology will be the same. Specifically, if f : A → B is a function from a set A to
a B, then the graph of f , graph(f) = {(x, f(x))|x ∈ A} is a relation from A to B.
Recall, however, that a relation may differ from a function in two essential ways. If
R is an arbitrary relation from A to B, then

• it is possible to have both (a, b) ∈ R and (a, b′) ∈ R, where b′ 6= b; that is,
an element a in A may be related to any number of elements of B; or

8

1. RELATIONS AND THEIR PROPERTIES 9

• it is possible to have some element a in A that is not related to any element
in B at all.

Example 1.1.1. Suppose R ⊂ Z × Z+ is the relation defined by (a, b) ∈ R if
and only if a|b. (Recall that Z+ denotes the set of positive integers, and a|b, read “a
divides b”, means that b = na for some integer n.) Then R fails to be a function on
both counts listed above. Certainly, −2|2 and −2|4, so that −2 is related to more than
one positive integer. (In fact, it is related to infinitely many integers.) On the other
hand 0 6 | b for any positive integer b.

Remark 1.1.1. It is often desirable in computer science to relax the requirement
that a function be defined at every element in the domain. This has the beneficial
effect of reducing the number of sets that must be named and stored. In order not
to cause too much confusion with the usual mathematical definition of a function,
a relation such as this is called a partial function. That is, a partial function
f : A → B is a relation such that, for all a ∈ A, f(a) is a uniquely determined
element of B whenever it is defined. For example, the formula f(x) = 1

1−x2 defines
a partial function f : R → R with domain R and codomain R: f is not defined at
x = −1 and x = 1, but, otherwise, f(x) is uniquely determined by the formula.

Exercise 1.1.1. Let n be a positive integer. How many binary relations are there
on a set A if |A| = n? [Hint: How many elements are there in |A× A|?]

1.2. Directed Graphs.

Definitions 1.2.1.
• A directed graph or a digraph D from A to B is a collection of vertices

V ⊆ A ∪B and a collection of edges R ⊆ A×B.
• If there is an ordered pair e = (x, y) in R then there is an arc or edge from

x to y in D.
• The elements x and y are called the initial and terminal vertices of the

edge e = (x, y), respectively.

Discussion

A digraph can be a useful device for representing a relation, especially if the
relation isn’t “too large” or complicated. If R is a relation on a set A, we simplify
the digraph G representing R by having only one vertex for each a ∈ A. This results,
however, in the possibility of having loops, that is, edges from a vertex to itself, and
having more than one edge joining distinct vertices (but with opposite orientations).
A digraph for the relation R in Example 1.1.1 would be difficult to illustrate, and
impossible to draw completely, since it would require infinitely many vertices and
edges. We could draw a digraph for some finite subset of R.

1. RELATIONS AND THEIR PROPERTIES 10

Example 1.2.1. Suppose R is the relation on {0, 1, 2, 3, 4, 5, 6} defined by mRn
if and only if m ≡ n(mod 3). The digraph that represents R is

0

3 6

1

4

2

5

1.3. Representing Relations with Matrices.

Definition 1.3.1. Let R be a relation from A = {a1, a2, . . . , am} to B = {b1, b2, . . . , bn}.
An m× n connection matrix MR = {mij} for R is defined by

mij =

{
1 if (ai, bj) ∈ R,
0 otherwise.

1.4. Example 1.4.1.

Example 1.4.1. Let A = {a, b, c}, B = {e, f, g, h}, and R = {(a, e), (c, g)}.

then the connection matrix

MR =

1 0 0 0
0 0 0 0
0 0 1 0

 .

Discussion

Recall the connection matrix for a finite relation is a method for representing a
relation using a matrix.

Remark 1.4.1. The ordering of the elements in A and B is important. If the
elements are rearranged the matrix would be different! If there is a natural order to
the elements of the sets (like numerical or alphabetical) you would expect to use this
order when creating connection matrices.

To find this matrix we may use a table as follows. First we set up a table labeling
the rows and columns with the vertices.

e f g h
a
b
c

1. RELATIONS AND THEIR PROPERTIES 11

Since (a, e) ∈ R we put a 1 in the row a and column e and since (c, g) ∈ R we put
a 1 in row c and column g.

e f g h
a 1
b
c 1

Fill in the rest of the entries with 0’s. The matrix may then be read straight from
the table.

1.5. Inverse Relation.

Definition 1.5.1. Let R be a relation from A to B. Then R−1 = {(b, a)|(a, b) ∈
R} is a relation from B to A.

R−1 is called the inverse of the relation R.

Discussion

The inverse of a relation R is the relation obtained by simply reversing the ordered
pairs of R. The inverse of a relation is also called the converse of a relation.

Example 1.5.1. Let A = {a, b, c} and B = {1, 2, 3, 4} and let R = {(a, 1), (a, 2), (c, 4)}.
Then R−1 = {(1, a), (2, a), (4, a)}.

Exercise 1.5.1. Suppose A and B are sets and f : A → B is a function. The
graph of f , graph(f) = {(x, f(x))|x ∈ A} is a relation from A to B.

(a) What is the inverse of this relation?
(b) Does f have to be invertible (as a function) for the inverse of this relation to

exist?
(c) If f is invertible, find the inverse of the relation graph(f) in terms of the

inverse function f−1.

1.6. Special Properties of Binary Relations. Definitions. Let A be a set,
and let R be a binary relation on A.

(1) R is reflexive if
∀x[(x ∈ A) → ((x, x) ∈ R)].

(2) R is irreflexive if
∀x[(x ∈ A) → ((x, x) 6∈ R)].

(3) R is symmetric if
∀x∀y[((x, y) ∈ R) → ((y, x) ∈ R)].

1. RELATIONS AND THEIR PROPERTIES 12

(4) R is antisymmetric if
∀x∀y[((x, y) ∈ R ∧ (y, x) ∈ R) → (x = y)].

(5) R is asymmetric if
∀x∀y[((x, y) ∈ R) → ((y, x) 6∈ R)].

(6) R is transitive if
∀x∀y∀z[((x, y) ∈ R ∧ (y, z) ∈ R) → ((x, z) ∈ R)].

Discussion

The definition above recalls six special properties that a relation may (or may
not) satisfy. Notice that the definitions of reflexive and irreflexive relations are not
complementary. That is, a relation on a set may be both reflexive and irreflexive or
it may be neither. The same is true for the symmetric and antisymmetric properties,
as well as the symmetric and asymmetric properties.

The terms reflexive, symmetric, and transitive is generally consistent from author
to author. The rest are not as consistent in the literature

Exercise 1.6.1. Before reading further, find a relation on the set {a, b, c} that is
neither

(a) reflexive nor irreflexive.
(b) symmetric nor antisymmetric.
(c) symmetric nor asymmetric.

1.7. Examples of Relations and their Properties.

Example 1.7.1. Suppose A is the set of all residents of Florida and R is the
relation given by aRb if a and b have the same last four digits of their Social Security
Number. This relation is. . .

• reflexive
• not irreflexive
• symmetric
• not antisymmetric
• not asymmetric
• transitive

Example 1.7.2. Suppose T is the relation on the set of integers given by xTy if
2x− y = 1. This relation is. . .

• not reflexive
• not irreflexive

1. RELATIONS AND THEIR PROPERTIES 13

• not symmetric
• antisymmetric
• not asymmetric
• not transitive

Example 1.7.3. Suppose A = {a, b, c, d} and R is the relation {(a, a)}. This
relation is. . .

• not reflexive
• not irreflexive
• symmetric
• antisymmetric
• not asymmetric
• transitive

Discussion

When proving a relation, R, on a set A has a particular property, the property
must be shown to hold for all appropriate combinations of members of the set. When
proving a relation R does not have a property, however, it is enough to give a coun-
terexample.

Example 1.7.4. Suppose T is the relation in Example 1.7.2 in Section 1.7. This
relation is

• not reflexive

Proof. 2 is an integer and 2 · 2 − 2 = 2 6= 1. This shows that ∀x[x ∈
Z → (x, x) ∈ T] is not true. �

• not irreflexive

Proof. 1 is an integer and 2 · 1 − 1 = 1. This shows that ∀x[x ∈ Z →
(x, x) 6∈ T] is not true. �

• not symmetric

Proof. Both 2 and 3 are integers, 2 · 2 − 3 = 1, and 2 · 3 − 2 = 4 6= 1.
This shows 2R3, but 3 6R2; that is, ∀x∀y[(x, y) ∈ Z → (y, x) ∈ T] is not
true. �

• antisymmetric

Proof. Let m, n ∈ Z be such that (m,n) ∈ T and (n, m) ∈ T . By the
definition of T , this implies both equations 2m − n = 1 and 2n − m = 1
must hold. We may use the first equation to solve for n, n = 2m − 1, and
substitute this in for n in the second equation to get 2(2m− 1)−m = 1. We

1. RELATIONS AND THEIR PROPERTIES 14

may use this equation to solve for m and we find m = 1. Now solve for n
and we get n = 1.

This shows that the only integers, m and n, such that both equations
2m − n = 1 and 2n − m = 1 hold are m = n = 1. This shows that
∀m∀n[((m,n) ∈ T ∧ (n,m) ∈ T) → m = n]. �

• not asymmetric

Proof. 1 is an integer such that (1, 1) ∈ T . Thus ∀x∀y[((x, y) ∈ T →
(b, a) 6∈ T] is not true (counterexample is a = b = 1). �

• not transitive

Proof. 2, 3, and 5 are integers such that (2, 3) ∈ T , (3, 5) ∈ T , but
(2, 5) 6∈ T . This shows ∀x∀y∀z[(x, y) ∈ T ∧ (y, z) ∈ T → (x, z) ∈ T] is not
true. �

Exercise 1.7.1. Verify the assertions made about the relation in Example 1.7.1
in Section 1.7.

Exercise 1.7.2. Verify the assertions made about the relation in Example 1.7.3
in Section 1.7.

Exercise 1.7.3. Suppose R ⊂ Z+ × Z+ is the relation defined by (m, n) ∈ R if
and only if m|n. Prove that R is

(a) reflexive.
(b) not irreflexive.
(c) not symmetric.
(d) antisymmetric.
(e) not asymmetric.
(f) transitive.

1.8. Theorem 1.8.1: Connection Matrices v.s. Properties.

Theorem 1.8.1. Let R be a binary relation on a set A and let MR be its connection
matrix. Then

• R is reflexive iff mii = 1 for all i.
• R is irreflexive iff mii = 0 for all i.
• R is symmetric iff M is a symmetric matrix.
• R is antisymmetric iff for each i 6= j, mij = 0 or mji = 0.
• R is asymmetric iff for every i and j, if mij = 1, then mji = 0.

Discussion

Connection matrices may be used to test if a finite relation has certain properties
and may be used to determine the composition of two finite relations.

1. RELATIONS AND THEIR PROPERTIES 15

Example 1.8.1. Determine which of the properties: reflexive, irreflexive, symmet-
ric, antisymmetric, asymmetric, the relation on {a, b, c, d} represented by the following
matrix has.

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 .

Solution. The relation is irreflexive, asymmstric and antisymmetric only.

Exercise 1.8.1. Determine which of the properties: reflexive, irreflexive, symmet-
ric, antisymmetric, asymmetric, the relation on {a, b, c, d} represented by the following
matrix has.

1 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

 .

1.9. Combining Relations. Suppose property P is one of the properties listed
in Section 1.6, and suppose R and S are relations on a set A, each having property
P . Then the following questions naturally arise.

(1) Does R (necessarily) have property P?
(2) Does R ∪ S have property P?
(3) Does R ∩ S have property P?
(4) Does R− S have property P?

Discussion

Notice that when we combine two relations using one of the binary set operations
we are combining sets of ordered pairs.

1.10. Example 1.10.1.

Example 1.10.1. Let R and S be transitive relations on a set A. Does it follow
that R ∪ S is transitive?

Solution. No. Here is a counterexample:

1. RELATIONS AND THEIR PROPERTIES 16

A = {1, 2}, R = {(1, 2)}, S = {(2, 1)}

Therefore, R ∪ S = {(1, 2), (2, 1)}

Notice that R and S are both transitive (vacuously, since there are no two elements
satisfying the hypothesis of the conditions of the property). However R ∪ S is not
transitive. If it were it would have to have (1, 1) and (2, 2) in R ∪ S.

Discussion

The solution to Example 1.10.1 gives a counterexample to show that the union
of two transitive relations is not necessarily transitive. Note that you could find an
example of two transitive relations whose union is transitive. The question, however,
asks if the given property holds for two relations must it hold for the binary operation
of the two relations. This is a general question and to give the answer “yes” we must
know it is true for every possible pair of relations satisfying the property.

Here is another example:

Example 1.10.2. Suppose R and S are transitive relations on the set A. Is R∩S
transitive?

Solution. Yes.

Proof. Assume R and S are both transitive and suppose (a, b), (b, c) ∈ R ∩ S.
Then (a, b), (b, c) ∈ R and (a, b), (b, c) ∈ S. It is given that both R and S are
transitive, so (a, c) ∈ R and (a, c) ∈ S. Therefore (a, c) ∈ R ∩ S. This shows that for
arbitrary (a, b), (b, c) ∈ R ∩ S we have (a, c) ∈ R ∩ S. Thus R ∩ S is transitive. �

As it turns out, the intersection of any two relations satisfying one of the properties
in Section 1.6 also has that property. As the following exercise shows, sometimes even
more can be proved.

Exercise 1.10.1. Suppose R and S are relations on a set A.

(a) Prove that if R and S are reflexive, then so is R ∩ S.
(b) Prove that if R is irreflexive, then so is R ∩ S.

Exercise 1.10.2. Suppose R and S are relations on a set A.

1. RELATIONS AND THEIR PROPERTIES 17

(a) Prove that if R and S are symmetric, then so is R ∩ S.
(b) Prove that if R is antisymmetric, then so is R ∩ S.
(c) Prove that if R is asymmetric, then so is R ∩ S.

Exercise 1.10.3. Suppose R and S are relations on a set A. Prove or disprove:

(a) If R and S are reflexive, then so is R ∪ S.
(b) If R and S are irreflexive, then so is R ∪ S.

Exercise 1.10.4. Suppose R and S are relations on a set A. Prove or disprove:

(a) If R and S are symmetric, then so is R ∪ S.
(b) If R and S are antisymmetric, then so is R ∪ S.
(c) If R and S are asymmetric, then so is R ∪ S.

1.11. Definition of Composition.

Definition 1.11.1.
(1) Let

• R be a relation from A to B, and
• S be a relation from B to C.

Then the composition of R with S, denoted S ◦ R, is the relation from A
to C defined by the following property:

(x, z) ∈ S ◦ R if and only if there is a y ∈ B such that (x, y) ∈ R and
(y, z) ∈ S.

(2) Let R be a binary relation on A. Then Rn is defined recursively as follows:
Basis: R1 = R
Recurrence: Rn+1 = Rn ◦R, if n ≥ 1.

Discussion

The composition of two relations can be thought of as a generalization of the
composition of two functions, as the following exercise shows.

Exercise 1.11.1. Prove: If f : A → B and g : B → C are functions, then
graph(g ◦ f) = graph(g) ◦ graph(f).

Exercise 1.11.2. Prove the composition of relations is an associative operation.

Exercise 1.11.3. Suppose R is a relation on A. Using the previous exercise and
mathematical induction, prove that Rn ◦R = R ◦Rn .

Exercise 1.11.4. Prove an ordered pair (x, y) ∈ Rn if and only if, in the digraph
D of R, there is a directed path of length n from x to y.

Notice that if there is no element of B such that (a, b) ∈ R1 and (b, c) ∈ R2 for
some a ∈ A and c ∈ C, then the composition is empty.

1. RELATIONS AND THEIR PROPERTIES 18

1.12. Example 1.12.1.

Example 1.12.1. Let A = {a, b, c}, B = {1, 2, 3, 4}, and
C = {I, II, III, IV }.

• If R = {(a, 4), (b, 1)} and
• S = {(1, II), (1, IV), (2, I)}, then
• S ◦R = {(b, II), (b, IV)}.

Discussion

It can help to consider the following type of diagram when discussing composition
of relations, such as the ones in Example 1.12.1 shown here.

a

b

c

1

2

3

4

I

II

III

IV

Example 1.12.2. If R and S are transitive binary relations on A, is R ◦ S tran-
sitive?

Solution. No. Here is a counterexample: Let

R = {(1, 2), (3, 4)}, and S = {(2, 3), (4, 1)}.
Both R and S are transitive (vacuously), but

R ◦ S = {(2, 4), (4, 2)}
is not transitive. (Why?)

Example 1.12.3. Suppose R is the relation on Z+ defined by aRb if and only if
a|b. Then R2 = R.

Exercise 1.12.1. Suppose R is the relation on the set of real numbers given by
xRy if and only if x

y
= 2.

(a) Describe the relation R2.
(b) Describe the relation Rn, n ≥ 1.

Exercise 1.12.2. Suppose R and S are relations on a set A that are reflexive.
Prove or disprove the relation obtained by combining R and S in one of the following
ways is reflexive. (Recall: R⊕ S = (R ∪ S)− (R ∩ S).)

1. RELATIONS AND THEIR PROPERTIES 19

(a) R⊕ S
(b) R− S
(c) R ◦ S
(d) R−1

(e) Rn, n ≥ 2

Exercise 1.12.3. Suppose R and S are relations on a set A that are symmetric.
Prove or disprove the relation obtained by combining R and S in one of the following
ways is symmetric.

(a) R⊕ S
(b) R− S
(c) R ◦ S
(d) R−1

(e) Rn, n ≥ 2

Exercise 1.12.4. Suppose R and S are relations on a set A that are transitive.
Prove or disprove the relation obtained by combining R and S in one of the following
ways is transitive.

(a) R⊕ S
(b) R− S
(c) R ◦ S
(d) R−1

(e) Rn, n ≥ 2

1.13. Theorem 1.13.1: Characterization of Transitive Relations.

Theorem 1.13.1. Let R be a binary relation on a set A. R is transitive if and
only if Rn ⊆ R, for n ≥ 1.

Proof. To prove (R transitive) → (Rn ⊆ R) we assume R is transitive and prove
Rn ⊆ R for n ≥ 1 by induction.

Basis Step, n = 1. R1 = R, so the statement is vacuously true when n = 1, since
R1 = R ⊆ R whether or not R is transitive.

Induction Step. Prove Rn ⊆ R → Rn+1 ⊆ R.

Assume Rn ⊆ R for some n ≥ 1. Suppose (x, y) ∈ Rn+1. By definition, Rn+1 =
Rn ◦ R, so there must be some a ∈ A such that (x, a) ∈ R and (a, y) ∈ Rn. By the
induction hypothesis, Rn ⊆ R, so (a, y) ∈ R. Since R is transitive, (x, a), (a, y) ∈ R
implies (x, y) ∈ R. Since (x, y) was an arbitrary element of Rn+1, we have shown
Rn+1 ⊆ R.

1. RELATIONS AND THEIR PROPERTIES 20

We now prove the reverse implication: Rn ⊆ R, for n ≥ 1, implies R is transitive.
We prove this directly using only the hypothesis for n = 2.

Assume (x, y), (y, z) ∈ R. The definition of composition implies (x, z) ∈ R2. But
R2 ⊆ R, so (x, z) ∈ R. Thus R is transitive.

�

Discussion

Theorem 1.13.1 gives an important characterization of the transitivity property.
Notice that, since the statement of the theorem was a property that was to be proven
for all positive integers, induction was a natural choice for the method of proof.

Exercise 1.13.1. Prove that a relation R on a set A is transitive if and only
if R2 ⊆ R. [Hint: Examine not only the statement, but the proof of the Theorem
1.13.1.]

1.14. Connection Matrices v.s. Composition. Recall: The boolean prod-
uct of an m×k matrix A = [aij] and a k×n matrix B = [bij], denoted A�B = [cij],
is defined by

cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ · · · ∨ (aik ∧ bkj).

Theorem 1.14.1. Let X, Y , and Z be finite sets. Let R1 be a relation from X to
Y and R2 be a relation from Y to Z. If M1 is the connection matrix for R1 and M2

is the connection matrix for R2, then M1 �M2 is the connection matrix for R2 ◦R1.

We write MR2◦R1 = MR1 �MR2.

Corollary 1.14.1.1. MRn = (MR)n (the boolean nth power of MR).

Exercise 1.14.1. Let the relation R on {a, b, c, d} be represented by the matrix
1 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

 .

Find the matrix that represents R3.

2. CLOSURE OF RELATIONS 21

2. Closure of Relations

2.1. Definition of the Closure of Relations.

Definition 2.1.1. Given a relation R on a set A and a property P of relations,
the closure of R with respect to property P , denoted ClP (R), is smallest relation on
A that contains R and has property P . That is, ClP (R) is the relation obtained by
adding the minimum number of ordered pairs to R necessary to obtain property P .

Discussion

To say that ClP (R) is the “smallest” relation on A containing R and having
property P means that

• R ⊆ ClP (R),
• ClP (R) has property P , and
• if S is another relation with property P and R ⊆ S, then ClP (R) ⊆ S.

The following theorem gives an equivalent way to define the closure of a relation.

Theorem 2.1.1. If R is a relation on a set A, then ClP (R) =
⋂
S∈P

S, where

P = {S|R ⊆ S and S has property P}.
Exercise 2.1.1. Prove Theorem 2.1.1. [Recall that one way to show two sets, A

and B, are equal is to show A ⊆ B and B ⊆ A.]

2.2. Reflexive Closure.

Definition 2.2.1. Let A be a set and let ∆ = {(x, x)|x ∈ A}. ∆ is called the
diagonal relation on A.

Theorem 2.2.1. Let R be a relation on A. The reflexive closure of R, denoted
r(R), is the relation R ∪∆.

Proof. Clearly, R ∪∆ is reflexive, since (a, a) ∈ ∆ ⊆ R ∪∆ for every a ∈ A.

On the other hand, if S is a reflexive relation containing R, then (a, a) ∈ S for
every a ∈ A. Thus, ∆ ⊆ S and so R ∪∆ ⊆ S.

Thus, by definition, R ∪∆ ⊆ S is the reflexive closure of R.

�

2. CLOSURE OF RELATIONS 22

Discussion

Theorem 2.2.1 in Section 2.2 gives a simple method for finding the reflexive closure
of a relation R.

Remarks 2.2.1.
(1) Sometimes ∆ is called the identity or equality relation on A.
(2) ∆ is the smallest reflexive relation on A.
(3) Given the digraph of a relation, to find the digraph of its reflexive closure,

add a loop at each vertex (for which no loop already exists).
(4) Given the connection matrix M of a finite relation, the matrix of its reflexive

closure is obtained by changing all zeroes to ones on the main diagonal of
M . That is, form the Boolean sum M ∨ I, where I is the identity matrix of
the appropriate dimension.

2.3. Symmetric Closure.

Theorem 2.3.1. The symmetric closure of R, denoted s(R), is the relation
R ∪R−1, where R−1 is the inverse of the relation R.

Discussion

Remarks 2.3.1.
(1) To get the digraph of the inverse of a relation R from the digraph of R,

reverse the direction of each of the arcs in the digraph of R.
(2) To get the digraph of the symmetric closure of a relation R, add a new arc

(if none already exists) for each (directed) arc in the digraph for R, but with
the reverse direction.

(3) To get the connection matrix of the inverse of a relation R from the connec-
tion matrix M of R, take the transpose, M t.

(4) To get the connection matrix of the symmetric closure of a relation R from
the connection matrix M of R, take the Boolean sum M ∨M t.

(5) The composition of a relation and its inverse is not necessarily equal to the
identity. A bijective function composed with its inverse, however, is equal to
the identity.

2.4. Examples.

Example 2.4.1. If A = Z, and R is the relation (x, y) ∈ R iff x 6= y, then

• r(R) = Z× Z.
• s(R) = R.

Example 2.4.2. If A = Z+, and R is the relation (x, y) ∈ R iff x < y, then

2. CLOSURE OF RELATIONS 23

• r(R) is the relation (x, y) ∈ r(R) iff x ≤ y.
• s(R) is the relation (x, y) ∈ s(R) iff x 6= y.

Example 2.4.3. Let R be represented by the digraph
a b

c d

• The digraph of r(R) is
a b

c d

• The digraph of s(R) is

a b

c d

Discussion

In Section 2.4 we give several reflexive and symmetric closures of relations. Here
is another example using the connection matrix of a relation.

Example 2.4.4. Suppose R is a relation with connection matrix

M =

1 0 1
1 0 0
0 1 0

 .

2. CLOSURE OF RELATIONS 24

• The connection matrix of the reflexive closure is

Mr =

1 0 1
1 1 0
0 1 1

 .

• The connection matrix for the symmetric closure is

Ms =

1 1 1
1 0 1
1 1 0

 .

2.5. Relation Identities.

Theorem 2.5.1. Suppose R and S are relations from A to B. Then

(1) (R−1)−1 = R
(2) (R ∪ S)−1 = R−1 ∪ S−1

(3) (R ∩ S)−1 = R−1 ∩ S−1

(4) (A×B)−1 = B × A
(5) ∅−1 = ∅
(6) (R)−1 = R−1

(7) (R− S)−1 = R−1 − S−1

(8) If A = B then (R ◦ S)−1 = S−1 ◦R−1

(9) If R ⊆ S then R−1 ⊆ S−1

Discussion

The properties given in Theorem 2.5.1 may be useful when trying to find the
inverse of a relation.

Example 2.5.1. Suppose R is the relation on the real numbers defined by xRy iff
x+y = 1 or x−y = 1. R is the union of the two relations R1 and R2 defined by xR1y
iff x+ y = 1 and xR2y iff x− y = 1. Since R−1

1 is defined by xR−1
1 y iff y +x = 1 and

R−1
2 is defined by xR−1

2 y iff y−x = 1, we apply the property (R1∪R2)
−1 = R−1

1 ∪R−1
2

to see xR−1y is defined by y + x = 1 or y − x = 1.

Exercise 2.5.1. Describe the symmetric closure of the relation, R, in Example
2.5.1.

Proof that (R ∪ S)−1 = R−1 ∪ S−1. (x, y) ∈ (R ∪ S)−1

⇔ (y, x) ∈ R ∪ S, by the definition of the inverse relation,

⇔ (y, x) ∈ R or (y, x) ∈ S, by the definition of union,

2. CLOSURE OF RELATIONS 25

⇔ (x, y) ∈ R−1 or (x, y) ∈ S−1, by the definition of inverse relations,

⇔ (x, y) ∈ R−1 ∪ S−1, by the definition of union.

�

Exercise 2.5.2. Prove Property 1 in Theorem 2.5.1.

Exercise 2.5.3. Prove Property 3 in Theorem 2.5.1.

Exercise 2.5.4. Prove Property 4 in Theorem 2.5.1.

Exercise 2.5.5. Prove Property 5 in Theorem 2.5.1.

Proof of Property 6 in Theorem 2.5.1. Let a ∈ A and b ∈ B. Then

(b, a) ∈ (R)−1 ⇔ (a, b) ∈ (R) by the definition of the inverse of a relation
⇔ (a, b) 6∈ R by the definition of the complement
⇔ (b, a) 6∈ R−1 by the definition of the inverse of a relation

⇔ (b, a) ∈ R−1 by the definition of the complement

�

Exercise 2.5.6. Prove Property 7 in Theorem 2.5.1.

Exercise 2.5.7. Prove Property 8 in Theorem 2.5.1.

Exercise 2.5.8. Prove Property 9 in Theorem 2.5.1.

2.6. Characterization of Symmetric Relations.

Theorem 2.6.1. Let R be a relation on a set A. Then R is symmetric iff R = R−1.

Proof. First we show that if R is symmetric, then R = R−1. Assume R is
symmetric. Then

(x, y) ∈ R ⇔ (y, x) ∈ R, since R is symmetric
⇔ (x, y) ∈ R−1, by definition of R−1

That is, R = R−1.

Conversely, Assume R = R−1, and show R is symmetric. To show R is symmetric
we must show the implication “if (x, y) ∈ R, then (y, x) ∈ R” holds. Assume (x, y) ∈
R. Then (y, x) ∈ R−1 by the definition of the inverse. But, since R = R−1, we have
(y, x) ∈ R.

�

2. CLOSURE OF RELATIONS 26

Discussion

Theorem 2.6.1 in Section 2.6 gives us an easy way to determine if a relation is
symmetric.

2.7. Paths.

Definition 2.7.1.
(1) A path of length n in a digraph G is a sequence of edges

(x0, x1)(x1, x2)(x2, x3) · · · (xn−1, xn).

(2) If x0 = xn the path is called a cycle or a circuit.
(3) If R is a relation on a set A and a and b are in A, then a path of length

n in R from a to b is a sequence of ordered pairs

(a, x1)(x1, x2)(x2, x3) · · · (xn−1, b)

from R.

Discussion

The reflexive and symmetric closures are generally not hard to find. Finding the
transitive closure can be a bit more problematic. It is not enough to find R ◦R = R2.
R2 is certainly contained in the transitive closure, but they are not necessarily equal.
Defining the transitive closure requires some additional concepts.

Notice that in order for a sequence of ordered pairs or edges to be a path, the
terminal vertex of an arc in the list must be the same as the initial vertex of the next
arc.

Example 2.7.1. If R = {(a, a), (a, b), (b, d), (d, b), (b, a)} is a relation on the set
A = {a, b, c, d}, then

(d, b)(b, a)(a, a)(a, a)

is a path in R of length 4.

2.8. Paths v.s Composition.

Theorem 2.8.1. If R be a relation on a set A, then there is a path of length n
from a to b in A if and only if (a, b) ∈ Rn.

Proof. (by induction on n):

Basis Step: An arc from a to b is a path of length 1, and it is a path of length
1 in R iff (a, b) ∈ R = R1.

2. CLOSURE OF RELATIONS 27

Induction Hypothesis: Assume that there is a path of length n from a to b in
R iff (a, b) ∈ Rn for some integer n.

Induction Step: Prove that there is a path of length n + 1 from a to b in R iff
(a, b) ∈ Rn+1.

Assume
(a, x1)(x1, x2) · · · (xn−1, xn)(xn, b)

is a path of length n + 1 from a to b in R. Then

(a, x1)(x1, x2) · · · (xn−1, xn)

is a path of length n from a to xn in R. By the induction hypothesis, (a, xn) ∈
Rn, and we also have (xn, b) ∈ R. Thus by the definition of Rn+1, (a, b) ∈
Rn+1.

Conversely, assume (a, b) ∈ Rn+1 = Rn ◦ R. Then there is a c ∈ A such
that (a, c) ∈ R and (c, b) ∈ Rn. By the induction hypothesis there is a path
of length n in R from c to b. Moreover, (a, c) is a path of length 1 from a to
c. By concatenating (a, c) onto the beginning of the path of length n from c
to b, we get a path of length n+1 from a to b. This completes the induction
step.

This shows by the principle of induction that There is a path of length n
from a to b iff (a, b) ∈ Rn for any positive integer n.

�

Discussion

Notice that since the statement is stated for all positive integers, induction is a
natural choice for the proof.

2.9. Characterization of a Transitive Relation.

Theorem 2.9.1. Let R, S, T , U be relations on a set A.

(1) If R ⊆ S and T ⊆ U , then R ◦ T ⊆ S ◦ U .
(2) If R ⊆ S, then Rn ⊆ Sn for every positive integer n.
(3) If R is transitive, then so is Rn for every positive integer n.
(4) If Rk = Rj for some j > k, then Rj+m = Rk+m for every positive integer m.
(5) R is transitive iff Rn is contained in R for every positive integer n.

Discussion

Theorem 2.9.1 in Section 2.9 give several properties that are useful in finding the
transitive closure. The most useful are the last two. The second to the last property

2. CLOSURE OF RELATIONS 28

stated in the theorem tells us that if we find a power of R that is the same as an
earlier power, then we will not find anything new by taking higher powers. The very
last tells us that we must include all the powers of R in the transitive closure.

Proof of Property 1. Assume T and U are relations from A to B, R and S
are relations from B to C, and R ⊆ S and T ⊆ U . Prove R ◦ T ⊆ S ◦ U .

Let (x, y) ∈ R ◦ T . Then by the definition of composition, there exists a b ∈ B
such that (x, b) ∈ T and (b, y) ∈ R. Since R ⊆ S and T ⊆ U we have (x, b) ∈ U and
(b, y) ∈ S. This implies (x, y) ∈ S ◦U . Since (x, y) was an arbitrary element of R ◦ T
we have shown R ◦ T ⊆ S ◦ U .

�

Exercise 2.9.1. Prove property 2 in Theorem 2.9.1. Hint: use induction and
property 1.

Exercise 2.9.2. Prove property 3 in Theorem 2.9.1. Hint: use induction on n.

Exercise 2.9.3. Prove property 4 in Theorem 2.9.1.

Exercise 2.9.4. Prove property 5 in Theorem 2.9.1.

2.10. Connectivity Relation.

Definition 2.10.1. The connectivity relation of the relation R, denoted R∗,
is the set of ordered pairs (a, b) such that there is a path (in R) from a to b.

R∗ =
∞⋃

n=1

Rn

2.11. Characterization of the Transitive Closure.

Theorem 2.11.1. Given a relation R on a set A, the transitive closure of R,
t(R) = R∗.

Proof. Let S be the transitive closure of R. We will prove S = R∗ by showing
that each contains the other.

(1) Proof of R∗ ⊆ S. By property 5 of Theorem 2.9.1, Sn ⊆ S for all n, since S
is transitive. Since R ⊆ S, property 2 of Theorem 2.9.1 implies Rn ⊆ Sn for
all n. Hence, Rn ⊆ S for all n, and so

R∗ =
∞⋃

n=1

Rn ⊆ S.

2. CLOSURE OF RELATIONS 29

(2) Proof of S ⊆ R∗. We will prove this by first showing that R∗ is transitive.
Suppose (a, b) and (b, c) are in R∗. Then (a, b) ∈ Rm for some m ≥ 1

and (b, c) ∈ Rn for some n ≥ 1. This means there is a path of length m
in R from a to b and a path of length n in R from b to c. Concatenating
these two paths gives a path of length m + n in R from a to c. That is,
(a, c) ∈ Rm+n ⊆ R∗. Thus, R∗ is transitive. Since S is the transitive closure
of R, it must be contained in any transitive relation that contains R. Thus,
S ⊆ R∗.

�

Discussion

Theorem 2.11.1 in Section 2.11 identifies the transitive closure, t(R), of a relation
R. In the second part of the proof of Theorem 2.11.1 we have used the definition of
the closure of a relation with respect to a property as given in Section 2.1. (See also
the discussion immediately following Section 2.1.)

2.12. Example.

Example 2.12.1. Let R be the relation on the set of integers given by {(i, i+1)|i ∈
Z}. Then the transitive closure of R is R∗ = {(i, i + k)|i ∈ Z and k ∈ Z+}.

Example 2.12.2. S is the relation
a b

c d

The transitive closure is

2. CLOSURE OF RELATIONS 30

a b

c

d

Discussion

Here is another example:

Example 2.12.3. Let A be the set of all people and R the relation {(x, y)| person
x is a parent of person y}. Then R∗ is the relation {(x, y)| person x is an ancestor of
person y}.

2.13. Cycles.

Theorem 2.13.1. If R is a relation on a set A and |A| = n, then any path of
length greater than or equal to n must contain a cycle.

Proof. Suppose x0, x1, x2, ..., xm is a sequence in A such that (xi−1, xi) ∈ R for
i = 1, ...,m, where m ≥ n. That is, there is a path in R of length greater than or
equal to n. Since |A| = n, the pigeon hole principle implies that xi = xj for some
i 6= j. Thus, (assuming i < j) the path contains a cycle from xi to xj (= xi). �

Discussion

An easy way to understand what Theorem 2.13.1 in Section 2.13 is saying is to
look at a digraph. Take the digraph

2. CLOSURE OF RELATIONS 31

a b

c d

Take any path of length greater than 4. Say, (a, b)(b, d)(d, b)(b, a)(a, b). By the
theorem the path must have a cycle contained within it (a path that begins and
ends at the same vertex). In this particular example there are several cycles; e.g.,
(a, b)(b, d)(d, b)(b, a). Notice if you eliminate this cycle you will have a shorter path
with same beginning and ending vertex as the original path.

One of the points of Theorem 2.13.1 is that if |A| = n then Rk for k ≥ n does not
contain any arcs that did not appear in at least one of the first n powers of R.

2.14. Corollaries to Theorem 2.13.1.

Corollary 2.14.0.1. If |A| = n, the transitive closure of a relation R on A is

R∗ = R ∪R2 ∪R3 ∪ · · · ∪Rn.

Corollary 2.14.0.2. We can find the connection matrix of R∗ by computing the
join of the first n Boolean powers of the connection matrix of R.

Discussion

The corollaries of Theorem 2.13.1 in Section 2.14 give us powerful algorithms for
computing the transitive closure of relations on finite sets. Now, it is possible for
R∗ = R∪R2 ∪ · · · ∪Rk for some k < n, but the point is that you are guaranteed that
R∗ = R ∪R2 ∪ · · · ∪Rn if |A| = n.

2.15. Example 10.

Example 2.15.1. Let R be the relation {(a, b), (c, b), (d, a), (c, c)} in A = {a, b, c, d}.
We find the transitive closure by using the corollary in Section 2.14.

The connectivity matrix for R is

M =

0 1 0 0
0 0 0 0
0 1 1 0
1 0 0 0

 . M [2] =

0 0 0 0
0 0 0 0
0 1 1 0
0 1 0 0

 ,

2. CLOSURE OF RELATIONS 32

M [3] =

0 0 0 0
0 0 0 0
0 1 1 0
0 0 0 0

 , and M [4] =

0 0 0 0
0 0 0 0
0 1 1 0
0 0 0 0

 .

Therefore the connectivity matrix for R∗ is

M ∨M [2] ∨M [3] ∨M [4] =

0 1 0 0
0 0 0 0
0 1 1 0
1 1 0 0

Discussion

In this example we use the basic algorithm to find the transitive closure of a
relation. Recall M [n] = �n

k=1M . After taking the Boolean powers of the matrix, we
take the join of the four matrices. While it did not happen on this example, it is
possible for a Boolean power of the matrix to repeat before you get to the cardinality
of A. If this happens you may stop and take the join of the powers you have, since
nothing new will be introduced after that.

2.16. Properties v.s Closure.

Exercise 2.16.1. Suppose R is a relation on a set A that is reflexive. Prove or
disprove

(a) s(R) is reflexive
(b) t(R) is reflexive

Exercise 2.16.2. Suppose R is a relation on a set A that is symmetric. Prove or
disprove

(a) r(R) is symmetric
(b) t(R) is symmetric

Exercise 2.16.3. Suppose R is a relation on a set A that is transitive. Prove or
disprove

(a) r(R) is transitive
(b) s(R) is transitive

3. EQUIVALENCE RELATIONS 33

3. Equivalence Relations

3.1. Definition of an Equivalence Relations.

Definition 3.1.1. A relation R on a set A is an equivalence relation if and
only if R is

• reflexive,
• symmetric, and
• transitive.

Discussion

Section 3.1 recalls the definition of an equivalence relation. In general an equiv-
alence relation results when we wish to “identify” two elements of a set that share
a common attribute. The definition is motivated by observing that any process of
“identification” must behave somewhat like the equality relation, and the equality
relation satisfies the reflexive (x = x for all x), symmetric (x = y implies y = x), and
transitive (x = y and y = z implies x = z) properties.

3.2. Example.

Example 3.2.1. Let R be the relation on the set R real numbers defined by xRy
iff x− y is an integer. Prove that R is an equivalence relation on R.

Proof.
I. Reflexive: Suppose x ∈ R. Then x− x = 0, which is an integer. Thus, xRx.

II. Symmetric: Suppose x, y ∈ R and xRy. Then x − y is an integer. Since
y − x = −(x− y), y − x is also an integer. Thus, yRx.

III. Suppose x, y ∈ R, xRy and yRz. Then x − y and y − z are integers. Thus,
the sum (x− y) + (y − z) = x− z is also an integer, and so xRz.

Thus, R is an equivalence relation on R. �

Discussion

Example 3.2.2. Let R be the relation on the set of real numbers R in Example
1. Prove that if xRx′ and yRy′, then (x + y)R(x′ + y′).

Proof. Suppose xRx′ and yRy′. In order to show that (x+y)R(x′+y′), we must
show that (x + y)− (x′ + y′) is an integer. Since

(x + y)− (x′ + y′) = (x− x′) + (y − y′),

3. EQUIVALENCE RELATIONS 34

and since each of x−x′ and y−y′ is an integer (by definition of R), (x−x′)+(y−y′)
is an integer. Thus, (x + y)R(x′ + y′).

�

Exercise 3.2.1. In the example above, show that it is possible to have xRx′ and
yRy′, but (xy)�R(x′y′).

Exercise 3.2.2. Let V be the set of vertices of a simple graph G. Define a relation
R on V by vRw iff v is adjacent to w. Prove or disprove: R is an equivalence relation
on V .

3.3. Equivalence Classes.

Definition 3.3.1.
(1) Let R be an equivalence relation on A and let a ∈ A. The set [a] = {x|aRx}

is called the equivalence class of a.
(2) The element in the bracket in the above notation is called the Representa-

tive of the equivalence class.

Theorem 3.3.1. Let R be an equivalence relation on a set A. Then the following
are equivalent:

(1) aRb
(2) [a] = [b]
(3) [a] ∩ [b] 6= ∅

Proof. 1 → 2. Suppose a, b ∈ A and aRb. We must show that [a] = [b].

Suppose x ∈ [a]. Then, by definition of [a], aRx. Since R is symmetric and aRb,
bRa. Since R is transitive and we have both bRa and aRx, bRx. Thus, x ∈ [b].

Suppose x ∈ [b]. Then bRx. Since aRb and R is transitive, aRx. Thus, x ∈ [a].

We have now shown that x ∈ [a] if and only if x ∈ [b]. Thus, [a] = [b].

2 → 3. Suppose a, b ∈ A and [a] = [b]. Then [a] ∩ [b] = [a]. Since R is reflexive,
aRa; that is a ∈ [a]. Thus [a] = [a] ∩ [b] 6= ∅.

3 → 1. Suppose [a] ∩ [b] 6= ∅. Then there is an x ∈ [a] ∩ [b]. By definition, aRx
and bRx. Since R is symmetric, xRb. Since R is transitive and both aRx and xRb,
aRb. �

Discussion

3. EQUIVALENCE RELATIONS 35

The purpose of any identification process is to break a set up into subsets consist-
ing of mutually identified elements. An equivalence relation on a set A does precisely
this: it decomposes A into special subsets, called equivalence classes. Looking back
at the example given in Section 3.2, we see the following equivalence classes:

• [0] = Z, the set of integers.
• [1

2
] = {m

2
|m is an odd integer}

• [π] = {π + n|n is an integer} = [π + n], for any integer n.

Notice that [3
4
] = [−37

4
]. The number 3

4
is a representative of [3

4
], but −37

4
is also

a representative of [3
4
]. Indeed, any element of an equivalence class can be used to

represent that equivalence class.

These ideas are summed up in Theorem 3.3.1 in Section 3.3. When we say several
statements, such as P1, P2, and P3 are equivalent, we mean P1 ↔ P2 ↔ P3 is
true. Notice that in order to prove that the statements are mutually equivalent, it is
sufficient to prove a circle of implications, such as P1 → P2 → P3 → P1. This is how
we set up the proof of Theorem 3.3.1.

3.4. Partition.

Definition 3.4.1. A collection S of nonempty subsets of a set A is a partition
of A if

(1) S ∩ S ′ = ∅, if S and S ′ are in S and S 6= S ′, and
(2) A =

⋃
{S|S ∈ S}.

Theorem 3.4.1. The equivalence classes of an equivalence relation on A form a
partition of A. Conversely, given a partition on A, there is an equivalence relation
with equivalence classes that are exactly the partition given.

Discussion

The definition in Section 3.4 along with Theorem 3.4.1 describe formally the prop-
erties of an equivalence relation that motivates the definition. Such a decomposition
is called a partition. For example, if we wish to identify two integers if they are
either both even or both odd, then we end up with a partition of the integers into
two sets, the set of even integers and the set of odd integers. The converse of Theo-
rem 3.4.1 allows us to create or define an equivalence relation by merely partitioning
a set into mutually exclusive subsets. The common “attribute” then might just be
that elements belong to the same subset in the partition.

3. EQUIVALENCE RELATIONS 36

the notation used in the second part of Theorem 3.4.1 means that we take the
union of all the sets that are members of the set to the far right and this union is
defined to be set A.

Definition 3.4.2. If R is an equivalence relation on a set A, the set of equivalence
classes of R is denoted A/R.

Theorem 3.4.1 follows fairly easily from Theorem 3.3.1 in Section 3.3. Here is a
proof of one part of Theorem 3.4.1.

Proof. Suppose R is an equivalence relation on A and S is the set of equivalence
classes of R. If S is an equivalence class, then S = [a], for some a ∈ A; hence, S is
nonempty, since aRa by the reflexive property of R.

By Theorem 3.3.1, if S = [a] and S ′ = [b] are in S, then [a] = [b] iff [a] ∩ [b] 6= ∅.
Since this is a biconditional, this statement is equivalent to [a] 6= [b] iff [a] ∩ [b] = ∅.

Since each equivalence class is contained in A,
⋃
{S|S ∈ S} ⊆ A. But, as we just

saw, every element in A is in the equivalence class it represents, so A ⊆
⋃
{S|S ∈ S}.

This shows
⋃
{S|S ∈ S} = A. �

Exercise 3.4.1. Prove the converse statement in Theorem 3.4.1.

3.5. Intersection of Equivalence Relations.

Theorem 3.5.1. If R1 and R2 are equivalence relations on a set A then R1 ∩R2

is also an equivalence relation on A.

Discussion

To prove Theorem 3.5.1, it suffices to show the intersection of

• reflexive relations is reflexive,
• symmetric relations is symmetric, and
• transitive relations is transitive.

But these facts were established in the section on the Review of Relations.

3.6. Example.

Example 3.6.1. Let m be a positive integer. The relation a ≡ b (mod m), is an
equivalence relation on the set of integers.

3. EQUIVALENCE RELATIONS 37

Proof. Reflexive. If a is an arbitrary integer, then a − a = 0 = 0 · m. Thus
a ≡ a (mod m).

Symmetric. If a ≡ b (mod m), then a − b = k · m for some integer k. Thus,
b− a = (−k) ·m is also divisible by m, and so b ≡ a (mod m).

Transitive. Suppose a ≡ b (mod m) and b ≡ c (mod m). Then a − b = k ·m and
b− c = ` ·m for some integers k and `. Then

a− c = (a− b) + (b− c) = k ·m + ` ·m = (k + `)m

is also divisible by m. That is, a ≡ c (mod m). �

Discussion

Recall the “congruence” relations on the set Z of integers: Given an positive
integer m and integers a and b, a ≡ b (mod m) (read “a is congruent to b modulo m)
iff m|(a− b); that is, a− b = k ·m for some integer k.

Exercise 3.6.1. What are the equivalence classes for the congruence relation

(1) a ≡ b (mod 2)?
(2) a ≡ b (mod 3)?
(3) a ≡ b (mod 5)?

Given a positive integer m, the equivalence classes under the relation a ≡ b (mod m)
have canonical representatives. If we use the Division Algorithm to divide the integer
a by the integer m, we get a quotient q and remainder r, 0 ≤ r < m, satisfying the
equation a = mq + r. Recall that r = amodm and that a ≡ r (mod m). Thus
[a] = [r], and so there are exactly m equivalence classes

[0], [1], ...[m− 1].

If R is the congruence modulo m relation on the set Z of integers, the set of equivalence
classes, Z/R is usually denoted by either Z/m or Z/mZ. That is,

Z/m = {[0], [1], ...[m− 1]}.

Remark 3.6.1. If A is an infinite set and R is an equivalence relation on A, then
A/R may be finite, as in the example above, or it may be infinite. As the following
exercise shows, the set of equivalences classes may be very large indeed.

Exercise 3.6.2. Let R be the equivalence relation defined on the set of real num-
bers R in Example 3.2.1 (Section 3.2). That is, xRy iff x − y is an integer. Prove
that every equivalence class [x] has a unique canonical representative r such that
0 ≤ r < 1. That is, for every x there is a unique r such that [x] = [r] and 0 ≤ r < 1.
[Hint: You might recall the “floor” function f(x) = bxc.]

3. EQUIVALENCE RELATIONS 38

3.7. Example.

Example 3.7.1. Let R be the relation on the set of ordered pairs of positive inte-
gers such that (a, b)R(c, d) if and only if ad = bc.

• R is an equivalence relation.
• The equivalence class of (2, 3):

[(2, 3)] = {(2k, 3k)|k ∈ Z+}.
• There is a natural bijection between the equivalence classes of this relation

and the set of positive rational numbers.

Discussion

Notice that the relation R in Example 3.7.1 is a relation on the set Z+×Z+, and
so R ⊆ (Z+ × Z+)× (Z+ × Z+).

Proof R in Example 3.7.1 is an equivalence relation. We must show that
R is reflexive, symmetric, and transitive.

I. Reflexive: Let (a, b) be an ordered pair of positive integers. To show R
is reflexive we must show ((a, b), (a, b)) ∈ R. Multiplication of integers is
commutative, so ab = ba. Thus ((a, b), (a, b)) ∈ R.

II. Symmetric: Let (a, b) and (c, d) be ordered pairs of positive integers such
that (a, b)R(c, d) (recall this notation is equivalent to ((a, b), (c, d)) ∈ R).
Then ad = bc. This equation is equivalent to cb = da, so (c, d)R(a, b). This
shows R is symmetric.

III. Transitive: Let (a, b), (c, d), and (e, f) be ordered pairs of positive integers
such that (a, b)R(c, d) and (c, d)R(e, f). Then ad = bc and cf = de. Thus,
adf = bcf and bcf = bde, which implies adf = bde. Since d 6= 0, we
can cancel it from both sides of this equation to get af = be. This shows
(a, b)R(e, f), and so R is transitive.

�

One of the points of this example is that there is a bijection between the equiva-
lence classes of this relation and the set of positive rational numbers. In other words,
the function

f : (Z+ × Z+)/R = {[(a, b)]|[(a, b)] is an equivalence class of R} → Q+

defined by f([(a, b)]) = a/b is well-defined and is a bijection. This follows from the
fact that

[(a, b)] = [(c, d)] ⇔ (a, b)R(c, d) ⇔ ad = bc ⇔ a

b
=

c

d
.

3. EQUIVALENCE RELATIONS 39

Exercise 3.7.1. Let R be the relation defined on the set of ordered pairs Z+×Z+

of positive integers defined by

(a, b)R(c, d) ⇔ a + d = b + c.

(1) Prove that R is an equivalence relation on Z+ × Z+.
(2) List 5 different members of the equivalence class [(1, 4)].

Exercise 3.7.2. Let R be the relation defined on the set of ordered pairs Z+×Z+

of positive integers defined by

(a, b)R(c, d) ⇔ a + d = b + c.

Prove that the function f : Z+×Z+/R → Z, defined by f([a, b]) = a−b, is well-defined
and a bijection.

3.8. Isomorphism is an Equivalence Relation.

Theorem 3.8.1. Let S be a set of simple graphs. Define a relation R on S as
follows:

If G, H ∈ S, then (G, H) ∈ R if and only if G ' H.

(This is equivalent to (G, H) ∈ R if and only if there exists an isomorphism
f : V (G) → V (H) that preserves adjacencies.)

Then R is an equivalence relation on S.

Proof. Reflexive. Suppose G ∈ S. We need to show (G, G) ∈ R.

Define the function f : V (G) → V (G) by f(v) = v for every vertex v ∈ V (G).
Then f is the identity function on V (G); hence, f is a bijection. (f−1 = f !)

Clearly, v and u are adjacent in G if and only if f(v) = v and f(u) = u are
adjacent.

Thus, (G, G) ∈ R.

Symmetric. Suppose G, H ∈ S and (G, H) ∈ R. Then there exists an isomorphism
f : V (G) → V (H). We need to find an isomorphism g : V (H) → V (G).

Since f is a bijection, f is invertible. Thus the map f−1 : V (H) → V (G) is defined,
and we shall show it is an isomorphism. We know the inverse of a bijection is itself a
bijection, so all we need to show is that f−1 preserves adjacency.

Suppose u, v ∈ V (H). Then f−1(u) = x and f−1(v) = y are vertices of G.

3. EQUIVALENCE RELATIONS 40

Now, we know f preserves adjacency, so x and y are adjacent in G if and only if
f(x) = u and f(y) = v are adjacent in H. Use the previous equations to rewrite this
statement in terms of u and v: f−1(u)(= x) and f−1(v)(= y) are adjacent in G if and
only if u(= f(x)) and v(= f(y)) are adjacent in H.

Thus f−1 preserves adjacency, and so (H, G) ∈ R.

Transitive. Suppose G, H, K ∈ S are graphs such that (G, H), (H, K) ∈ R. We
need to prove (G, K) ∈ R.

Since (G, H) and (H, K) are in R, there are isomorphisms f : V (G) → V (H) and
g : V (H) → V (K). We need to find an isomorphism h : V (G) → V (K). Notice that
we have used different letters for the functions here. The function g is not necessarily
the same as the function f , so we cannot call it f as well.

Let h = g ◦ f . We will show h is an isomorphism.

Since the composition of bijections is again a bijection, g ◦ f : V (G) → V (K) is a
bijection.

What we still need to show is that the composition preserves adjacency. Let u
and v be vertices in G. Recall that f must preserve adjacency. Therefore, u and v are
adjacent in G if and only if f(u) and f(v) are adjacent in H. But since g preserves
adjacency, f(u) and f(v) are adjacent in H if and only if g(f(u)) and g(f(v)) are
adjacent in K. Using the fact that “if and only if” is transitive, we see that u and
v are adjacent in G if and only if (g ◦ f)(u) and (g ◦ f)(v) are adjacent in K. This
implies that g◦f preserves adjacency, and so g◦f : V (G) → V (K) is an isomorphism.

�

Discussion

Section 3.8 recalls the notion of graph isomorphism. Here we prove that graph
isomorphism is an equivalence relation on any set of graphs. It is tempting to say
that graph isomorphism is an equivalence relation on the “set of all graphs,” but logic
precludes the existence of such a set.

3.9. Equivalence Relation Generated by a Relation R.

Definition 3.9.1. Suppose R is a relation on a set A. The equivalence relation
on A generated by a R, denoted Re, is the smallest equivalence relation on A that
contains R.

Discussion

3. EQUIVALENCE RELATIONS 41

There are occasions in which we would like to define an equivalence relation on
a set by starting with a primitive notion of “equivalence”, which, in itself, may not
satisfy one or more of the three required properties. For example, consider the set
of vertices V of a simple graph G and the adjacency relation R on V : uRv iff u is
adjacent to v. You would have discovered while working through Exercise 3.2.2 that,
for most graphs, R is neither reflexive nor transitive.

Exercise 3.9.1. Suppose V is the set of vertices of a simple graph G and R is
the adjacency relation on V : uRv iff u is adjacent to v. Prove that Re is the relation

uRev iff either u = v or there is a path in G from u to v.

3.10. Using Closures to find an Equivalence Relation.

Theorem 3.10.1. Suppose R is a relation on a set A. Then Re, the equivalence
relation on A generated by R, is the relation t(s(r(R))). That is, Re may be obtained
from R by taking

(1) the reflexive closure r(R) of R, then
(2) the symmetric closure s(r(R)) of r(R), and then
(3) the transitive closure t(s(r(R))) of s(r(R)).

Proof. Suppose R is a relation on a set A. We must show
(1) t(s(r(R))) is an equivalence relation containing R, and
(2) if S is an equivalence relation containing R, then t(s(r(R))) ⊆ S.

Proof of (1).

I. Reflexive: If a ∈ A, then (a, a) ∈ r(R); hence, (a, a) ∈ t(s(r(R))), since
r(R) ⊆ t(s(r(R))).

II. Symmetric: Suppose (a, b) ∈ t(s(r(R))). Then there is a chain (a, x1), (x1, x2), ..., (xn, b)
in s(r(R)). Since s(r(R)) is symmetric, (b, xn), ..., (x2, x1), (x1, a) are in
s(r(R)). Hence, (b, a) ∈ t(s(r(R))), since t(s(r(R))) is transitive.

III. Transitive: t(s(r(R))), being the transitive closure of s(r(R)), is transitive,
by definition.

Proof of (2). Suppose S is an equivalence relation containing R.

I. Since S is reflexive, S contains the reflexive closure of R. That is, r(R) ⊆ S.
II. Since S is symmetric and r(R) ⊆ S, S contains the symmetric closure of

r(R). That is, s(r(R)) ⊆ S.
III. Since S is transitive and s(r(R)) ⊆ S, S contains the transitive closure of

s(r(R)). That is, t(s(r(R))) ⊆ S.

�

3. EQUIVALENCE RELATIONS 42

Discussion

Theorem 3.10.1 in Section 3.10 describes the process by which the equivalence
relation generated by a relation R can be constructed using the closure operations
discussed in the notes on Closure. As it turns out, it doesn’t matter whether you take
the reflexive closure before you take the symmetric and transitive closures, but it is
important that the symmetric closure be taken before the transitive closure.

Exercise 3.10.1. Given a relation R on a set A, prove that Re = (R∪∆∪R−1)∗.
[See the lecture notes on Closure for definitions of the terminology.]

Exercise 3.10.2. Suppose A is the set of all people (alive or dead) and R is the
relation “is a parent of”. Describe the relation Re in words. What equivalence class
do you represent?

Exercise 3.10.3. Give an example of a relation R on a set A such that Re 6=
s(t(r(R))).

4. PARTIAL ORDERINGS 43

4. Partial Orderings

4.1. Definition of a Partial Order.

Definition 4.1.1.
(1) A relation R on a set A is a partial order iff R is

• reflexive,
• antisymmetric, and
• transitive.

(2) (A, R) is called a partially ordered set or a poset.
(3) If, in addition, either aRb or bRa, for every a, b ∈ A, then R is called a

total order or a linear order or a simple order. In this case (A, R) is
called a chain.

(4) The notation a � b is used for aRb when R is a partial order.

Discussion

The classic example of an order is the order relation on the set of real numbers:
aRb iff a ≤ b, which is, in fact, a total order. It is this relation that suggests the
notation a � b, but this notation is not used exclusively for total orders.

Notice that in a partial order on a set A it is not required that every pair of
elements of A be related in one way or the other. That is why the word partial is
used.

4.2. Examples.

Example 4.2.1. (Z,≤) is a poset. Every pair of integers are related via ≤, so ≤
is a total order and (Z,≤) is a chain.

Example 4.2.2. If S is a set then (P (S),⊆) is a poset.

Example 4.2.3. (Z, |) is a poset. The relation a|b means “a divides b.”

Discussion

Example 4.2.2 better illustrates the general nature of a partial order. This partial
order is not necessarily a total order; that is, it is not always the case that either
A ⊆ B or B ⊆ A for every pair of subsets of S. Can you think of the only occasions
in which this would be a total order?

Example 4.2.3 is also only a partial order. There are many pairs of integers such
that a 6 |b and b 6 |a.

4. PARTIAL ORDERINGS 44

4.3. Pseudo-Orderings.

Definition 4.3.1.

A relation ≺ on S is called a pseudo-order if

• the relation is irreflexive and
• transitive.

Some texts call this a quasi-order. Rosen uses quasi-order to mean a different type
of relation, though.

Theorem 4.3.1 (Theorems and Notation).
(1) Given a poset (S,�), we define a relation ≺ on S by x ≺ y if and only if

x � y and x 6= y. The relation ≺ is a pseudo-order.
(2) Given a set S and a pseudo-order ≺ on S, we define a relation � on S by

x � y if and only if x ≺ y or x = y. The relation � is a partial order.
(3) Given a poset (S,�), we define the relation � on S by x � y iff y � x.

(S,�) is a poset and � is the inverse of �.
(4) Given a set S and a pseudo-order ≺ on S, we define the relation � on S by

x � y iff y ≺ x. � is a pseudo-order on S and � is the inverse of ≺.
(5) In any discussion of a partial order relation �, we will use the notations ≺,

�, and � to be the relations defined above, depending on �. Similarly, if
we are given a a pseudo-order, ≺, then � will be the partial order defined in
part 2.

Discussion

The notation above is analogous to the usual ≤, ≥, <, and > notations used
with real numbers. We do not require that the orders above be total orders, though.
Another example you may keep in mind that uses similar notation is ⊆, ⊇, ⊂, ⊃ on
sets. These are also partial and pseudo-orders.

Exercise 4.3.1. Prove a pseudo-order, ≺, is antisymmetric.

Exercise 4.3.2. Prove Theorem 4.3.1 part 1.

Exercise 4.3.3. Prove Theorem 4.3.1 part 2.

4.4. Well-Ordered Relation.

Definition 4.4.1. Let R be a partial order on A and suppose S ⊆ A.

(1) An element s ∈ S is a least element of S iff sRb for every b ∈ S.
(2) An element s ∈ S is a greatest element of S iff bSs for every b ∈ S.

4. PARTIAL ORDERINGS 45

(3) A chain (A, R) is well-ordered iff every nonempty subset of A has a least
element.

Discussion

Notice that if s is a least (greatest) element of S, s must be an element of S and
s must precede (be preceded by) all the other elements of S.

Confusion may arise when we define a partial order on a well-known set, such as
the set Z+ of positive integers, that already has a natural ordering. One such ordering
on Z+ is given in Example 4.2.3. As another example, one could perversely impose
the relation � on Z+ by defining a � b iff b ≤ a. With respect to the relation �, Z+

would have no least element and it’s “greatest” element would be 1! This confusion
may be alleviated somewhat by reading a � b as “a precedes b” instead of “a is less
than or equal to b”, especially in those cases when the set in question already comes
equipped with a natural order different from �.

4.5. Examples.

Example 4.5.1. (Z,≤) is a chain, but it is not well-ordered.

Example 4.5.2. (N,≤) is well-ordered.

Example 4.5.3. (Z+,≥) is a chain, but is not well-ordered.

Discussion

In Example 4.5.1, the set of integers does not have a least element. If we look
at the set of positive integers, however, every nonempty subset (including Z+) has
a least element. Notice that if we reverse the inequality, the “least element” is now
actually the one that is larger than the others – look back at the discussion in Section
4.4 – and there is no “least element” of Z+.

Pay careful to the definition of what it means for a chain to be well-ordered. It
requires every nonempty subset to have a least element, but it does not require that
every nonempty subset have a greatest element.

Exercise 4.5.1. Suppose (A,�) is a poset such that every nonempty subset of A
has a least element. Prove that � is a total ordering on A.

4. PARTIAL ORDERINGS 46

4.6. Lexicographic Order.

Definition 4.6.1. Given two posets (A1,�1) and (A2,�2) we construct an in-
duced or lexicographic partial order �L on A1×A2 by defining (x1, y1) �L (x2, y2)
iff

• x1 ≺1 x2 or
• x1 = x2 and y1 �2 y2.

This definition is extended recursively to Cartesian products of partially ordered sets
A1 × A2 × · · · × An.

Discussion

Exercise 4.6.1. Prove that if each of the posets (A1,�1) and (A2,�2) is a chain
and �L is the lexicographic order on A1 × A2, then (A1 × A2,�L) is also a chain.

Exercise 4.6.2. Suppose for each positive integer n, (An, preceqn) is a poset.
Give a recursive definition for the lexicographic order on A1 × A2 × · · · × An for all
positive integers n.

4.7. Examples 4.7.1 and 4.7.2.

Example 4.7.1. Let A1 = A2 = Z+ and �1=�2= | (“divides”). Then

• (2, 4) �L (2, 8)
• (2, 4) is not related under �L to (2, 6).
• (2, 4) �L (4, 5)

Example 4.7.2. Let Ai = Z+ and �i= |, for i = 1, 2, 3, 4. Then

• (2, 3, 4, 5) �L (2, 3, 8, 2)
• (2, 3, 4, 5) is not related under �L to (3, 6, 8, 10).
• (2, 3, 4, 5) is not related under �L to (2, 3, 5, 10).

Discussion

Notice that (2, 4) does not precede (2, 6): although their first entries are equal, 4
does not divide 6. In fact, the pairs (2, 4) and (2, 6) are not related in any way. On
the other hand, since 2|4 (and 2 6= 4), we do not need to look any further than the
first place to see that (2, 4) �L (4, 5).

Notice also in Example 4.7.2, the first non-equal entries determine whether or not
the relation holds.

4. PARTIAL ORDERINGS 47

4.8. Strings. We extend the lexigraphic ordering to strings of elements in a poset
(A,�) as follows:

a1a2 · · · am �L b1b2 · · · bn

iff

• (a1, a2, . . . , at) �L (b1, b2, . . . , bt) where t = min(m, n), or
• (a1, a2, . . . , am) = (b1, b2, . . . , bm) and m < n.

Discussion

The ordering defined on strings gives us the usual alphabetical ordering on words
and the usual order on bit string.

Exercise 4.8.1. Put the bit strings 0110, 10, 01, and 010 in increasing order using

(1) numerical order by considering the strings as binary numbers,
(2) lexicographic order using 0 < 1,

There are numerous relations one may impose on products. Lexicographical order
is just one partial order.

Exercise 4.8.2. Let (A1,�1) and (A2,�2) be posets. Define the relation � on
A1×A2 by (a1, a2) � (b1, b2) if and only if a1 �1 b1 and a2 �2 b2. Prove � is a partial
order. This partial order is called the product order.

4.9. Hasse or Poset Diagrams.

Definition 4.9.1. To construct a Hasse or poset diagram for a poset (A, R):

(1) Construct a digraph representation of the poset (A, R) so that all arcs point
up (except the loops).

(2) Eliminate all loops.
(3) Eliminate all arcs that are redundant because of transitivity.
(4) Eliminate the arrows on the arcs.

Discussion

The Hasse diagram of a poset is a simpler version of the digraph representing the
partial order relation. The properties of a partial order assure us that its digraph
can be drawn in an oriented plane so that each element lies below all other elements
it precedes in the order. Once this has been done, all redundant information can be
removed from the digraph and the result is the Hasse diagram.

4. PARTIAL ORDERINGS 48

4.10. Example 4.10.1.

Example 4.10.1. The Hasse diagram for (P ({a, b, c}),⊆) is

{a,b,c}

{a,b}
{a,c}

{b,c}

{a} {b} {c}

Ø

Discussion

The following steps could be used to get the Hasse diagram above.

(1) You can see that even this relatively simple poset has a complicated digraph.

{a,b,c}

{a,b}

{a,c}

{b,c}

{a}
{b}

{c}

Ø

(2) Eliminate the loops.

4. PARTIAL ORDERINGS 49

{a,b,c}

{a,b}

{a,c}

{b,c}

{a}
{b}

{c}

Ø

(3) Now eliminate redundant arcs resulting from transitivity.

{a,b,c}

{a,b}

{a,c}

{b,c}

{a}
{b}

{c}

Ø

(4) Finally eliminate the arrows

4. PARTIAL ORDERINGS 50

{a,b,c}

{a,b}
{a,c}

{b,c}

{a} {b} {c}

Ø

Exercise 4.10.1. Construct the Hasse diagram for the poset ({1, 2, 3, 4, 6, 9, 12}, |),
where | is the “divides” relation.

Exercise 4.10.2. Is the diagram the Hasse diagram for a partial order? If so,
give the partial order and if not explain why.

(a) (b)

a b

c d e

f g h

i

b

c d e

f
g

h

i

4.11. Maximal and Minimal Elements.

Definition 4.11.1. Let (A, R) be a poset.

(1) An element a ∈ A is a minimal element if there does not exist an element
b ∈ A, b 6= a, such that b � a.

(2) An element a ∈ A is a maximal element if there does not exist an element
b ∈ A, b 6= a, such that a � b.

Discussion

4. PARTIAL ORDERINGS 51

Another useful way to characterize minimal elements of a poset (A,�) is to say
that a is a minimal element of A iff b � a implies b = a. A similar characterization
holds for maximal elements. It is possible for a poset to have more than one maximal
and minimal element. In the poset in Exercise 4.10.1, for example, 1 is the only
minimal element, but both 9 and 12 are maximal elements. These facts are easily
observable from the Hasse diagram.

4.12. Least and Greatest Elements.

Definition 4.12.1. Let (A,�) be a poset.

(1) An element a ∈ A is the least element of A if a � b for every element
b ∈ A.

(2) An element a ∈ A is the greatest element of A if b � a for every element
b ∈ A.

Theorem 4.12.1. A poset (A,�) can have at most one least element and at most
one greatest element. That is, least and greatest elements are unique, if they exist.

Discussion

We revisit the definition of greatest and least elements, which were defined in
Section 4.4. As with minimal and maximal elements, Hasse diagrams can be helpful
in illustrating least and greatest elements. Although a poset may have many minimal
(or maximal) elements, Theorem 4.12.1 guarantees that it may have no more than
one least (or greatest) element. We ask you to explore the relationship among these
concepts in the following exercise.

Exercise 4.12.1. Let (A,�) be a poset.

(a) Prove that if a is the least element of A, then a is a minimal element of A.
(b) Prove that if b is the greatest element of A, then b is a maximal element of

A.
(c) Prove that if A has more than one minimal element, then A does not have a

least element.
(d) Prove that if A has more than one maximal element, then A does not have

a greatest element.

4.13. Upper and Lower Bounds.

Definition 4.13.1. Let S be a subset of A in the poset (A,�).

(1) If there exists an element a ∈ A such that s � a for all s ∈ S, then a is
called an upper bound on S.

4. PARTIAL ORDERINGS 52

(2) If there exists an element a ∈ A such that a � s for all s ∈ S, then a is
called an lower bound on S.

4.14. Least Upper and Greatest Lower Bounds.

Definition 4.14.1. Suppose (A,�) is a poset, S a is subset of A, and a ∈ A.

(1) a is the least upper bound of S if
• a is an upper bound of S and
• if s is another upper bound of S, then a � s.

(2) a is the greatest lower bound of S if
• a is an lower bound of S and
• if s is another lower bound of S, then s � a.

Discussion

In Section 4.13 we extend the concepts upper and lower bound as well as least
upper bound and greatest lower bound to subsets of a poset. The difference between
a least element of a subset of A and a lower bound for the subset of A is that the
least element is required to be in the subset and the lower bound is not. Here are
a few facts about lower bounds and minimal elements to keep in mind. You should
rephrase each statement replacing “lower” with “upper”, etc.

• For a to be a lower bound for a subset S, a need not be in S, but it must
precede every element of S.

• A minimal element, a, of a subset S is a lower bound for the set of all elements
in S preceded by a.

• A subset may have more than one lower bound, or it may have none.
• A subset may have lower bounds, but no greatest lower bound.

Example 4.14.1. Suppose we are given the poset (A, |), where A = {1, 2, 3, 4, 6, 8, 9, 12}.

(1) The subset {2, 3, 4, 6} has no greatest or least element.
(2) 1 is the greatest lower bound for {2, 3, 4, 6} and 12 is its least upper bound.
(3) The subset {1, 2, 3, 8} has no upper bound in A.
(4) Every subset of A has a greatest lower bound.

Exercise 4.14.1. Consider the poset (A,⊆), where A = P (S) is the power set
of a set S. Prove that every nonempty subset of A has a least upper bound and a
greatest lower bound in A.

4.15. Lattices.

Definition 4.15.1. A poset (A,�) is a lattice if every pair of elements has a
least upper bound and a greatest lower bound in A.

4. PARTIAL ORDERINGS 53

Discussion

To check if a poset is a lattice you must check every pair of elements to see if
they each have a greatest lower bound and least upper bound. If you draw its Hasse
diagram, you can check to see whether some pair of elements has more than one upper
(or lower) bound on the same level. If so, then the poset is not a lattice.

4.16. Example 4.16.1.

Example 4.16.1. The poset given by the following Hasse diagram is not a lattice.

a b

c d

e

Discussion

In Example 4.16.1 notice that {a, b} has upper bounds c, d and e. Since e is larger
than either c or d, it cannot be the least upper bound. But c and d are not related
in any way. Thus there is no least upper bound for the subset {a, b}.

Exercise 4.16.1. Prove that the poset (P (S),⊆) is a lattice.

4.17. Topological Sorting.

Definition 4.17.1.
(1) A total ordering ≤ on a set A is said to be compatible with a partial ordering

� on A, if a � b implies a ≤ b for all a, b ∈ A.
(2) A topological sorting is a process of constructing a compatible total order

for a given partial order.

Discussion

A topological sorting is a process of creating a total order from a partial order.
Topological sorting has a number of applications. For example:

4. PARTIAL ORDERINGS 54

• It can be useful in PERT charts to determine an ordering of tasks.
• It can be useful in graphics to render objects from back to front to expose

hidden surfaces.
• A painter often uses a topological sort when applying paint to a canvas.

He/she paints parts of the scene furthest from the view first.

There may be several total orders that are compatible with a given partial order.

4.18. Topological Sorting Algorithm. procedure topological sort ((A,�):
finite poset)
k:= 1
while A 6= ∅
begin

ak:= a minimal element of A
A:= A− {ak}
k:= k + 1

end {a1, a2, ..., an is a compatible total ordering of A}

Discussion

In order to justify the existence of a minimal element of S at each step in the
topological sorting algorithm, we need to prove Theorem 4.19.1 in Section 4.19.

4.19. Existence of a Minimal Element.

Theorem 4.19.1. Suppose (A,�) is a finite nonempty poset. Then A has a
minimal element.

Proof. Suppose (A,�) is a finite nonempty poset, where A has n elements,
n ≥ 1. We will prove that A has a minimal element by mathematical induction.

BASIS STEP. n = 1. Then A = {a} and a is a minimal (least!) element of A.

INDUCTION STEP. Suppose that every poset having n elements has a minimal
element. Suppose (A,�) is a poset having n + 1 elements. Let a be an arbitrary
element of A, and let S = A − {a}. Then S, together with the partial order �
restricted to S, is a poset with n elements. By the inductive hypothesis, S has a
minimal element b. There are two possibilities.

(1) a � b. Then a is a minimal element of A. Otherwise, there is an element c
in A, different from a, such that c � a. But then c is in S, c is different from
b (why?), and c � b, which contradicts the fact that b is a minimal element
of S.

4. PARTIAL ORDERINGS 55

(2) a 6� b. Suppose b is not a minimal element of A. Then there is a c ∈ A with
c � b. Since a 6� b we have c 6= a. Thus c ∈ S and we then conclude b is
not minimal in S. This is a contradiction so there are no elements of A that
preceed b. Hence b is a minimal element of A in this case.

Thus, in any case A has a minimal element, and so by the principle of induction every
finite poset has a minimal element. �

Exercise 4.19.1. Let (A,�A) be a poset and let S ⊆ A. Define �S on S by

∀a, b ∈ S[a �S b ⇔ a �A b].

Prove (S,�S) is a poset. The partial order �S is the Restriction of �A to S and
we usually use the same notation for both partial orders.

Example 4.19.1. Consider the set of rectangles T and the relation R given by
tRs if t is more distant than s from the viewer.

1 2

3
4

5
6

7
8

9

Here are some of the relations that we find from the figure: 1R2, 1R4, 1R3, 4R5, 3R2, 3R9, 3R6.

The Hasse diagram for R is

4. PARTIAL ORDERINGS 56

5 9 6 2 7

4 3

1 8

If we draw 1 (it would also be fine to use 8) out of the diagram and delete it we
get

5 9 6 2 7

4 3

8

Then draw 8

5 9 6 2 7

4 3

4. PARTIAL ORDERINGS 57

and so on. By drawing minimal elements you may get the following total order
(there are many other total orders compatible with the partial order):

1

8

5

3

4

9

6

2

7

CHAPTER 2

Graphs

1. Introduction to Graphs and Graph Isomorphism

1.1. The Graph Menagerie.

Definition 1.1.1.
• A simple graph G = (V, E) consists of a set V of vertices and a set E of

edges, represented by unordered pairs of elements of V .
• A multigraph consists of a set V of vertices, a set E of edges, and a function

f : E → {{u, v} : u, v ∈ V and u 6= v}.
If e1, e2 ∈ E are such that f(e1) = f(e2), then we say e1 and e2 are multiple
or parallel edges.

• A pseudograph consists of a set V of vertices, a set E of edges, and a
function f : E → {{u, v} : u, v ∈ V }. If e ∈ E is such that f(e) = {u, u} =
{u}, then we say e is a loop.

• A directed graph or digraph G = (V, E) consists of a set V of vertices
and a set E of directed edges, represented by ordered pairs of vertices.

Discussion

In Section 1.1 we recall the definitions of the various types of graphs that were
introduced in MAD 2104. In this section we will revisit some of the ways in which
graphs can be represented and discuss in more detail the concept of a graph isomor-
phism.

1.2. Representing Graphs and Graph Isomorphism.

Definition 1.2.1. The adjacency matrix, A = [aij], for a simple graph G =
(V, E), where V = {v1, v2, ..., vn}, is defined by

aij =

{
1 if {vi, vj} is an edge of G,
0 otherwise.

Discussion

58

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 59

We introduce some alternate representations, which are extensions of connection
matrices we have seen before, and learn to use them to help identify isomorphic
graphs.

Remarks 1.2.1. Here are some properties of the adjacency matrix of an undirected
graph.

(1) The adjacency matrix is always symmetric.
(2) The vertices must be ordered: and the adjacency matrix depends on the order

chosen.
(3) An adjacency matrix can be defined for multigraphs by defining aij to be the

number of edges between vertices i and j.
(4) If there is a natural order on the set of vertices we will use that order unless

otherwise indicated.

v1 v2

v3

v4v5

Example 1.2.1. An adjacency matrix for this graph is

0 1 0 1 1
1 0 1 1 1
0 1 0 1 0
1 1 1 0 1
1 1 0 1 0

Discussion

As with connection matrices, an adjacency matrix can be constructed by using a
table with the columns and rows labeled with the elements of the vertex set.

Here is another example

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 60

Example 1.2.2. The adjacency matrix for the graph

1u 2u

3u

4u

5u

is the matrix M =

0 0 1 1 1
0 0 1 0 1
1 1 0 1 1
1 0 1 0 1
1 1 1 1 0

1.3. Incidence Matrices.

Definition 1.3.1. The incidence matrix, A = [aij], for the undirected graph
G = (V, E) is defined by

aij =

{
1 if edge j is incident with vertex i
0 otherwise.

Discussion

The incidence matrix is another way to use matrices to represent a graph.

Remarks 1.3.1.
(1) This method requires the edges and vertices to be labeled and the matrix de-

pends on the order in which they are written.
(2) Every column will have exactly two 1’s.
(3) As with adjacency matrices, if there is a natural order for the vertices and

edges that order will be used unless otherwise specified.

1.4. Example 1.4.1.

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 61

v1 v2

v3

v4v5

e1

e2

e3

e4

e5 e6

e7

e8

Example 1.4.1. The incidence matrix for this graph is
1 0 0 0 1 0 0 1
1 1 0 0 0 1 1 0
0 1 1 0 0 0 0 0
0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 0

Discussion

Again you can use a table to get the matrix. List all the vertices as the labels for
the rows and all the edges for the labels of the columns.

1.5. Degree.

Definition 1.5.1.
(1) Let G = (V, E) be an undirected graph.

• Two vertices u, v ∈ V are adjacent or neighbors if there is an edge e
between u and v.

– The edge e connects u and v.
– The vertices u and v are endpoints of e.

• The degree of a vertex v, denoted deg(v), is the number of edges for
which it is an endpoint. A loop contributes twice in an undirected graph.

– If deg(v) = 0, then v is called isolated.
– If deg(v) = 1, then v is called pendant.

(2) Let G = (V, E) be a directed graph.
• Let (u, v) be an edge in G. Then u is an initial vertex and is adjacent

to v. The vertex v is a terminal vertex and is adjacent from u.
• The in degree of a vertex v, denoted deg−(v) is the number of edges

which terminate at v.

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 62

• Similarly, the out degree of v, denoted deg+(v), is the number of edges
which initiate at v.

Discussion

We now recall from MAD 2104 the terminology we use with undirected and di-
rected graphs. Notice that a loop contributes two to the degree of a vertex.

1.6. The Handshaking Theorem.

Theorem 1.6.1 (The Handshaking Theorem). Let G = (V, E) be an undirected
graph. Then

2|E| =
∑
v∈V

deg(v)

Proof. Each edge contributes twice to the sum of the degrees of all vertices. �

Discussion

The handshaking theorem is one of the most basic and useful combinatorial for-
mulas associated to a graph. It lets us conclude some facts about the numbers of
vertices and the possible degrees of the vertices. Notice the immediate corollary.

Corollary 1.6.1.1. The sum of the degrees of the vertices in any graph must be
an even number.

In other words, it is impossible to create a graph so that the sum of the degrees
of its vertices is odd (try it!).

1.7. Example 1.7.1.

Example 1.7.1. Suppose a graph has 5 vertices. Can each vertex have degree 3?
degree 4?

• The sum of the degrees of the vertices would be 3 ·5 if the graph has 5 vertices
of degree 3. This is an odd number, though, so this is not possible by the
handshaking Theorem.

• The sum of the degrees of the vertices if there are 5 vertices with degree 4 is
20. Since this is even it is possible for this to equal 2|E|.

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 63

Discussion

If the sum of the degrees of the vertices is an even number then the handshaking
theorem is not contradicted. In fact, you can create a graph with any even degree
you want if multiple edges are permitted. However, if you add more restrictions it
may not be possible. Here are two typical questions the handshaking theorem may
help you answer.

Exercise 1.7.1. Is it possible to have a graph S with 5 vertices, each with degree
4, and 8 edges?

Exercise 1.7.2. A graph with 21 edges has 7 vertices of degree 1, three of degree
2, seven of degree 3, and the rest of degree 4. How many vertices does it have?

1.8. Theorem 1.8.1.

Theorem 1.8.1. Every graph has an even number of vertices of odd degree.

Proof. Let Vo be the set of vertices of odd degree, and let Ve be the set of vertices
of even degree. Since V = Vo ∪Ve and Vo ∩Ve = ∅, the handshaking theorem gives us

2|E| =
∑
v∈V

deg(v) =
∑
v∈Vo

deg(v) +
∑
v∈Ve

deg(v)

or ∑
v∈Vo

deg(v) = 2|E| −
∑
v∈Ve

deg(v).

Since the sum of any number of even integers is again an even integer, the right-
hand-side of this equations is an even integer. So the left-hand-side, which is the sum
of a collection of odd integers, must also be even. The only way this can happen,
however, is for there to be an even number of odd integers in the collection. That is,
the number of vertices in Vo must be even. �

Discussion

Theorem 1.8.1 goes a bit further than our initial corollary of the handshaking
theorem. If you have a problem with the last sentence of the proof, consider the
following facts:

• odd + odd = even
• odd + even = odd
• even + even = even

If we add up an odd number of odd numbers the previous facts will imply we get
an odd number. Thus to get an even number out of

∑
v∈Vo

deg(v) there must be an
even number of vertices in Vo (the set of vertices of odd degree).

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 64

While there must be an even number of vertices of odd degree, there is no restric-
tions on the parity (even or odd) of the number of vertices of even degree.

This theorem makes it easy to see, for example, that it is not possible to have a
graph with 3 vertices each of degree 1 and no other vertices of odd degree.

1.9. Handshaking Theorem for Directed Graphs.

Theorem 1.9.1. For any directed graph G = (E, V),

|E| =
∑
v∈V

deg−(v) =
∑
v∈V

deg+(v).

Discussion

When considering directed graphs we differentiate between the number of edges
going into a vertex verses the number of edges coming out from the vertex. These
numbers are given by the in degree and the out degree.

Notice that each edge contributes one to the in degree of some vertex and one to
the out degree of some vertex. This is essentially the proof of Theorem 1.9.1.

1.10. Graph Invariants. The following are invariants under isomorphism of a
graph G:

(1) G has r vertices.
(2) G has s edges.
(3) G has degree sequence (d1, d2, ..., dn).
(4) G is a bipartite graph.
(5) G contains r complete graphs Kn (as a subgraphs).
(6) G contains r complete bipartite graphs Km,n.
(7) G contains r n-cycles.
(8) G contains r n-wheels.
(9) G contains r n-cubes.

Discussion

Recall that two simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if
there is a bijection

f : V1 → V2

such that vertices u and v in V1 are adjacent in G1 if and only if f(u) and f(v) are
adjacent in G2. If there is such a function, we say f is an isomorphism and we write
G1 ' G2.

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 65

It is often easier to determine when two graphs are not isomorphic. This is some-
times made possible by comparing invariants of the two graphs to see if they are
different. We say a property of graphs is a graph invariant (or, just invariant) if,
whenever a graph G has the property, any graph isomorphic to G also has the prop-
erty. The degree sequence a graph G with n vertices is the sequence (d1, d2, ..., dn),
where d1, d2, ..., dn are the degrees of the vertices of G and d1 ≥ d2 ≥ · · · ≥ dn.
Note that a graph could conceivably have infinitely many vertices. If the vertices are
countable then the degree sequence would be an infinite sequence. If the vertices are
not countable, then this degree sequence would not be defined.

The invariants in Section 1.10 may help us determine fairly quickly in some ex-
amples that two graphs are not isomorphic.

Example 1.10.1. Show that the following two graphs are not isomorphic.
1 2

3 4

5 6

87

a b

c d

e f

g h

G G21

The two graphs have the same number of vertices, the same number of edges, and
same degree sequences (3, 3, 3, 3, 2, 2, 2, 2). Perhaps the easiest way to see that they are
not isomorphic is to observe that G1 has three 4-cycles, whereas G2 has two 4-cycles.
In fact, the four vertices of G1 of degree 3 lie in a 4-cycle in G1, but the four vertices
of G2 of degree 3 do not. Either of these two discrepancies is enough to show that the
graphs are not isomorphic.

Another way we could recognize the graphs above are not isomorphic is to consider
the adjacency relationships. Notice in G1 all the vertices of degree 3 are adjacent to
2 vertices of degree 3 and 1 of degree 2. However, in graph G2 all of the vertices
of degree 3 are adjacent to 1 vertex of degree 3 and 2 vertices of degree 2. This
discrepancy indicates the two graphs cannot be isomorphic.

Example 1.10.2. The following two graphs are not isomorphic. Can you find an
invariant that is different on the graphs.

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 66

1 2

3 4

5 6

87

a b

c d

e f

g h

G G21

1.11. Example 1.11.1.

Example 1.11.1. Determine whether the graphs G1 and G2 are isomorphic.

v1 v2

v3

v4v5

1u 2u

3u

4u

5u

G2
G1

Solution

We go through the following checklist that might tell us immediately if the two
are not isomorphic.

• They have the same number of vertices, 5.
• They have the same number of edges, 8.
• They have the same degree sequence (4, 4, 3, 3, 2).

Since there is no obvious reason to think they are not isomorphic, we try to
construct an isomorphism, f .
Note that the above does not tell us there is an isomorphism, only that there might
be one.

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 67

The only vertex on each that have degree 2 are v3 and u2, so we must have
f(v3) = u2.

Now, since deg(v1) = deg(v5) = deg(u1) = deg(u4), we must have either

• f(v1) = u1 and f(v5) = u4, or
• f(v1) = u4 and f(v5) = u1.

It is possible only one choice would work or both choices may work (or neither
choice may work, which would tell us there is no isomorphism).

We try f(v1) = u1 and f(v5) = u4.

Similarly we have two choices with the remaining vertices and try f(v2) = u3 and
f(v4) = u5. This defines a bijection from the vertices of G1 to the vertices of G2. We
still need to check that adjacent vertices in G1 are mapped to adjacent vertices in G2.
To check this we will look at the adjacency matrices.

The adjacency matrix for G1 (when we list the vetices of G1 by v1, v2, v3, v4, v5) is

A =

0 1 0 1 1
1 0 1 1 1
0 1 0 1 0
1 1 1 0 1
1 1 0 1 0

We create an adjacency matrix for G2, using the bijection f as follows: since

f(v1) = u1, f(v2) = u3, f(v3) = u2, f(v4) = u5, and f(v5) = u4, we rearrange the
order of the vertices of G2 to u1, u3, u2, u5, u4. With this ordering, the adjacency
matrix for G2 is

B =

0 1 0 1 1
1 0 1 1 1
0 1 0 1 0
1 1 1 0 1
1 1 0 1 0

Since A = B, adjacency is preserved under this bijection. Hence the graphs are

isomorphic.

Discussion

In this example we show that two graphs are isomorphic. Notice that it is not
enough to show they have the same number of vertices, edges, and degree sequence.
In fact, if we knew they were isomorphic and we were asked to prove it, we would

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 68

proceed directly to try and find a bijection that preserves adjacency. That is, the
check list is not necessary if you already know they are isomorphic. On the other
hand, having found a bijection between two graphs that doesn’t preserve adjacency
doesn’t tell us the graphs are not isomorphic, because some other bijection might
work. If we go down this path, we would have to show that every bijection fails to
preserve adjacency.

The advantage of the checklist is that it will give you a quick and easy way to
show two graphs are not isomorphic if some invariant of the graphs turn out to be
different. If you examine the logic, however, you will see that if two graphs have all
of the same invariants we have listed so far, we still wouldn’t have a proof that they
are isomorphic. Indeed, there is no known list of invariants that can be efficiently
checked to determine when two graphs are isomorphic. The best algorithms known to
date for determining graph isomorphism have exponential complexity (in the number
n of vertices).

Exercise 1.11.1. Determine whether the following two graphs are isomorphic.
1 2

3 4

a b

c d

G G21

5 6
e f

Exercise 1.11.2. How many different isomorphism (that is, bijections that pre-
serve adjacencies) are possible from G2 to itself in Example 1.10.1.

Exercise 1.11.3. There are 14 nonisomorphic pseudographs with 3 vertices and
3 edges. Draw all of them.

Exercise 1.11.4. Draw all nonisomorphic simple graphs with 6 vertices, 5 edges,
and no cycles.

Exercise 1.11.5. Recall the equivalence relation on a set, S, of graphs given by
G1 is related to G2 if and only if G1 ' G2. How many equivalence classes are there
if S is the set of all simple graphs with 6 vertices, 5 edges, and no cycles? Explain.

1.12. Proof of Section 1.10 Part 3 for simple graphs.

Proof. Let G1 and G2 be isomorphic simple graphs having degree sequences.
By part 1 of Section 1.10 the degree sequences of G1 and G2 have the same number

1. INTRODUCTION TO GRAPHS AND GRAPH ISOMORPHISM 69

of elements (finite or infinite). Let f : V (G1) → V (G2) be an isomorphism and let
v ∈ V (G1). We claim degG1(v) = degG2(f(v)). If we show this, then f defines a
bijection between the vertices of G1 and G2 that maps vertices to vertices of the same
degree. This will imply the degree sequences are the same.

Proof of claim: Suppose degG1(v) = k. Then there are k vertices adjacent to
v, say u1, u2, . . . , uk. The isomorphism maps each of the vertices to k distinct ver-
tices adjacent to f(u) in G2 since the isomorphism is a bijection and preserves adja-
cency. Moreover, f(u) will not be adjacent to any vertices other than the k vertices
f(u1), f(u2), . . . f(uk). Otherwise, u would be adjacent to the preimage of such a
vertex and this preimage would not be one of the vertices u1, u2, . . . , uk since f is an
isomorphism. This would contradict that the degree of u is k. This shows the degree
of f(u) in G2 must be k as well, proving our claim.

�

Exercise 1.12.1. Prove the remaining properties listed in Section 1.10 for simple
graphs using only the properties listed before each and the definition of isomorphism.

2. CONNECTIVITY 70

2. Connectivity

2.1. Connectivity.

Definition 2.1.1.
(1) A path in a graph G = (V, E) is a sequence of vertices v0, v1, v2, . . . , vn such

that {vi−1, vi} is an edge of G for i = 1, ..., n. The edge {vi−1, vi} is an edge
of the path.

(2) A path with n edges is said to have length n.
(3) A path beginning and ending with same vertex (that is, v0 = vn) is a circuit.
(4) A path is simple if no vertex or edge is repeated, with the possible exception

that the first vertex is the same as the last.
(5) A simple path that begins and ends with the same vertex is a simple circuit

or a cycle.

Discussion

This section is devoted to defining what it means for a graph to be connected and
the theorems about connectivity.

In the definition above we use a vertex sequence to define a path. We could also
use an edge sequence to define a path as well. In fact, in a multigraph a path may
not be well-defined by a vertex sequence. In this case an edge sequence must be used
to clearly define a path.

A circuit must begin and end at the same vertex, but this is the only requirement
for a circuit. A path that goes up one vertex and then right back is a circuit. Our
definition of a simple path may be different than that found in some texts: some
writers merely require that the same edge not be traversed more than once. In
addition, our definition of a simple circuit does not include the circuit that goes up
an edge and travels back by the same edge.

Some authors also allow the possibility of a path having length 0 (the path consists
of a single vertex and no edges). We will require that paths have length at least 1.
Notice that a path must also be finite. It is possible for a graph to have infinitely
many vertices and/or edges and one could also imagine a kind of path with infinitely
many edges but our definition of a path requires the path be finite.

2.2. Example 2.2.1.

Example 2.2.1. Let G1 be the graph below.

2. CONNECTIVITY 71

v1 v2

v3

v4v5

(1) v1, v4, v2, v3 is a simple path of length 3 from v1 to v3.
(2) {v1, v4}, {v4, v2}, {v2, v3} is the edge sequence that describes the same path in

part 1
(3) v1, v5, v4, v1, v2, v3 is a path of length 5 from v1 to v3.
(4) v1, v5, v4, v1 is a simple circuit of length 3.
(5) v1, v2, v3, v4, v2, v5, v1 is a circuit of length 6, but it is not simple.

Discussion

This example gives a variety of paths and circuits. You can certainly come up
with many more.

Exercise 2.2.1. In this exercise consider two cycles different if they begin at a
different vertex and/or if they traverse vertices in a different direction. Explain your
answer:

(a) How many different cycles are there in the graph K4?
(b) How many different circuits are there in the graph K4?

Exercise 2.2.2. In this exercise consider two cycles different if they begin at a
different vertex and/or if they traverse vertices in a different direction. How many
different cycles are there in the graph Kn where n is some integer greater than 2.

Exercise 2.2.3. (Uses combinations from counting principles) In this exercise
consider two cycles are the same if they begin at a different vertex and/or if they
traverse vertices in a different direction, but they use the same vertices and edges.
Explain your answer:

(a) How many different cycles are there in the graph K4?
(b) How many different circuits are there in the graph K4?

2. CONNECTIVITY 72

Exercise 2.2.4. (Uses combinations from counting principles) In this exercise
consider two cycles are the same if they begin at a different vertex and/or if they
traverse vertices in a different direction, but they use the same vertices and edges.
How many different cycles are there in the graph Kn where n is some integer greater
than 2.

Exercise 2.2.5. Prove a finite graph with all vertices of degree at least 2 contains
a cycle.

Exercise 2.2.6. Prove a graph with n vertices and at least n edges contains a
cycle for all positive integers n. You may use Exercise 2.2.5.

2.3. Connectedness.

Definition 2.3.1. A simple graph is connected if there is a path between every
pair of distinct vertices.

Discussion

When looking at a sketch of a graph just look to see if each vertex is connected to
each of the other vertices by a path. If so, this graph would be connected. If it has
two or more distinct pieces with no edge connecting them then it is disconnected.

2.4. Examples.

Example 2.4.1.

This graph is connected

v1 v2

v3

v4v5

Example 2.4.2.

2. CONNECTIVITY 73

This graph is not connected

v1 v2

v3

v4v5

v6

Example 2.4.3. The following graph is also not connected. There is no edge
between v3 and any of the other vertices.

v1 v2

v3

v4v5

2.5. Theorem 2.5.1.

Theorem 2.5.1. There is a simple path between every pair of distinct vertices in
a connected graph.

Proof. Suppose u and v are arbitrary, distinct vertices in a connected graph, G.
Because the graph is connected there is a path between u and v. Among all paths
between u and v, choose a path u = v0, v1, ..., vn = v of shortest length. That is, there
are no paths in G of length < n. Suppose this path contains a circuit starting and
ending with, say, vi. This circuit must use at least one edge of the path; hence, after
removing the circuit we will have a path from u to v of length < n, contradicting the
minimality of our initial path.

�

2. CONNECTIVITY 74

Discussion

Theorem 2.5.1 implies that if we need a path between two vertices in a connected
graph we may use a simple path. This really simplifies (no pun intended) the types of
paths we need to consider when examining properties of connected graphs. Certainly
there are many paths that are not simple between any two vertices in a connected
graph, but this theorem guarantees there are nicer paths to work with.

2.6. Example 2.6.1.

v1 v2

v3

v4v5

Example 2.6.1. The path v1, v5, v4, v1, v2, v3 is a path between v1 and v3. However,
v1, v5, v4, v1 is a circuit. Remove the circuit (except the endpoint) to get from the
original path v1, v2, v3. This is still a path between v1 and v3, but this one is simple.
There are no edges in this last path that are used more than one time.

Discussion

In many examples it is possible to find more than one circuit that could be removed
to create a simple path. Depending on which circuit is chosen there may be more than
one simple path between two given vertices. Let us use the same graph in Example
2.6.1, but consider the path v1, v2, v5, v1, v4, v2. We could either remove the circuit
v1, v2, v5, v1 or the circuit v2, v5, v1, v4, v2. If we removed the first we would be left
with v1, v4, v2, while if we removed the latter we would get v1, v2. Both of these are
parts of the original path between v1 and v2 that are simple.

2.7. Connected Component.

Definition 2.7.1. The maximally connected subgraphs of G are called the con-
nected components or just the components.

2. CONNECTIVITY 75

Discussion

Another way we could express the definition of a component of G is: A is a
component of G if

(1) A is a connected subgraph of G and
(2) if B is another subgraph of G containing A then either B = A or B is

disconnected.

2.8. Example 2.8.1.

Example 2.8.1. In the graph below the vertices v6 and v3 are in one component
while the vertices v1, v2, v4, and v5 are in the other component.

v1 v2

v3

v4v5

v6

If we looked at just one of the components and consider it as a graph by itself,
it would be a connected graph. If we try to add any more from the original graph,
however, we no longer have a connected graph. This is what we mean by “largest”.
Here are pictures that may help in understanding the components of the graph in
Example 2.8.1

2. CONNECTIVITY 76

v1 v2

v4v5

Above is a connected component of the original graph.

v1 v2

v4v5

Above is not a connected component of the original. We are missing an edge that
should have been in the component.

2.9. Cut Vertex and Edge.

Definition 2.9.1.
(1) If one can remove a vertex and all incident edges from a graph and produce

a graph with more components than the original graph, then the vertex that
was removed is called a cut vertex or an articulation point.

(2) If one can remove an edge from a graph and create more components than
the original graph, then the edge that was removed is called a cut edge or
bridge.

2. CONNECTIVITY 77

Note: When removing a vertex, you must remove all the edges with that vertex
as an endpoint. When removing an edge we do not remove any of the vertices.
Remember, edges depend on vertices, but vertices may stand alone.

Exercise 2.9.1. Prove that every connected graph has at least two non-cut ver-
tices. [Hint: Use the second principle of mathematical induction on the number of
vertices.]

Exercise 2.9.2. Prove that if a simple connected graph has exactly two non-cut
vertices, then the graph is a simple path between these two non-cut vertices. [Hint:
Use induction on the number of vertices and Exercise 2.9.1.]

2.10. Examples.

Example 2.10.1. There are no cut vertices nor cut edges in the following graph.

v1 v2

v3

v4v5

Example 2.10.2. v2 and v4 are cut vertices. e1, e2, and e5 are cut edges in the
following graph.

v1

v2 v3

v4

v5

v6

e1

e2

e3

e4

e6e5

2. CONNECTIVITY 78

Discussion

Exercise 2.10.1. In each case, find how many cut edges and how many cut ver-
tices there are for each integer n for which the graph is defined.

(1) Star Network
(2) Cycle
(3) Complete Graphs.

2.11. Counting Edges.

Theorem 2.11.1. A connected graph with n vertices has at least n− 1 edges.

Discussion

Notice the Theorem states there are at least n− 1 edges, not exactly n− 1 edges.
In a proof of this theorem we should be careful not to assume equality. Induction is
the natural choice for a proof of this statement, but we need to be cautious of how
we form the induction step.

Recall in the induction step we must show that a connected graph with n + 1
vertices has at least n edges if we know every connected graph with n vertices has
at least n − 1 edges. It may seem like a good idea to begin with an arbitrary graph
with n vertices and add a vertex and edge(s) to get one with n+1 vertices. However,
the graph with n + 1 vertices would depend on the one we started with. We want
to make sure we have covered every possible connected graph with n + 1 vertices, so
we would have to prove every connected graph with n + 1 vertices may be obtained
this way to approach the proof this way. On the other hand, if we begin with an
arbitrary graph with n + 1 vertices and remove some vertex and adjacent edges to
create a graph with n vertices the result may no longer be connected and we have to
consider this possibility.

The proof of this theorem is a graded exercise.

2.12. Connectedness in Directed Graphs.

Definition 2.12.1.
(1) A directed graph is strongly connected if there is a directed path between

every pair of vertices.
(2) A directed graph is weakly connected if the underlying undirected graph is

connected.

2. CONNECTIVITY 79

Discussion

Recall that the underlying graph of a directed graph is the graph obtained by
eliminating all the arrows. So the weakly connected means you can ignore the direc-
tion of the edges when looking for a path. Strongly directed means you must respect
the direction when looking for a path between vertices. To relate this to something
more familiar, if you are a pedestrian you do not have to worry about the direction
of one way streets. This is not the case, however, if you are driving a car.

Exercise 2.12.1. Are the following graphs strongly connected, weakly connected,
both or neither?

(a) v1 v2

v3v4

e4

e5

e3
e2

e1

(b) v1 v2

v3v4
e5

e3
e2

e1

2.13. Paths and Isomorphism.

Theorem 2.13.1. Let M be the adjacency matrix for the graph G. Then the
(i, j)th entry of M r is the number of paths of length r from vertex i to vertex j, where
M r is the standard matrix product of M by itself r times (not the Boolean product).

Proof. The proof is by induction on the length of the path, r. Let p be the
number of vertices in the graph (so the adjacency matrix is p× p).

Basis: The adjacency matrix represents paths of length one by definition, so
the basis step is true.

Induction Hypothesis: Assume each entry, say m
[n]
ij , in Mn = [m

[n]
ij] equals the

number of paths of length n from the i-th vertex to the j-th vertex.

Inductive Step: Prove each entry, say m
[n+1]
ij , in Mn+1 = [m

[n+1]
ij] equals the

number of paths of length n + 1 from the i-th vertex to the j-th vertex.

2. CONNECTIVITY 80

We begin by recalling Mn+1 = Mn · M and by the definition of matrix

multiplication the entry m
[n+1]
ij in Mn+1 is

m
[n+1]
ij =

p∑
k=1

m
[n]
ik ·mkj

where Mn = [m
[n]
ij] and M = [mij].

By the induction hypothesis, m
[n]
ik is the number of paths of length n

between the i-th vertex and the k-th vertex, while mkj is the number of
paths of length 1 from the k-th vertex to the j-th vertex. Each of these
paths may be combined to create paths of length n + 1 from the i-th vertex
to the j-th vertex. Using counting principles we see that the number of paths
of length n + 1 that go through the k-th vertex just before reaching the j-th

vertex is m
[n]
ik ·mkj .(1)

The above sum runs from k = 1 to k = p which covers all the possible
vertices in the graph. Therefore the sum counts all the paths of length n + 1
from the i-th vertex to the j-the vertex.

�

2.14. Example 2.14.1.

v1 v2

v3

v4v5

Example 2.14.1. The adjacency matrix for the graph above is
0 1 0 1 1
1 0 1 1 1
0 1 0 1 0
1 1 1 0 1
1 1 0 1 0

2. CONNECTIVITY 81

We get the following powers of M :

M2 =

3 2 2 2 2
2 4 1 3 2
2 1 2 1 2
2 3 1 4 2
2 2 2 2 3

M3 =

6 9 4 9 7
9 8 7 9 9
4 7 2 7 4
9 9 7 8 9
7 9 4 9 6

The last matrix tells us there are 4 paths of length 3 between vertices v3 and v1.

Find them and convince yourself there are no more.

Discussion

If you recall that the adjacency matrix and all its powers are symmetric, you will
cut your work in half when computing powers of the matrix.

Exercise 2.14.1. Find the page(s) in the text that covers the counting principal(s)
used in the sentence referenced as (1) in the proof of Theorem 2.13.1. Explain how
the conclusion of this gives us the result of the sentence.

2.15. Theorem 2.15.1.

Theorem 2.15.1. If G is a disconnected graph, then the compliment of G, G, is
connected.

Discussion

The usual approach prove a graph is connected is to choose two arbitrary vertices
and show there is a path between them. For the Theorem 2.15.1 we need to consider
the two cases where the vertices are in different components of G and where the
vertices are in the same component of G.

Exercise 2.15.1. Prove Theorem 2.15.1.

Exercise 2.15.2. The compliment of a connected graph may or may not be con-
nected. Find two graphs such that the compliment is (a) connected and (b) discon-
nected.

3. EULER AND HAMILTON PATHS 82

3. Euler and Hamilton Paths

3.1. Euler and Hamilton Paths.

Definitions 3.1.1.
(1) An Euler Circuit in a graph G is a path in G that uses every edge exactly

once and begins and ends at the same vertex.
(2) An Euler path in G is a path in G that uses every edge exactly once, but

does not necessarily begin and end at the same vertex.

Discussion

There are several special types of paths in graphs that we will study in this section.

An Euler path or circuit should use every single edge exactly one time. The
difference between and Euler path and Euler circuit is simply whether or not the
path begins and ends at the same vertex. Remember a circuit begins and ends at the
same vertex. If the graph is a directed graph then the path must use the edges in the
direction given.

3.2. Examples.

Example 3.2.1. This graph has the Euler circuit (and hence Euler path) v1, v2,
v3, v4, v2, v4, v5, v1.

v1

v2

v3

v4v5

Example 3.2.2. This graph does not have an Euler circuit, but has the Euler path
v2, v4, v1, v2, v3.

3. EULER AND HAMILTON PATHS 83

v1 v2 v3

v4

Discussion

Not all graphs have Euler circuits or Euler paths. See page 578, Example 1 G2,
in the text for an example of an undirected graph that has no Euler circuit nor Euler
path.

In a directed graph it will be less likely to have an Euler path or circuit because
you must travel in the correct direction. Consider, for example,

v1

v2

v3

v4v5

This graph has neither an Euler circuit nor an Euler path. It is impossible to
cover both of the edges that travel to v3.

3.3. Necessary and Sufficient Conditions for an Euler Circuit.

Theorem 3.3.1. A connected, undirected multigraph has an Euler circuit if and
only if each of its vertices has even degree.

Discussion

3. EULER AND HAMILTON PATHS 84

This is a wonderful theorem which tells us an easy way to check if an undirected,
connected graph has an Euler circuit or not. There is an extension for Euler paths
which we will soon see.

This theorem allows us to solve the famous Königsberg problem: The town, once
called Königsberg, Prussia, now Kaliningrad, Russia), was divided by the river Pregel
into parts, which were connected by seven bridges, as illustrated below.

A

B

C

D

When the people of Königsberg would walk through the town, they wondered
whether they could plan their walk so that they would cross each bridge exactly
once and end up at their starting point. Leonhard Euler, a Swiss mathematician,
solved the problem in the negative, by discovering and proving a theorem, which is
essentially Theorem 3.3.1. The problem can be modelled by the multigraph below,
and the solution depends upon whether the graph has an Euler circuit.

A

B

C

D

Proof of Theorem 3.3.1. Assume G is a connected, undirected multigraph
with an Euler circuit. The degree of any given vertex may be counted by considering
this circuit, since the circuit traverses every edge exactly once. While traveling the
circuit we move into a vertex by one edge and leave by another edge, so there must
be an even number of edges adjacent to each vertex.

Conversely, if the graph G is such that every edge has an even degree, then we
can build an Euler circuit by the following algorithm: We begin at some arbitrary
vertex and travel an edge out from that vertex to another. Then travel to another

3. EULER AND HAMILTON PATHS 85

vertex using an unused edge. Since each vertex has even degree there will always be
an unused edge to travel out if we have traveled into the vertex until we reach the
beginning vertex and have used all the edges.

�

Try your hand at the following exercise before you read further.

Exercise 3.3.1. Is it possible for the people in Königsberg to plan a walk that
crosses each bridge exactly once and ends up in a part of town different from where
they started? (That is, is there an Euler path?) Either show that this is possible or
explain why it is not.

There is another algorithm one may use to find an Euler circuit given a graph
with all vertices of even degree. The algorithm is written in pseudocode in the text,
but the general idea is to start with some arbirtary circuit which we consider the
”main” circuit. Now find a circuit that uses edges not used in the main circuit but
begins and ends at some vertex in the main circuit. Insert this circuit into the main
circuit. Repeat until all edges are used.

3.4. Necessary and Sufficient Conditions for an Euler Path.

Theorem 3.4.1. A connected, undirected multigraph has an Euler path but not
an Euler circuit if and only if it has exactly two vertices of odd degree.

Discussion

Now you can determine precisely when a graph has an Euler path. If the graph
has an Euler circuit, then it has an Euler path (why?). If it does not have an Euler
circuit, then we check if there are exactly two vertices of odd degree.

Proof of Theorem 3.4.1. Suppose G is a connected multigraph that does not
have an Euler circuit. If G has an Euler path, we can make a new graph by adding
on one edge that joins the endpoints of the Euler path. If we add this edge to the
Euler path we get an Euler circuit. Thus there is an Euler circuit for our new graph.
By the previous theorem, this implies every vertex in the new graph has even degree.
However, this graph was obtained from G by adding the one edge between distinct
vertices. This edge added one to the degrees of these two vertices. Thus in G these
vertices must have odd degree and are the only vertices in G with odd degree.

Conversely, suppose G has exactly two vertices with odd degree. Again, add an
edge joining the vertices with odd degree. The previous theorem tells us there is an
Euler circuit. Since it is a circuit, we could consider the circuit as one which begins
and ends at one of these vertices where the degree is odd in G. Now, remove the edge

3. EULER AND HAMILTON PATHS 86

we added earlier and we get G back and an Euler path in G.
�

3.5. Hamilton Circuits.

Definitions 3.5.1.
(1) A Hamilton path is a path in a graph G that passes through every vertex

exactly once.
(2) A Hamilton circuit is a Hamilton path that is also a circuit.

Discussion

The difference between a Hamilton path and an Euler path is the Hamilton path
must pass through each vertex exactly once and we do not worry about the edges,
while an Euler path must pass through every edge exactly once and we do not worry
about the vertices.

3.6. Examples.

Example 3.6.1. The circuit v1, v2, v3, v4, v5, v1 is a Hamilton circuit (and so a path

too).

v1

v2

v3

v4v5

Example 3.6.2. This graph has no Hamilton circuit, but v1, v2, v3, v4, v5 is a
Hamilton path.

v1

v2

v3

v4

v5

3. EULER AND HAMILTON PATHS 87

3.7. Sufficient Condition for a Hamilton Circuit.

Theorem 3.7.1. Let G be a connected, simple graph with N vertices, where N ≥
3. If the degree of each vertex is at least n/2, then G has a Hamilton circuit.

Discussion

Unfortunately, there are no necessary and sufficient conditions to determine if a
graph has a Hamilton circuit and/or path. Fortunately, there are theorems that give
sufficient conditions for the existence of a Hamilton circuit. Theorem 3.7.1 above is
just one example.

4. INTRODUCTION TO TREES 88

4. Introduction to Trees

4.1. Definition of a Tree.

Definition 4.1.1. A tree is a connected, undirected graph with no simple circuits.

Discussion

For the rest of this chapter, unless specified, a graph will be understood to be
undirected and simple. Recall that a simple circuit is also called a cycle. A graph is
acyclic if it does not contain any cycles. A tree imposes two conditions on a (simple)
graph: that is be connected and acyclic.

4.2. Examples.

Example 4.2.1. The following are examples of trees

• Family tree
• File/directory tree
• Decision tree
• Organizational charts

Discussion

You have most likely encountered examples of trees: your family tree, the directory
or folder tree in your computer. You have likely encountered trees in other courses
as well. When you covered counting principals and probability in precalculus you
probably used trees to demonstrate the possible outcomes of some experiment such
as a coin toss.

Exercise 4.2.1. Which of the following graphs are trees?

G G

G G

1 2

3 4

Theorem 4.2.1. A graph is a tree iff there is a unique simple path between any
two of its vertices.

4. INTRODUCTION TO TREES 89

Proof. Suppose T is a tree and suppose u and v are distinct vertices in T . T is
connected since it is a tree, and so there is a simple path between u and v. Suppose
there are two different simple paths between u and v, say

P1 : u = u0, u1, u2, . . . um = v

and

P2 : u = v0, v1, v2, . . . vn = v.

(Which type of proof do you think we are planning to use?)

Since the paths are different and since P2 is a simple path, P1 must contain an
edge that isn’t in P2. Let j ≥ 1 be the first index for which the edge {uj−1, uj} of
P1 is not an edge of P2. Then uj−1 = vj−1. Let uk be the first vertex in the path P1

after uj−1 (that is, k ≥ j) that is in the path P2. Then uk = v` for some ` ≥ j. We
now have two simple paths, Q1 : uj−1, ..., uk using edges from P1 and Q2 : vj−1, ..., v`

using edges from P2, between uj−1 = vj−1 and uk = v`. The paths Q1 and Q2 have
no vertices in common, other than the first and last, and no edges in common. Thus,
the path from uj−1 to uk along Q1 followed by the path from v` to vj−1 along the
reverse of Q2 is a simple circuit in T , which contradicts the assumption that T is a
tree. Thus, the path from u to v must be unique proving a tree has a unique path
between any pair of vertices.

Conversely, assume G is not a tree.

(What kind of proof are we setting up for the reverse direction?)

Then either (a) G is not connected, so there is no path between some pair of
vertices, or (b) G contains a simple circuit.

(a) Suppose G is not connected. Then there are two vertices u and v that can not be
joined by a path, hence, by a simple path.

(b) Suppose G contains a simple circuit C : v0, ..., vn, where v0 = vn. If n = 1, then
C would be a loop which is not possible since G is simple. Thus we have n ≥ 2.
But, since n ≥ 2, v1 6= v0, and so we have two different simple paths from v0 to
v1: one containing the single edge {v0, v1}, and the other the part of the reverse
of C from vn = v0 back to v1.

Thus we have proved the statement “If a graph G is not a tree, then either there is
no simple path between some pair of vertices of G or there is more than one simple
path between some pair of vertices of G.” This, is the contrapositive of the statement
“If there is a unique simple path between any two vertices of a graph G, then G is a
tree.”

�

4. INTRODUCTION TO TREES 90

4.3. Roots.

Definition 4.3.1. A rooted tree is a tree T together with a particular vertex
designated as it root. Any vertex may a priori serve as the root. A rooted tree
provides each edge with a direction by traveling away from the root.

4.4. Example 4.4.1.

Example 4.4.1. Consider the tree below.

a b

c

d

e

f

g h

i

We choose c to be the root. Then we have the directed tree:

a b

c

d

e

f

g h

i

Discussion

A rooted tree has a natural direction on its edges: given the root, v, an edge
e = {x, y} lies in the unique simple path from either v to x or from v to y, but not
both. Say e is in the simple path from v to y. Then we can direct e from x to y.

4.5. Isomorphism of Directed Graphs.

Definition 4.5.1. Let G and H be a directed graphs. G and H are isomorphic
if there is a bijection f : V (G) → V (H) such that (u, v) is an edge in G if and only if
(f(u), f(v)) is an edge in H. We call the map f and isomorphism and write G ' H

4. INTRODUCTION TO TREES 91

Discussion

Notice the notation for ordered pairs is used for the edges in a directed graph and
that the isomorphism must preserve the direction of the edges.

Exercise 4.5.1. Let G be a set of directed graphs. Prove that isomorphism of
directed graphs defines an equivalence relation on G.

4.6. Isomorphism of Rooted Trees.

Definition 4.6.1. Rooted trees T1 and T2 are isomorphic if they are isomorphic
as directed graphs.

Discussion

Exercise 4.6.1. Give an example of rooted trees that are isomorphic as (undi-
rected) simple graphs, but not isomorphic as rooted trees.

Exercise 4.6.2. How many different isomorphism types are there of (a) trees with
four vertices? (b) rooted trees with four vertices?

4.7. Terminology for Rooted Trees.

Definition 4.7.1.
1. If e = (u, v) is a directed edge then u is the parent of v and v is the child of u.

The root has no parent and some of the vertices do not have a child.
2. The vertices with no children are called the leaves of the (rooted) tree.
3. If two vertices have the same parent, they are siblings.
4. If there is a directed, simple path from u to v then u is an ancestor of v and v is

a descendant of u.
5. Vertices that have children are internal vertices.

Discussion

Much of the terminology you see on this slide comes directly from a family tree.
There are a few exceptions. For example, on a family tree you probably would not
say cousin Freddy, who has never had kids, is a “leaf.”

4. INTRODUCTION TO TREES 92

4.8. m-ary Tree.

Definition 4.8.1.
1. An m-ary tree is one in which every internal vertex has no more than m children.
2. A full m-ary tree is a tree in which every internal vertex has exactly m children.

Discussion

Notice the distinction between an m-ary tree and a full m-ary tree. The first may
have fewer than m children off of some internal vertex, but a latter must have exactly
m children off of each internal vertex. A full m-ary tree is always an m-ary tree. More
generally, if k ≤ m then every k-ary tree is also an m-ary tree. Caution: terminology
regarding m-ary trees differs among authors.

4.9. Counting the Elements in a Tree.

Theorem 4.9.1. A tree with n vertices has n− 1 edges.

Theorem 4.9.2.
1. A full m-ary tree with i internal vertices has n = mi + 1 vertices.
2. If a full m-ary tree has n vertices, i internal vertices, and L leaves then

(a) i = (n− 1)/m
(b) L = [n(m− 1) + 1]/m
(c) L = i(m− 1) + 1
(d) n = (mL− 1)/(m− 1)
(e) i = (L− 1)/(m− 1)

Discussion

Proof of Theorem 4.9.1. Select a root v and direct the edges away from v.
Then there are as many edges as there are terminal vertices of the edges and every
vertex except v is a terminal vertex of some edge. �

Proof of Theorem 4.9.2 Part 1. Every internal vertex has m children; hence,
there are mi children. Only the root is not counted, since it is the only vertex that is
not a child. �

Exercise 4.9.1. Prove Theorem 4.9.2 Part 2 [Hint: What is L + i?]

4. INTRODUCTION TO TREES 93

4.10. Level.

Definition 4.10.1.
1. The level of a vertex in a rooted tree is the length of the shortest path to the root.

The root has level 0.
2. The height of a rooted tree is the maximal level of any vertex.
3. A rooted tree of height h is balanced if each leaf has level h or h− 1.

Discussion

Example 4.10.1. Consider the rooted tree below
a

b c

d e f

g h

If a is the root of the tree above, then

• the level of b and c is 1.
• The level of g and h is 3.
• The height of the tree is 3.
• This is also a balanced tree since the level of every leaf is either 2 or 3.

4.11. Number of Leaves.

Theorem 4.11.1. An m-ary tree of height h has at most mh leaves.

Corollary 4.11.1.1.
1. If T is an m-ary tree with L leaves and height h, then

h ≥ dlogm Le.
2. If T is full and balanced, then

h = dlogm Le.

Discussion

Notice the at most in Theorem 4.11.1.

4. INTRODUCTION TO TREES 94

Proof of Theorem 4.11.1. We prove the theorem by induction on the height
h, h ≥ 0.

Basis: If the height of the tree is 0, then the tree consists of a single vertex,
which is also a leaf, and m0 = 1.

Induction hypothesis: Assume any m-ary tree of height h has at most mh leaves
for some positive integer m.

Induction step: Prove that an m-ary tree of height h + 1 has at most mh+1

leaves.
Let T be an m-ary tree of height h + 1, h ≥ 0. Remove all the leaves of

T to get a tree T ′. T ′ is an m-ary tree of height h, and so by the induction
hypothesis it has at most mh leaves. We recover T from T ′ by adding back
the deleted edges, and there are at most m edges added to each leaf of T ′.
Thus, T has at most m ·mh = mh+1 leaves, since no leaf of T ′ is a leaf of T .

By the principle of mathematical induction any m-ary tree with height h has at
most mh leaves for any positive integers m and h.

�

Exercise 4.11.1. Prove Corollary 4.11.1.1.

4.12. Characterizations of a Tree.

Theorem 4.12.1. Let G be a graph with at least two vertices. Then the following
statements are equivalent.

1. G is a tree
2. For each pair of distinct vertices in G, there is a unique simple path between the

vertices.
3. G is connected, but if one edge is removed the resulting graph is disconnected.
4. G is acyclic, but if an edge is added between two vertices in G the resulting graph

contains a cycle.
5. G is connected and the number of edges is one less than the number of vertices.
6. G is acyclic and the number of edges is one less than the number of vertices.

Discussion

Theorem 4.12.1 gives us many different tools for recognizing trees. Once we prove
this Theorem, it is enough to prove a graph satisfies any one of the statements to
show the graph is a tree. Equivalently we could show a graph fails to satisfy any of
the conditions to show it is not a tree.

4. INTRODUCTION TO TREES 95

The equivalence 1⇔2 is actually Theorem 4.2.1 which we have already proven.
The equivalence 1⇔3 will be part of your graded assignment.

Proof 1⇔4. First we show 1⇒4.

Let G be a tree with at least two vertices. By the definition of a tree G is acyclic,
so what we must show is if an edge is added between two vertices of G then resulting
graph contains a cycle. Let u and v be two vertices in G and add an edge, e, between
these vertices. Let G′ be the resulting graph. Note that G′ is not necessarily simple.

By part 2 of this Theorem there must be a unique simple path between v and u in
G. Let e1, e2, e3, . . . , ek be the edge sequence defining this path. The edge sequence
e1, e2, e3, . . . , ek, e will define a path from v to itself in G′. Moreover, this is a simple
circuit since e1, e2, e3, . . . , ek defined a simple path in G and e is not an edge in G.
This shows G′ contains a cycle.

Now we show 4⇒1.

Let G be an acyclic simple graph that satisfies the property given in part 4 of
Theorem 4.12.1. Since we already know G is acyclic, what we need to show to
complete the proof that G is a tree is that it is connected. To show a graph is
connected we show two arbitrary vertices are connected by a path in G.

Let u and v be vertices in G. Add an edge, e = {u, v}, to G and call the resulting
graph G′. By our assumption, there must be a cycle in G′ now. In fact, the edge
e must be part of the cycle because without this edge we would not have a cycle.
Suppose e, e1, e2, . . . , ek is the cycle that begins and ends at u. Notice that k must
be at least 1 for this edges sequence to define a cycle. Moreover, the edge sequence
e1, e2, . . . , ek defines a path between v and u in G since all of these edges must be in
G. This shows G is connected and so is a tree. �

Exercise 4.12.1. Prove 1⇔5 in Theorem 4.12.1.

Exercise 4.12.2. Prove 1⇔6 in Theorem 4.12.1.

5. SPANNING TREES 96

5. Spanning Trees

5.1. Spanning Trees.

Definition 5.1.1. Given a connected graph G, a connected subgraph that is both
a tree and contains all the vertices of G is called a spanning tree for G.

Discussion

Given a connected graph G, one is often interested in constructing a connected
subgraph, which contains all of the vertices of G, but has as few the edges of G as
possible. For example, one might wish to find a minimal graph in a connected circuit
in which each pair of nodes is connected. Such a subgraph will be a spanning tree
for G. As we will soon see, if G is not already a tree, then it will have more than one
spanning tree.

5.2. Example 5.2.1.

Example 5.2.1. In the figure below we have a graph drawn in red and black and
a spanning tree of the graph in red.

a
b

c

de

fg

h

i

Discussion

The spanning tree of a graph is not unique.

Exercise 5.2.1. Find at least two other spanning trees of the graph given in
Example 5.2.1.

5. SPANNING TREES 97

5.3. Example 5.3.1.

Example 5.3.1. K5 has 3 nonisomorphic spanning trees.

Discussion

The three nonisomorphic spanning trees would have the following characteristics.
One would have 3 vertices of degree 2 and 2 of degree 1, another spanning tree would
have one vertex of degree three, and the third spanning tree would have one vertex of
degree four. There are more than 3 spanning trees, but any other will be isomorphic
to one of these three.

Exercise 5.3.1. How many nonisomorphic (unrooted) spanning trees are there of
the graph in Example 5.2.1?

5.4. Existence.

Theorem 5.4.1. A graph is connected if and only if it has a spanning tree.

Discussion

One of the key points of Theorem 5.4.1 is that any connected graph has a spanning
tree. A spanning tree of a connected graph can be found by removing any edge that
forms a simple circuit and continuing until no such edge exists. This algorithm turns
out to be very inefficient, however, since it would be time-consuming to look for
circuits each time we wish to consider removing an edge. There are two recursive
algorithms, the depth-first search and the breadth-first search algorithms, that are
fairly efficient, but we will not discuss them here, since they will be covered in depth
in your computer science courses.

Proof of Theorem 5.4.1. First we let G be a graph that contains a spanning
tree, T . Let u and v be vertices in G. Since T is a spanning tree of G, u and v are
also vertices in T . Now, T is a tree, so it is connected. Thus there is a path from u
to v in T . T is, by definition of a spanning tree, a subgraph of G, so the path in T
from u to v is also a path in G. Since u and v were arbitrary vertices in G we see
that G is connected.

Conversely, we assume G is a connected graph. Notice that if G is not simple
we may remove all loops and all but one edge between any pair of vertices that has
more than one edge between them and the resulting graph will be a simple connected
graph. Thus we may assume without loss of generality that G is simple.

Let n = |V (G)|. If G has fewer than n− 1 edges then it would not be connected
as a result of an exercise in Connectivity, thus |E(G)| ≥ n−1. Also from Introduction

5. SPANNING TREES 98

to Trees we recall that G is a tree if and only if |E(G)| = n− 1, so we assume G has
at least n− 1 edges, say |E(G)| = (n− 1) + k.

We will prove that a connected graph with n vertices and (n−1)+k edges contains
a spanning tree by induction on k, k ≥ 0.

Basis Step: k = 0. Then G is already a tree by our observation above.
Induction Step: Assume that every connected graph with n vertices and (n −

1) + k edges, k ≥ 0, contains a spanning tree. Suppose G is a connected
graph with n vertices and (n − 1) + (k + 1) edges. Since |E(G)| > n − 1,
G is not a tree so there must be a simple circuit in G. Removing any edge
from this circuit will result in a connected subgraph, G1, of G with the same
vertex set and n− 1 + k edges. By our induction hypothesis, G1 contains a
spanning tree. But since G1 is a subgraph of G containing all of the vertices
of G, any spanning tree of G1 is a spanning tree of G. Thus, G contains a
spanning tree.

Therefore, by the principle of mathematical induction, every simple con-
nected graph contains a spanning tree.

�

This proof can be used as a basis of a recursive algorithm for constructing spanning
trees. It is, however, nothing more than the inefficient algorithm we alluded to above.

Corollary 5.4.1.1. A connected subgraph of G that has the minimum number of
edges and still contains all the vertices of G must be a spanning tree for G. Moreover,
a spanning tree of a graph with n vertices must have exactly n− 1 edges.

5.5. Spanning Forest.

Definition 5.5.1. A spanning forest of a graph G is the union of a collection
of one spanning tree from each connected component of G.

Theorem 5.5.1. Every finite simple graph has a spanning forest.

Discussion

A graph that is not connected does not have a spanning tree. It does, however,
have a spanning forest.

Exercise 5.5.1. Prove Theorem 5.5.1.

5. SPANNING TREES 99

5.6. Distance.

Definition 5.6.1. Let T1 and T2 be spanning trees of the graph G. The distance,
d(T1, T2), between T1 and T2 is the number of edges in E(T1)⊕ E(T2). That is,

d(T1, T2) = |E(T1)⊕ E(T2)|.

Discussion

Recall the notation ⊕ from sets is the symmetric difference of two sets: A⊕B =
A ∪B − A ∩B.

Consider the spanning tree in Example 5.2.1. It is possible to find another span-
ning tree of the given graph by removing one edge from the given spanning tree and
adding an edge not already in use. (See Exercise 5.6.4 below.) The distance between
this new spanning tree and the old one is 2, since there is 1 edge in the first that is
not in the second and one edge in the second that is not in the first.

Exercise 5.6.1. What is the parity of the distance between any two spanning trees
of a graph G? Explain. (Parity is even or odd).

Exercise 5.6.2. Prove that if A, B, and C are arbitrary finite sets, then

|A ∩ C| ≥ |A ∩B|+ |B ∩ C| − |B|.
[Hint: If X and Y are finites sets, |X ∪ Y | = |X|+ |Y | − |X ∩ Y |.]

Exercise 5.6.3. This one is in your homework. Do not post the solution on the
discussion board.

Prove that if T1, T2, and T3 are spanning trees of a simple connected graph G then

d(T1, T3) ≤ d(T1, T2) + d(T2, T3).

[Hint: First, reduce the inequality to the one in Exercise 5.6.2.]

Exercise 5.6.4. Suppose T and T ′ are spanning trees of a simple connected graph
G and T 6= T ′. Prove that there is an edge e in T that is not in T ′ and an edge e′

in T ′ that is not in T such that if we remove e from T and then add e′ to T − e,
the resulting subgraph T ′′ of G is a spanning tree. [Hint: First show that T ∪ T ′ is a
connected subgraph of G that is not a tree.]

Exercise 5.6.5. In Exercise 5.6.4 what is the relationship between d(T ′, T ′′) and
d(T, T ′)?

Exercise 5.6.6. Prove that if T and T ′ are spanning trees of a simple connected
graph G and T 6= T ′, then there are spanning trees T0, T1, T2, ..., Tk of G, k ≥ 1, such
that

(a) T1 = T ,

5. SPANNING TREES 100

(b) Tk = T ′, and
(c) d(Ti−1, Ti) = 2, for i = 1, ..., k.

[Hint: Use induction on n, where d(T, T ′) = 2n, and Exercise 5.6.4.]

Exercise 5.6.7. Prove that if T0, T1, T2, ..., Tk are are spanning trees of a simple
connected graph G, k ≥ 0, such that d(Ti−1, Ti) = 2, for i = 1, ..., k, then d(T0, Tk) ≤
2k.

6. SEARCH AND DECISION TREES 101

6. Search and Decision Trees

6.1. Binary Tree.

Definition 6.1.1. A binary tree is a rooted 2-ary tree. In a binary tree a child
of a parent may be designated as a left child or a right child, but each parent has
at most one of each.

The rooted subtree consisting of the right (left) child of a vertex and all of its
descendants is the right (left) subtree at that vertex.

A binary tree is often called a binary search tree.

Discussion

A binary tree is a rooted tree in which we may impose additional structure; namely,
the designation of each child of a vertex as either a left or right child. This designation
may be fairly arbitrary in general, although it may be natural in a particular appli-
cation. A tree could be drawn with the left and right subtrees of a vertex reversed,
so it may be unclear which is the left and right without a sketch of the tree or a clear
designation from the beginning. If a tree has been sketched in the plane with the
root at the top and the children of a vertex below the vertex, then the designation of
left or right child should be inferred naturally from the sketch.

Exercise 6.1.1. For the binary tree below, identify left and right children and
sketch the left and right subtrees of each vertex other than the leaves.

a

b c

d e f g

h i j

The tree shown above could have been drawn with the vertices b and c (and their
subtrees) reversed. The resulting tree would be isomorphic to the original as rooted
trees, but the isomorphism would not preserve the additional structure. The point is
that the left and right descendents are not preserved under an isomorphism of rooted
trees.

6. SEARCH AND DECISION TREES 102

Searching items in a list can often be accomplished with the aid of a binary
search tree. For example, suppose we are given a list of elements, X1, X2, ..., Xn, from
an ordered set (S, <), but the elements are not necessarily listed according to their
preferred ordering. We can establish a recursive procedure for constructing a binary
search tree with vertices labeled or keyed by the elements of the list as demonstrated
by Example 6.2.1. This tree will allow us to search efficiently for any particular item
in the list.

6.2. Example 6.2.1.

Example 6.2.1. Suppose X1, X2, ..., Xn are elements from an ordered set (S, <).
Form a binary search tree recursively as follows.

(1) Basis: Let X1 be the label or key for the root.
(2) Recursion: Assume we have constructed a binary search tree with vertices

keyed by X1, ..., Xi, 1 ≤ i < n. Starting with the root, keyed X1, compare
Xi+1 with the keys of the vertices already in the tree, moving to the left if
the vertex key is greater than Xi+1 and to the right otherwise. We eventually
reach a leaf with key Xj for some j between 1 and i. We add a vertex with
key Xi+1 and edge (Xj, Xi+1) and designate Xi+1 to be either a left child of
Xj if Xi+1 < Xj or a right child of Xj if Xj < Xi+1.

Discussion

The main characteristic of the binary search tree constructed is that the key of
any vertex is greater than the key of any vertex in its left subtree and is less than the
key of any vertex in its right subtree.

Example 6.2.2. Construct a binary search tree with vertices keyed by the names
in the list {Jones, Paceco, Hebert, Howard, Russo, Coke, Brown, Smithe, Randall}
using alphabetical order.

Solution:
Jones

Herbert Paceco

Coke
Howard

Brown Randall Smithe

Russo

6. SEARCH AND DECISION TREES 103

Discussion

Example 6.2.2 is one in which we have assigned the vertices keys from a list of
names, ordered alphabetically. Notice that if we rearrange the list of names, say
{Howard, Paceco, Jones, Hebert, Russo, Coke, Brown, Randall, Smithe}, we might
get a different tree:

Jones

Herbert Paceco

Coke

Howard

Brown
Randall

Smithe

Russo

6.3. Decision Tree.

Definition 6.3.1. A decision tree is a rooted tree in which each internal vertex
corresponds to a decision and the leaves correspond to the possible outcomes deter-
mined by a sequence of decisions (a path).

Discussion

Decision trees may be used to determine the complexity of a problem or an algo-
rithm. Notice that a decision tree need not be a binary tree.

6.4. Example 6.4.1.

Example 6.4.1 (Has been featured as a puzzler on Car Talk). Suppose you are
given a collection of identical looking coins and told one of them is counterfeit. The
counterfeit coin does not weigh the same as the real coins. You may or may not be told
the counterfeit coin is heavier or lighter. The only tool you have to determine which
is counterfeit is a balance scale. What is the fewest number of weighings required to
find the counterfeit coin? Your answer does depend on the number of coins you are
given and whether or not you are told the counterfeit is heavier or lighter than the
rest.

Solution

The solution will be obtained by a sequence of weighings as follows:

6. SEARCH AND DECISION TREES 104

• Choose two subsets of the coins of equal number and compare them on the
balance.

• There are three possibilities: one of the two sets of coins weighs more than,
less than, or is the same as the other set of coins.

• Depending on the outcome of the first weighing, choose another two subsets
of the coins and compare them.

• This problem can be modeled with a ternary (3-ary) tree where an internal
vertex corresponds to a weighing, and edge corresponds to an outcome of
that weighing, and a leaf corresponds to a coin found to be counterfeit.

In order to determine the minimal number of weighings for a given problem, you
must be clever in choosing the sets of coins to weigh in order not to require any
redundant comparisons.

Discussion

Just think, you could have won a t-shirt from Car Talk if you had known about
this!

Example 6.4.2. Suppose there are 8 coins, {1, 2, 3, 4, 5, 6, 7, 8}, and you know the
counterfeit coin is lighter than the rest.

Solution: Use a ternary tree to indicate the possible weighings and their outcomes.
A vertex labeled with the notation {a, ..., b}−{x, ..., y} stands for the act of comparing
the set of coins {a, ..., b} to {x, ..., y}. An edge from that vertex will have one of the
labels L, =, or H, depending on whether the first of the two sets is lighter than, equal
in weight to, or heavier than the second set.

{1,2,3}-{4,5,6}

L H
=

{1}-{2} {7}-{3} {4}-{5}

L
= H L H L

=
H

{1} {3} {2} {7} {8} {4} {6} {5}

With careful choices of the sets we see that only two weighings are necessary.

Notice there is a leaf for every possible outcome, that is, one for each coin. It is
not difficult, but perhaps tedious, to see that we cannot get by with only one weighing.
You would have to argue cases. This problem was made a bit easier since we knew
the counterfeit coin is lighter.

6. SEARCH AND DECISION TREES 105

Exercise 6.4.1. In the example above, how many weighings are necessary if you
don’t know whether the counterfeit is lighter or heaver? [Notice that in this case there
would be 16 leaves.]

7. TREE TRAVERSAL 106

7. Tree Traversal

7.1. Ordered Trees.

Definition 7.1.1. An ordered tree is a rooted tree in which the set of children
of each vertex is assigned a total order. In a drawing of an ordered rooted tree, with
the root shown at the top, the children of a vertex are shown from left to right.

Discussion

The concept of an ordered tree in some way generalizes the idea of a binary tree
in which children of a vertex have been designated as left or right, if we think of the
left child of a vertex as being “less than” the right child. The analogy only breaks
down for binary trees that are not complete, however, since some vertex may have
only a left child, whereas another may only have a right child.

7.2. Universal Address System.

Definition 7.2.1. The set of vertices of an ordered tree T can be provided with
a total order, called a universal address system, using the following recursive
process.

Basis: Label the root 0, and label the n children of the root 1, 2, ..., n from left
to right.

Recursion: Given a vertex v with label L at level k ≥ 1, label its children

L.1, L.2, ..., L.nv

from left to right.

Totally order the vertices of T using the lexicographic ordering.

Discussion

Example 7.2.1. The following table gives the universal address system and the
resulting ordering of the vertices for the ordered tree shown below.

a < b < e < f < c < g
0 < 1 < 1.1 < 1.2 < 2 < 2.1
g < h < i < d < j < k < `

2.1 < 2.2 < 2.3 < 3 < 3.1 < 3.2 < 3.3

7. TREE TRAVERSAL 107

a

b c d

e f g i lh j k

7.3. Tree Traversal. Suppose we have information stored in an ordered rooted
tree. How do we recover information from the tree? That is, how do we visit the
vertices in the tree? We shall look at several procedures for visiting, or listing, the
vertices of the tree. Each procedure is defined recursively on the subtrees, and each is
based on a path that proceeds to the leftmost child of a vertex that has not occurred
in the path before moving to a vertex to the right. These algorithms only differ as to
when the root of a subtree is visited (or listed) relative to the vertices of its subtrees.

Definition 7.3.1. A procedure used to systematically visit each vertex in a tree
is called a traversal algorithm, or a traversal.

Notice that a subtree of T that does not include the root must have fewer vertices.
Therefore, the recursive definition makes sense. Just keep applying the recursion step
until you get to the leaves. Once you are down to a subtree that consists only of a
leaf apply the basis step.

7.4. Preorder Traversal.

Definition 7.4.1. The preorder traversal of a rooted tree, T , with n vertices
is defined recursively as follows:

Basis: If n = 1, then the root is the only vertex, so we visit the root.
Recursive Step: When n > 1 consider the subtrees, T1, T2, T3, . . . , Tk of T

whose roots are all the children of the root of T . Visit each of these subtrees
from left to right.

Discussion

Example 7.4.1. In the Preorder Traversal of the the vertices in the following tree
the vertices are visited in the following order: a, b, d, h, i, c, e, f, j, k, g.

7. TREE TRAVERSAL 108

a

b
c

d e f g

h i j

k

To begin finding the preorder traversal we begin with a. Next find the preorder
traversal for the subtree

b

d

h i

T1

List that traversal and then find and list the prerorder traversal for the subtree
c

e f g

j

k

T2

Now to find the preorder traversal of the subtree, T1 we start with b and find the
preorder traversal of

7. TREE TRAVERSAL 109

d

h i

S1

The preorder traversal of this one is d, h, i. The basis step was finally used to
find the preorder traversal of S1’s subtrees.

The preorder traversal of T2 still needs to be found. It is c, e, f, j, k, g. By putting
all the vertices together in the order in which they were listed we get the preorder
traversal a, b, d, h, i, c, e, f, j, k, g.

One recommendation is to take the original graph and point to each vertex in the
order listed in the preorder traversal to help coordinate the order they are given in
the list to their place in the tree.

Notice that if a tree is ordered using the universal address system, then a listing
of the vertices in “increasing” order is a preorder traversal of the tree.

7.5. Inorder Traversal.

Definition 7.5.1. In an inorder traversal of a tree the root of a tree or subtree
is visited after the vertices of the leftmost subtree, but before the vertices of all other
subtrees.

Note that in the inorder traversal, if a vertex, v, has multiple subtrees originating
from it v is placed between the vertices of the leftmost subtree and the vertices of all
the other subtrees.

Exercise 7.5.1. Give a careful, recursive definition of an inorder traversal.

Example 7.5.1. The inorder traversal of this tree below is h, d, i, b, a, e, c, k, j,
f, g.

a

b
c

d e f g

h i j

k

7. TREE TRAVERSAL 110

Example 7.5.2. Here is another example to look at. Again, point to each vertex
in the order it is listed to develop an understanding of the relationship between inorder
traversal and the graph.

a

b c d

e f g

The inorder traversal is b, a, e, c, f, g, d.

7.6. Postorder Traversal.

Definition 7.6.1. In a postorder traversal of a tree, the root of a tree/subtree
is visited after all of the vertices of its subtrees are visited.

Example 7.6.1. The postorder traversal of the tree below is h, i, d, b, e, k, j, f,
g, c, a.

a

b
c

d e f g

h i j

k

7. TREE TRAVERSAL 111

Discussion

The postorder traversal is when the root of a subtree is visited after all its vertices
have been visited.

Example 7.6.2. We can find the postorder traversal of the tree
a

b c d

e f g

Postorder Traversal: b, e, f, g, c, d, a.

Exercise 7.6.1. Give a careful, recursive definition of an postorder traversal.

7.7. Infix Form.

Definitions 7.7.1.
(1) A fully parenthesized expression is in infix form.
(2) The expression obtained by traversing the ordered rooted tree by prefix tra-

versal is prefix form or Polish notation.
(3) The expression obtained by traversing the ordered rooted tree by postfix tra-

versal is postfix form or reverse Polish notation.

Example 7.7.1.

3(x− y) +
(x + y)2

4

(1) Find the infix form.
(2) Draw the rooted tree for the algebraic expression.
(3) Find the prefix form.
(4) Find the postfix form.

Solutions

(1) The infix form is

(3 ∗ (x− y)) + (((x + y) ↑ 2)/4)

7. TREE TRAVERSAL 112

(2) The rooted tree for the algebraic expression is

+

* /

3 -

x y

4

+ 2

x y

(3) The prefix form is

+ ∗ 3 − x y / ↑ + x y 2 4

(4) The postfix form is

3 x y − ∗ x y + 2 ↑ 4 / +

Discussion

An algebraic representation consists of a finite number of

• variables and numbers
• binary operations: addition +, subtraction −, multiplication ∗, division /,

exponentiation ↑.

Pay attention to the fact that the symbol ↑ is used for exponentiation in this
material. For example, 23 = 2 ↑ 3.

In these notes we define the infix, prefix, and postfix forms of an algebraic ex-
pression and give an example. The tree referred to in example 7.7.1 is found as
follows.

A binary ordered tree can be built having internal vertices labeled by the opera-
tors and leaves labeled by the variables and numbers. We start from the innermost
expressions and work our way outward constructing subtrees from the innermost ex-
pressions. These are joined together to form larger subtrees using the operations that
join the innermost expressions. The inorder listing of the vertices then reproduces the

7. TREE TRAVERSAL 113

expression provided the parentheses are inserted as follows: as you begin to traverse
a subtree from an internal vertex (operation) insert an open parenthesis; as you leave
the subtree insert a closed parenthesis.

Prefix and postfix notation can be found from the tree. Notice that the prefix
and postfix notations do not require parenthesis. A algebraic expression in prefix or
postfix notation is unambiguous. Infix form requires parentheses, however, in order
to resolve ambiguities. Despite this fact, infix notation is pretty much the universally
accepted form for writing algebraic expressions. We have adopted a convention, so
well known that we take it for granted, that allows us to reduce, but not eliminate, the
number of parentheses needed without creating ambiguities. Namely, we agree that,
in the absence of parentheses, the binary operations are performed in the following
order: exponentiation, multiplication, division, addition, subtraction.

Exercise 7.7.1. Find the prefix and postfix forms for the algebraic expressions
((a ∗ b) + (c/(d↑3))) and (a ∗ (((b + c)/d)↑3)) .

Example 7.7.2. Find the infix form of the expression given in prefix form.

− ↑ + x y 5 / ∗ 2 + x y 3

Solution

(1) − ↑ + x y 5 / ∗ 2 (+ x y) 3
(2) − ↑ + x y 5 / ∗ 2 (x + y) 3
(3) − ↑ + x y 5 / (∗ 2 (x + y)) 3
(4) − ↑ + x y 5 / (2 ∗ (x + y)) 3
(5) − ↑ + x y 5 (/ (2 ∗ (x + y)) 3)
(6) − ↑ + x y 5 ((2 ∗ (x + y))/3)
(7) − ↑ (+ x y) 5 ((2 ∗ (x + y))/3)
(8) − ↑ (x + y) 5 ((2 ∗ (x + y))/3)
(9) − (↑ (x + y) 5) ((2 ∗ (x + y))/3)

(10) − ((x + y) ↑ 5) ((2 ∗ (x + y))/3)
(11) (− ((x + y) ↑ 5) ((2 ∗ (x + y))/3))
(12) (((x + y) ↑ 5)− ((2 ∗ (x + y))/3))

To go from prefix form to infix form, we read the expression right from left. Look
for the rightmost operation and the variables or numbers immediately to the right
of it. Put parenthesis around these and change to infix notation. Move to the next
right most operation and put parenthesis around it and the expressions just to the
right of it. Change to infix notation, and so on.

Example 7.7.3. Find the value of the postfix expression

6 2 ↑ 9 / 7 2 3 ↑ + 5 / +

Solution

7. TREE TRAVERSAL 114

(1) (6 2 ↑) 9 / 7 2 3 ↑ + 5 / +
(2) (62) 9 / 7 2 3 ↑ + 5 / +
(3) 36 9 / 7 2 3 ↑ + 5 / +
(4) (36 9 /) 7 2 3 ↑ + 5 / +
(5) (36/9) 7 2 3 ↑ + 5 / +
(6) 4 7 (2 3 ↑) + 5 / +
(7) 4 7 8 + 5 / +
(8) 4 (7 8 +) 5 / +
(9) 4 15 5 / +

(10) 4 (15 5 /) +
(11) 4 3 +
(12) 7

This time we look for the left most operation and the numbers immediately to
the left of it.

The exact same procedures may be applied to logical expressions as well as set
operation expressions.

Example 7.7.4. Given the logical expression (p ∨ ¬q) → ¬r

1. Find the infix notation.
2. Represent using an ordered rooted tree.
3. Find the preorder form.
4. Find the postorder form.

Solution:

1. (p ∨ (¬q)) → (¬r)
2. Tree:

r

v

p

q

3. Preorder: → ∨p¬q¬r
4. Postorder: pq¬ ∨ r¬ →

CHAPTER 3

Boolean Algebra

1. Boolean Functions

1.1. Boolean Functions.

Definitions 1.1.1.
1. A Boolean variable is a variable that may take on values only from the set

B = {0, 1}.
2. A Boolean function of degree n or of order n is a function with domain

Bn = {(x1, x2, ..., xn)|xi ∈ B} and codomain B. In other words, Boolean functions
of degree n are functions of the form F : Bn → B.

3. Two Boolean functions, F and G are equivalent if

F (x1, x2, x3, . . . , xn) = G(x1, x2, x3, . . . , xn)

for every ordered n-tuple (x1, x2, x3, . . . , xn) ∈ Bn.

Discussion

We have already encountered Boolean variables, namely, propositional variables,
which must have value 1 (“true”) or 0 (“false”). Indeed, the propositional calculus
is the motivating concept for the material in this chapter, and we shall refer to it
frequently.

1.2. Example 1.2.1.

Example 1.2.1. A Boolean function of degree 2, F (x, y) : B2 → B, may be
defined by a chart. For example, this function may be defined as follows:

x y F (x, y)
1 1 1
1 0 0
0 1 0
0 0 0

115

1. BOOLEAN FUNCTIONS 116

Discussion

There are several ways we may define a Boolean function. A table of values is one
way. After we define addition, multiplication, and other operations on B, we may
also use these operations to define functions.

Notice a Boolean function of two variables must assign to each of the four ordered
pairs a value from B. This means there are 24 = 16 different Boolean functions of
order 2.

Exercise 1.2.1. Use a table of values to define all 16 Boolean functions of order
2.

Exercise 1.2.2. How many Boolean functions of degree n are there?

1.3. Binary Operations.

Definitions 1.3.1. Let x, y ∈ B.

1. Addition is defined by the table
x y x + y
1 1 1
1 0 1
0 1 1
0 0 0

2. Multiplication is defined by the table
x y x · y
1 1 1
1 0 0
0 1 0
0 0 0

3. The compliment is defined by the table
x x
1 0
0 1

Discussion

If you think of the 1 as “true” and the 0 as “false”, as we used in Logic, you should
notice that Boolean addition corresponds to the logical “or”, Boolean multiplication
corresponds to the logical “and”, and complementation corresponds to the logical
“not”. In fact, many authors use the notation ∨, ∧, and ¬ for +, ·, and , respec-
tively. The notation x = x′ is another common alternative for complimentation. We

1. BOOLEAN FUNCTIONS 117

will use this alternative on the discussion board and it may be used in homework.
When there would be no confusion, we drop the · when denoting a Boolean product,
just as is done is algebra.

Notice that Boolean addition defined here on {0, 1} is NOT the same as the
addition on the set of integers modulo 2.

1.4. Example 1.4.1.

Example 1.4.1. The following functions are equivalent.

(1) F (x, y) = x + y
(2) G(x, y) = xy + xy + xy

Proof. We show the two functions have the same values for every possible or-
dered pair in B2.

x y xy x y xy xy xy + xy + xy x + y
1 1 1 0 0 0 0 1 1
1 0 0 0 1 0 1 1 1
0 1 0 1 0 1 0 1 1
0 0 0 1 1 0 0 0 0

�

Discussion

Example 1.4.1 gives an example of equivalent functions that are defined quite
differently, although both representations are in terms of the algebra we have defined
on {0, 1}.

1.5. Boolean Identities. Below is a table of the Boolean Identities you should
know.

1. BOOLEAN FUNCTIONS 118

Identity Name
x = x Law of Double Complement
x + x = x and x · x = x Idempotent Laws
x + 0 = x and x · 1 = x Identity Laws
x + 1 = 1 and x · 0 = 0 Dominance Laws
x + y = y + x
xy = yx

Commutative Laws

x + (y + z) = (x + y) + z
x(yz) = (xy)z

Associative Laws

x + yz = (x + y)(x + z)
x(y + z) = xy + xz

Distributive Laws

x · y = x + y
x + y = x · y DeMorgan’s Laws

Discussion

The distributive law for addition over multiplication and the DeMorgan’s Laws
may seem somewhat unusual to you at this stage, since they have no counterpart in
the operations of addition and multiplication used in our familiar number systems.
Indeed, you should avoid any analogies with ordinary arithmetic and, instead, use
the propositional calculus as your model whenever you feel the need to use a familiar
setting in which to exemplify these or any other properties you might encounter.

Exercise 1.5.1. Verify the distributive law x + yz = (x + y)(x + z).

1.6. Dual.

Definition 1.6.1. The dual of a Boolean expression is the expression one obtains
by interchanging addition and multiplication and interchanging 0’s and 1’s. The dual
of the function F is denoted F d.

Theorem 1.6.1 (Duality Principle). If F and G are Boolean functions such that
F = G, then F d = Gd.

Discussion

Example 1.6.3. The dual of xy + xz is (x + y) · (x + z).

Notice that we have implicitly assumed an order of operations for a Boolean ex-
pression: unless grouping is present to indicate otherwise, complements are evaluated
first, then products, and then sums. This order conforms to the convention we estab-
lished earlier for the order of operations in the predicate calculus. As the example
above shows, you must be careful to preserve the correct order of operation when
taking the dual of an expression, using parentheses wherever necessary.

2. REPRESENTING BOOLEAN FUNCTIONS 119

2. Representing Boolean Functions

2.1. Representing Boolean Functions.

Definitions 2.1.1.
1. A literal is a Boolean variable or the complement of a Boolean variable.
2. A minterm is a product of literals. More specifically, if there are n variables,

x1, x2, . . . xn, a minterm is a product y1y2 · · · yn where yi is xi or xi.
3. A sum-of-products expansion or disjunctive normal form of a Boolean

function is the function written as a sum of minterms.

Discussion

Consider a particular element, say (0, 0, 1), in the Cartesian product B3. There
is a unique Boolean product that uses each of the variables x, y, z or its complement
(but not both) and has value 1 at (0, 0, 1) and 0 at every other element of B3. This
product is x yz.

This expression is called a minterm and the factors, x, y, and z, are literals. This
observation makes it clear that one can represent any Boolean function as a sum-of-
products by taking Boolean sums of all minterms corresponding to the elements of
Bn that are assigned the value 1 by the function. This sum-of-products expansion is
analogous to the disjunctive normal form of a propositional expressions discussed in
Propositional Equivalences in MAD 2104.

2.2. Example 2.2.1.

Example 2.2.1. Find the disjunctive normal form for the Boolean function F
defined by the table

x, y z F (x, y, z)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Solution: F (x, y, z) = xyz + xy z + xyz

2. REPRESENTING BOOLEAN FUNCTIONS 120

Discussion

The disjunctive normal form should have three minterms corresponding to the
three triples for which F takes the value 1. Consider one of these: F (0, 1, 0) = 1.
In order to have a product of literals that will equal 1, we need to multiply literals
that have a value of 1. At the triple (0, 1, 0) the literals we need are x, y, and z,
since x = y = z = 1 when x = 0, y = 1, and z = 0. The corresponding minterm,
xyz, will then have value 1 at (0, 1, 0) and 0 at every other triple in B3. The other
two minterms come from considering F (1, 0, 0) = 1 and F (1, 0, 1) = 1. The sum of
these three minterms will have value 1 at each of (1, 0, 0), (0, 1, 0), (1, 0, 1) and 0 at
all other triples in B3.

2.3. Example 2.3.1.

Example 2.3.1. Simply the expression

F (x, y, z) = xyz + xy z + xyz

using properties of Boolean expressions.

Solution.

xyz + xy z + xyz = xyz + xy(z + z)
= xyz + xy · 1
= xyz + xy

Discussion

Example 2.3.1 shows how we might simplify the function we found in Exam-
ple 2.2.1. Often sum-of-product expressions may be simplified, but any nontrivial
simplification will produce an expression that is not in sum-of-product form. A sum-
of-products form must be a sum of minterms and a minterm must have each variable
or its compliment as a factor.

Example 2.3.2. The following are examples of “simplifying” that changes a sum-
of-products to an expression that is not a sum-of-products:

sum-of-product form: xyz + xy z + xyz
NOT sum-of-product form: = xy + xyz
NOT sum-of-product form: = x(y + yz)

Exercise 2.3.1. Find the disjunctive normal form for the Boolean function, G,
of degree 4 such that G(x1, x2, x3, x4) = 0 if and only if at least 3 of the variables are
1.

2. REPRESENTING BOOLEAN FUNCTIONS 121

2.4. Functionally Complete.

Definition 2.4.1. A set of operations is called functionally complete if every
Boolean function can be expressed using only the operations in the set.

Discussion

Since every Boolean function can be expressed using the operations {+, · , }, the
set {+, · , } is functionally complete. The fact that every function may be written
as a sum-of-products demonstrates that this set is functionally complete.

There are many other sets that are also functionally complete. If we can show each
of the operations in {+, · , } can be written in terms of the operations in another
set, S, then the set S is functionally complete.

2.5. Example 2.5.1.

Example 2.5.1. Show that the set of operations {·, } is functionally complete.

Proof. Since · and are already members of the set, we only need to show that
+ may be written in terms of · and .

We claim
x + y = x · y.

Proof of Claim Version 1

x · y = x + y De Morgan’s Law

= x + y Law of Double Complement

Proof of Claim Version 2

x y, x y x · y x · y x + y

1 1 0 0 0 1 1

1 0 0 1 0 1 1

0 1 1 0 0 1 1

0 0 1 1 1 0 0

�

Discussion

Exercise 2.5.1. Show that {+, } is functionally complete.

2. REPRESENTING BOOLEAN FUNCTIONS 122

Exercise 2.5.2. Prove that the set {+, · } is not functionally complete by showing
that the function F (x) = x (of order 1) cannot be written using only x and addition
and multiplication.

2.6. NAND and NOR.

Definitions 2.6.1.
1. The binary operation NAND, denoted |, is defined by the table

x y x|y
1 1 0
1 0 1
0 1 1
0 0 1

2. The binary operation NOR, denoted ↓, is defined by the table
x y x ↓ y
1 1 0
1 0 0
0 1 0
0 0 1

Discussion

Notice the NAND operator may be thought of as “not and” while the NOR may
be thought of as “not or.”

Exercise 2.6.1. Show that x|y = x · y for all x and y in B = {0, 1}.

Exercise 2.6.2. Show that {|} is functionally complete.

Exercise 2.6.3. Show that x ↓ y = x + y for all x and y in B = {0, 1}.

Exercise 2.6.4. Show that {↓} is functionally complete.

3. ABSTRACT BOOLEAN ALGEBRAS 123

3. Abstract Boolean Algebras

3.1. Abstract Boolean Algebra.

Definition 3.1.1. An abstract Boolean algebra is defined as a set B contain-
ing two distinct elements 0 and 1, together with binary operations +, · , and a unary
operation , having the following properties:

x + 0 = x

x · 1 = x
Identity Laws

x + x = 1

x · x = 0
Compliments Laws

(x + y) + z = x + (y + z)

(x · y) · z = x · (y · z)
Associative Laws

x + y = y + x

x · y = y · x Commutative Laws

x + (y · z) = (x + y) · (x + z)

x · (y + z) = (x · y) + (x · z)
Distributive Laws

Discussion

The definition of an abstract Boolean algebra gives the axioms for an abstract
Boolean algebra. The unary operation is called complementation. Named after
the English mathematician George Boole (1815-1864), Boolean algebras are especially
important in computer science because of their applications to switching theory and
design of digital computers.

3.2. Examples of Boolean Algebras. Examples.

1. B = {0, 1} together with the operations +, · , described in Boolean Functions
is a Boolean Algebra.

2. Bk together with the operations
(a) (x1, x2, x3, . . . , xk)+ (y1, y2, y3, . . . , yk) = (x1 + y1, x2 + y2, x3 + y3, . . . , xk + yk)
(b) (x1, x2, x3, . . . , xk) · (y1, y2, y3, . . . , yk) = (x1 · y1, x2 · y2, x3 · y3, . . . , xk · yk)

(c) (x1, x2, x3, . . . , xk) = (x1, x2, x3, . . . , xk)
is a Boolean Algebra.
We can find the element of Bk that is considered the “one element” by asking

which element of Bk will satisfy the properties: x · “one” = x and x + x = “one”
for all x ∈ Bk? In other words, using the definition of the operations in Bk

we need to find the element of Bk so that for all (x1, x2, x3, . . . , xk) ∈ Bk we have

3. ABSTRACT BOOLEAN ALGEBRAS 124

(x1, x2, x3, . . . , xk)·“one” = (x1, x2, x3, . . . , xk) and (x1 ·x1, x2 ·x2, x3 ·x3, . . . , xk ·xk).
Notice that the ordered k-tuple of all 1’s satisfies these properties, so the “one”
element is (1, 1, 1, . . . , 1).

3. BOOL(k) defined to be the set of all Boolean functions of degree k together with
the operations
(a) F + G (or F ∨G) defined by (F + G)(u) = F (u) + G(u) for any u ∈ Bk,
(b) F ·G (or F ∧G) defined by (F ·G)(u) = F (u) ·G(u) for any u ∈ Bk,

(c) and F defined by F (u) = F (u) for any u ∈ Bk.
is a Boolean Algebra.

4. Let S be a set and let FUN(S, {0, 1}) be the set of all functions with domain S
and codomain {0, 1}. Define the Boolean operations on FUN(S, {0, 1}) as follows:
Let F, G ∈ FUN(S, {0, 1}), then
(a) F + G : S → {0, 1} is the function defined by (F + G)(x) = F (x) + G(x) for

all x ∈ S,
(b) F ·G : S → {0, 1} is the function defined by (F ·G)(x) = F (x) ·G(x) for all

x ∈ S,
(c) F : S → {0, 1} is the function defined by F (x) = F (x) for all x ∈ S,

FUN(S, {0, 1}) together with these operations is a Boolean Algebra.
5. Let S be a set. The power set P (S) together with the operations

(a) A + B = A ∪B for all A, B ∈ P (S)
(b) A ·B = A ∩B for all A, B ∈ P (S)
(c) A is the complement of A for all A ∈ P (S)

is a Boolean Algebra.
We can find the element of P (S) that is the “one” element by asking which

element of P (S) will satisfy the identity and compliments properties of a Boolean
algebra. Interpreting this in terms of the way the operations are defined on this set
we see the set S is the element in P (S) that satisfies the properties since A∪A = S
and A ∩ S = A for any set A in P (S).

6. The set D6 = {1, 2, 3, 6} along with the operations
(a) a + b = lcm(a, b) for all a, b ∈ D6

(b) a · b = gcd(a, b) for all a, b ∈ D6

(c) a = 6/a for all a ∈ D6

is a Boolean algrebra.
The element 1 of D6 is the “zero” element of D6 since it satisfies the identity

and compliments properties for this Boolean algebra. That is “zero” = a · a =
gcd(a, 6/a) = 1 and a + “zero” = a + 1 = lcm(a, 1) = a for all a ∈ D6.

Discussion

The set B = {0, 1}, together with the Boolean operations defined earlier, is the
simplest example of a Boolean algebra, but there are many others, some of which do
not involve Boolean operations on the set {0, 1}, at least overtly. The examples above
exhibits six examples of abstract Boolean algebras, including {0, 1} and the Boolean

3. ABSTRACT BOOLEAN ALGEBRAS 125

algebra of Boolean functions discussed in the lectures on Boolean Functions and their
Representations.

Let us examine example 3 a bit closer. The set BOOL(2) is the set of all Boolean
functions of degree 2. In the lecture notes Boolean Functions we determined there
were 16 different Boolean functions of degree 2. In fact, in an exercise following this
observation you created a table representing all 16 Boolean functions of degree 2.
Notice BOOL(2) is the set of the 16 functions represented by this table.

Exercise 3.2.1. Write a table representing all the elements of BOOL(2) and
name the elements (functions) F1, F2, F3, . . . , F16.

(a) Find F3 + F4, F3 · F4, and F3 (your answers will depend on how you labeled
your functions).

(b) Which of the functions is the 0 element of the abstract Boolean algebra?
(c) Which of the functions is the 1 element of the abstract Boolean algebra?

The following table gives some of the identity elements, 0 and 1, of the Boolean
algebras given in the previous examples of abstract Boolean algebras.

Exercise 3.2.2. Fill in the rest of the information in the table.

Boolean Algebra 0 element 1 element an element that is neither 0 nor 1

B 0 1 none

B5 ? (1, 1, 1, 1, 1) (1, 0, 0, 0, 0)

f : {a, b, c} → B defined
FUN({a, b, c}, {0, 1}) χ∅ ?

by f(a) = 0, f(b) = 1, f(c) = 1

P (S) ? S ?

D6 1 ? ?

The function χA : S → B, where A a subset of S is called the characteristic
function of A and is defined by χA(x) = 1 if x ∈ A, and χA(x) = 0 if x ∈ S − A. (χ
is the lower case Greek letter “chi”.)

Here is another important example that we discussed in some detail in MAD 2104.

Example 3.2.7. Let B be a nonempty set of propositions satisfying the conditions:

(1) if p is in B, then so is ¬p, and
(2) if p and q are in B, then so are p ∨ q and p ∧ q.

Then B together with the operations ∨ (for +), ∧ (for ·), and ¬ (for) is a Boolean
algebra.

3. ABSTRACT BOOLEAN ALGEBRAS 126

Proof. Since B 6= ∅, B contains a proposition p. By (1), ¬p is also in B. By
(2), B contains the tautology p ∨ ¬p = 1 and the contradiction p ∧ ¬p = 0. The
remaining properties were established in the materials covered in MAD 2104. �

As these examples illustrate, the names for addition and multiplication in a par-
ticular Boolean algebra may be idiomatic to that example. Addition may be called
sum, union, join, or disjunction; whereas, multiplication may be called product, inter-
section, meet, or conjunction. Because the addition and multiplication operations in
a Boolean algebra behave so differently from addition and multiplication in the more
familiar algebraic systems, such as the integers or real numbers, alternative notation,
such as ∨ for + and ∧ for · , are often used instead. At the risk of creating confu-
sion we shall use + and · when working in an abstract Boolean algebra, but, when
working with a particular example, such as the one above, we will use conventional
notation associated with that example.

3.3. Duality.

Definition 3.3.1 (Duality). Notice how the axioms of an abstract Boolean al-
gebra in the definition of a Boolean algebra have been grouped in pairs. It is possible
to get either axiom in a pair from the other by interchanging the operations + and · ,
and interchanging the elements 0 and 1. This is called the principle of duality. As
a consequence, any property of a Boolean algebra has a dual property (which is also
true) obtained by performing these interchanges.

3.4. More Properties of a Boolean Algebra.

Theorem 3.4.1 (Properties). Let B be an abstract Boolean algebra. Then for any
x, y ∈ B. . .

(1) Idempotent Laws: x + x = x and x · x = x
(2) Domination Laws: x + 1 = 1 and x · 0 = 0
(3) Absorption Laws: (x · y) + x = x and (x + y) · x = x
(4) x + y = 1 and x · y = 0 if and only if y = x
(5) Double Complements Law: x = x
(6) DeMorgan’s Laws: x · y = x + y and x + y = x · y

Discussion

The properties in Theorem 3.4.1 are all consequences of the axioms of a Boolean
algebra. When proving any property of an abstract Boolean algebra, we may only
use the axioms and previously proven results. In particular, we may not assume we
are working in any one particular example of a Boolean algebra, such as the Boolean
algebra {0, 1}. In the following examples and exercises, x, y, z, ... represent elements

3. ABSTRACT BOOLEAN ALGEBRAS 127

of an arbitrary Boolean algebra B. Notice that these arbitrary elements may or may
not be the zero or one elements of the Boolean algebra.

Example 3.4.1. For any x in B, 0 + x = x and 1 · x = x.

Proof. These follow directly from the Identity Laws and the Commutative Laws.
Notice that the second property is the dual of the first. �

3.5. Proof of Idempotent Laws.

Proof of first Idempotent Law. Let B be a Boolean algebra and let x ∈ B.

x + x = (x + x) · 1 Identity Law
= (x + x) · (x + x) Compliments Law
= x + (x · x) Distributive Law
= x + 0 Compliments Law
= x Identity Law

�

Discussion

Exercise 3.5.1. Interpret the Idempotent Laws for the Boolean algebra P (S) of
subsets of a set S (Example 5).

Exercise 3.5.2. Prove the other Idempotent Law, for any x in B, x · x = x, in
two ways: (a) using the principle of duality, and (b) directly (without invoking the
duality principle).

3.6. Proof of Dominance Laws.

Proof of the the dominance law x + 1 = 1. Let B be a Boolean algebra
and let x ∈ B.

x + 1 = (x + 1) · 1 Identity Law
= (x + 1) · (x + x) Compliments Law
= x + 1 · x Distributive Law
= x + x Identity Law
= 1 Compliments Law

�

Discussion

3. ABSTRACT BOOLEAN ALGEBRAS 128

One of the Dominance Laws, Property 2 of Theorem 3.4.1, is proved above. This
“Dominance Law” may look a little peculiar, since there is no counterpart in the
algebra of the integers or real numbers. It is, however, a familiar property of the
Boolean algebra P (S) of subsets of a set S. It merely says that A ∪ S = S for every
subset A of S.

Exercise 3.6.1. Prove the other Dominance Law (Theorem 3.4.1 Property 2),
x · 0 = 0 for every x in B, in two ways: (a) using the principle of duality, and (b)
directly (without invoking the duality principle).

Exercise 3.6.2. Prove the Absorption Laws (Theorem 3.4.1 Property 3): (x ·y)+
x = x and (x + y) · x = x for all x, y in B. [Hint: Use Property 2.]

Exercise 3.6.3. Interpret the Absorption Laws for the Boolean algebra P (S) of
subsets of a set S (Example 5).

3.7. Proof of Theorem 3.4.1 Property 4. Recall Theorem 3.4.1 Property 4:
For all x and y in B, x + y = 1 and x · y = 0 if and only if y = x.

Proof of Theorem 3.4.1 Property 4. Let x, y ∈ B and suppose that x +
y = 1 and x · y = 0. Then,
y = y · 1 Identity Law

= y · (x + x) Compliments Law
= y · x + y · x Distributive Law
= 0 + y · x Hypothesis
= y · x Identity Law

On the other hand

x = x · 1 Identity Law
= x · (x + y) Hypothesis
= x · x + x · y Distributive Law
= x · x + y · x Commutative Law
= 0 + y · x Compliments Law
= y · x Identity Law

Thus, y = y · x = x. �

Discussion

One direction of the “if and only if” statement of Property 4 Theorem 3.4.1 is just
a restatement of the Compliments Laws; hence, we need only prove that if u + v = 1
and u · v = 0, then v = u. Since u · u = 0 and u · v = 0, it is tempting to take
the resulting equation u · u = u · v and simply “cancel” the u from each side to
conclude that u = v. However, there is no cancellation law for multiplication

3. ABSTRACT BOOLEAN ALGEBRAS 129

(or addition) in a Boolean algebra as there is in the algebra of the integers or
the real numbers. Thus, we must be a little more clever in constructing a proof.

Exercise 3.7.1. Give an example of a Boolean algebra B and elements x, y, z in
B such that x + z = y + z, but x 6= y.

Property 4 shows that the complement of an element u in a Boolean algebra is the
unique element that satisfies the Compliments Laws relative to u. Such uniqueness
results can provide very powerful strategies for showing that two elements in a Boolean
algebra are equal. Here is another example of uniqueness, this time of the additive
identity element 0.

Theorem 3.7.1. Suppose u is an element of a Boolean algebra B such that x+u =
x for all x in B. Then u = 0.

Proof. Since x + u = x for all x in B, 0 + u = 0. But 0 + u = u + 0 = u by the
Commutative and Identity Laws; hence, u = 0. �

Exercise 3.7.2. Suppose v is an element of a Boolean algebra B such that x·v = x
for all x in B. Prove that v = 1.

Exercise 3.7.3. Prove that 1 = 0 and 0 = 1. [Hint: Use Theorem 3.4.1 Property
4 and duality.]

Exercise 3.7.4. Prove the Double Complements Law: x = x.

3.8. Proof of DeMorgan’s Law. Recall one of DeMorgan’s Laws: xy = x + y
for all x, y in a Boolean algebra, B.

Proof. Let x, y ∈ B.

xy + (x + y) = [x + (x + y)][y + (x + y)]
= [(x + x) + y][(y + y) + x]
= (1 + y)(1 + x)
= 1 · 1
= 1

(xy)(x + y) = (xy)x + (xy)y
= (xx)y + x(yy)
= 0 · y + x · 0
= 0 + 0
= 0

Now apply Property 4 with u = xy and v = x + y to conclude that x + y = xy.
�

3. ABSTRACT BOOLEAN ALGEBRAS 130

Discussion

As in ordinary algebra we may drop the · and indicate multiplication by jux-
taposition when there is no chance for confusion. We adopt this convention in the
previous proof, wherein we give the steps in the proof of one of DeMorgan’s Laws.
The proof invokes the uniqueness property of complements, Property 4 in Theorem
3.4.1, by showing that x + y behaves like the complement of xy.

Exercise 3.8.1. Give reasons for each of the steps in the proof of the DeMorgan’s
Law proven above. (Some steps may use more than one property.)

Exercise 3.8.2. Prove the other DeMorgan’s Law, x + y = x y using the principle
of duality.

Exercise 3.8.3. Prove the other DeMorgan’s Law, x + y = x y directly (without
invoking the duality principle).

Notice. One of the morals from DeMorgan’s Laws is that you must be careful to
distinguish between x · y and x · y (or between xy and x y), since they may represent
different elements in the Boolean algebra.

3.9. Isomorphism.

Definition 3.9.1. Two Boolean algebras B1 and B2 are isomorphic if there is
a bijection f : B1 → B2 that preserves Boolean operations. That is, for all x and y in
B1,

(1) f(x + y) = f(x) + f(y),
(2) f(x · y) = f(x) · f(y), and

(3) f(x) = f(x).

The bijection f is called an isomorphism between B1 and B2.

Discussion

The adjective isomorphic was used earlier to describe two graphs that are the same
in the sense that they share all of the same graph invariants. A graph isomorphism
was defined to be a one-to-one correspondence (bijection) between the vertices of two
(simple) graphs that preserves incidence. The terms isomorphic and isomorphism are
used throughout mathematics to describe two mathematical systems are essentially
the same.

Example 3.9.1. Let B be the Boolean algebra {0, 1}, and let P (S) be the Boolean
algebra of subsets of the set S = {a} (having just one element). Prove that B and
P (S) are isomorphic.

3. ABSTRACT BOOLEAN ALGEBRAS 131

Proof. P (S) = {∅, S} has exactly two elements as does B. Thus, there are two
bijections from B to P (S). Only one of these, however, is an isomorphism of Boolean
algebras, namely, the bijection f : B → P (S) defined by f(0) = ∅ and f(1) = S. We
can check that the three properties of an isomorphism hold by using tables to check
all possible cases:

x f(x) x f(x) f(x)

0 ∅ 1 S S

1 S 0 ∅ ∅

x y f(x) f(y) x + y x · y f(x + y) f(x) ∪ f(y) f(x · y) f(x) ∩ f(y)

0 0 ∅ ∅ 0 0 ∅ ∅ ∅ ∅

0 1 ∅ S 1 0 S S ∅ ∅

1 0 S ∅ 1 0 S S ∅ ∅

1 1 S S 1 1 S S S S

�

Exercise 3.9.1. Given B and P (S) as in Example 3.9.1, show that the bijection
g : B → P (S) defined by g(0) = S and g(1) = ∅ does not define an isomorphism.

3.10. Atoms.

Definition 3.10.1. An element a in a Boolean algebra B is called an atom if

(1) a 6= 0, and
(2) for every x in B, either ax = a or ax = 0.

Theorem 3.10.1. A nonzero element a in a Boolean algebra B is an atom if and
only if for every x, y ∈ B with a = x+y we must have a = x or a = y. In otherwords,
a is indecomposable.

Discussion

The method of exhausting all possible cases used in Example 3.9.1 to prove that a
given bijection is an isomorphism is clearly not feasible for Boolean algebras that con-
tain very many elements. The concept of an atom can be used to simplify the problem
considerably. Atoms are in some sense minimal nonzero elements of a Boolean alge-
bra, and, in the case of a finite Boolean algebra, they generate the algebra; that is,
every nonzero element of the algebra can be written as a (finite) sum of atoms.

3. ABSTRACT BOOLEAN ALGEBRAS 132

Example 3.10.1. Let B2 = {(0, 0), (0, 1), (1, 0), (1, 1)} be the Boolean algebra de-
scribed in Example 2 with k = 2. The elements (0, 1) and (1, 0) are the atoms of B2.
(Why?) Notice that the only other nonzero element is (1, 1), and (1, 1) = (0, 1)+(1, 0).

Exercise 3.10.1. Let Bn = {(x1, x2, ..., xn)|xi = 0 or 1} be the Boolean algebra
described in Example 2.

(a) Show that the atoms of Bn are precisely the elements

ai = (0, 0, ..., 0,1
↑

ith coordinate

, 0, ..., 0),

i = 1, 2, ..., n. [Hint: Show (i) each ai is an atom, and (ii) if x ∈ Bn has two
nonzero coordinates, then x is not an atom.]

(b) Show that every nonzero element of Bn is a sum of atoms.

Proof of Theorem 3.10.1. Let a ∈ B.

First we show

{∀u ∈ B[(au = 0) ∧ (au = a)]} ⇒ {∀x, y ∈ B[(a = x + y) → ((a = x) ∨ (a = y))]}.

Assume a is such that au = 0 or au = a for all u ∈ B and let x, y ∈ B be such
that x + y = a. Then

ax = x · x + yx
= x + yx
= x(1 + y)
= x · 1
= x

But by our assumption, ax = 0 or ax = a, so x = 0 or x = a. If x = 0 then we
would have y = a proving ∀x, y ∈ B[(a = x + y) → ((a = x) ∨ (a = y))]

We now will show

{∀x, y ∈ B[(a = x + y) → ((a = x) ∨ (a = y))]} ⇒ {∀u ∈ B[(au = 0) ∧ (au = a)]}.

Assume a is such that ∀x, y ∈ B[(a = x+y) → ((a = x)∨ (a = y))] and let u ∈ B.
Then

au + au = a(u + u)
= a · 1
= a

Thus au = a or au = a. Suppose au = a. Then

3. ABSTRACT BOOLEAN ALGEBRAS 133

au = (au)u
a(u · u)
a · 0
0

�

3.11. Theorem 3.11.1.

Theorem 3.11.1. If a and b are atoms in a Boolean algebra B, then either a = b
or ab = 0.

Discussion

Theorem 3.11.1 gives a property of atoms that we will find very useful. It says
that, in some sense, atoms in a Boolean algebra are disjoint. When applied to the
example P (S) of subsets of a set S, this is precisely what it is saying.

Exercise 3.11.1. Prove Theorem 3.11.1. [Hint: Use the definition to prove the
logically equivalent statement: If ab 6= 0, then a = b.]

3.12. Theorem 3.12.1.

Theorem 3.12.1. Suppose that an element x in a Boolean algebra B can be ex-
pressed as a sum of distinct atoms a1, ..., am. Then a1, ..., am are unique except for
their order.

Discussion

Theorem 3.12.1 provides the rather strong result that an element of a Boolean
algebra cannot be expressed as a sum of atoms in more than one way, except by
reordering the summands. In particular, it shows that each individual atom is inde-
composable in the sense that it cannot be written as a sum of two or more atoms in
a nontrivial way.

Proof of Theorem 3.12.1. Suppose x can be expressed as sums

x = a1 + a2 + · · ·+ am = b1 + b2 + · · ·+ bn,

where each ai and each bj is an atom of B, the ai’s are distinct, and the bj’s are
distinct. Then, by the Distributive Law, for each i = 1, ...,m,

aix = ai(a1 + a2 + · · ·+ am) = ai(b1 + b2 + · · ·+ bn)
= aia1 + aia2 + · · · aiam = aib1 + aib2 + · · ·+ aibn.

3. ABSTRACT BOOLEAN ALGEBRAS 134

By Theorem 3.11.1, aiaj = 0, if i 6= j, so that

aia1 + aia2 + · · · aiam = aiai = ai.

If ai 6= bj for all j, then, again by Theorem 3.11.1, aibj = 0 for all j, so that
aib1 + aib2 + · · · + aibn = 0. This is not possible, however, since ai 6= 0 and ai =
aib1 + aib2 + · · ·+ aibn. Thus, ai = bj for some j.

By interchanging the roles of the a’s and the b’s, the same argument shows that
for each j, bj = ai for some i. Thus, m = n, and the sets {a1, ..., am} and {b1, ..., bm}
are equal.

�

3.13. Basis.

Theorem 3.13.1. Suppose B is a finite Boolean algebra. Then there is a set of
atoms A = {a1, a2, ..., ak} in B such that every nonzero element of B can be expressed
uniquely as a sum of elements of A (up to the order of the summands).

Definition 3.13.1. Given a Boolean algebra B, a set A of atoms of B is called
a basis if every nonzero element of B can be written as a finite sum of atoms in A.

Discussion

Theorem 3.13.1 shows that every finite Boolean algebra has a basis, as defined
above. The finiteness condition is necessary as the following exercise makes clear.

Exercise 3.13.1. Let Z denote the set of integers. Prove:

(a) The atoms of P (Z) are the sets {n} for n ∈ Z.
(b) P (Z) does not contain a basis.

Proof of Theorem 3.13.1. Suppose B = {x1, x2, ..., xm}, where the xi’s are
distinct. As in Representing Boolean Functions, define a minterm in the xi’s as a
product y1y2 · · · ym, where each yi is either xi or xi. Using the Compliments Law,
x + x = 1, one can prove, by mathematical induction, that the sum of all possible
minterms is 1:

∑
yi=xi or yi=xi

y1y2 · · · ym = 1.

(See Exercise 3.13.2.)

If a minterm y1y2 · · · ym is not 0, then it must be an atom:

3. ABSTRACT BOOLEAN ALGEBRAS 135

• xi(y1y2 · · · ym) = y1y2 · · · (xiyi) · · · ym = 0, if yi = xi, and
• xi(y1y2 · · · ym) = y1y2 · · · (xiyi) · · · ym = y1y2 · · · ym, if yi = xi.

Thus, for any i,

xi = xi · 1 = xi ·
∑

yi=xi or yi=xi

y1y2 · · · ym =
∑

yi=xi or yi=xi

xi(y1y2 · · · ym).

As observed above, each product xi(y1y2 · · · ym) is either 0 or is equal to the
minterm y1y2 · · · ym itself. Thus, if xi 6= 0, then xi is a sum of nonzero minterms;
hence, a sum of atoms. Thus, we have shown that each nonzero minterm in the xi’s
is an atom and each nonzero element of B is a sum of nonzero minterms.

The theorem is now proved by letting A = {a1, a2, ..., ak} be the set of all nonzero
minterms in the xi’s. Every nonzero element of B can be expressed as a sum of
elements of A, and the uniqueness of this representation follows from Theorem 3.12.1.

�

Exercise 3.13.2. Use mathematical induction to prove that if x1, x2, ..., xr are
arbitrary elements of a Boolean algebra B, then the sum of all minterms y1y2 · · · yr

in the xi’s is equal to 1. [Hint: Notice that the terms in the sum of all minterms∑
yi=xi or yi=xi

y1y2 · · · yr

fall into two classes, those for which y1 = x1 and those for which y1 = x1.]

Exercise 3.13.3. Suppose In = {1, 2, ..., n}. Show that the set {{1}, {2}, ..., {n}}
is a basis for the Boolean algebra P (In) of subsets of In.

3.14. Theorem 3.14.1.

Theorem 3.14.1. Suppose that B is a finite Boolean algebra having a basis con-
sisting of n elements. Then B is isomorphic to the Boolean algebra P (In) of subsets
of In = {1, 2, ..., n}.

Discussion

Theorem 3.14.1, together with Theorem 3.13.1, provides the main characteriza-
tion of finite Boolean algebras. Putting these two theorems together, we see that
every finite Boolean algebra has a basis and, hence, is isomorphic to the Boolean
algebra, P (In), of subsets of the set In = {1, 2, ..., n} for some positive integer n.
This characterization puts a severe constraint on the number of elements in a finite
Boolean algebra, since the Boolean algebra P (In) has 2n elements.

3. ABSTRACT BOOLEAN ALGEBRAS 136

Proof of Theorem 3.14.1. Let {a1, a2, ..., an} be the basis for B. Recall that
in the Boolean algebra P (In), “addition” is union, ∪, “multiplication” is intersection,
∩, and “complementation” is set-theoretic complementation, .

A nonempty subset J of In determines an element of B by taking the sum of the
atoms of B having indices in the set J . For example, if J = {1, 3, 5}, then we get the
element

x = a1 + a3 + a5

of B. In general, we can denote the element of B determined by an arbitrary subset
J of In by

x =
∑
i∈J

ai,

provided we adopt the convention that the “empty sum” adds to 0:∑
i∈∅

ai = 0.

Define an isomorphism

f : B → P (In)

as follows: Given a subset J of In, and an element

x =
∑
i∈J

ai

of B, set

f(x) = J.

f is well-defined, since, by Theorem 3.13.1, each element of B can be expressed
uniquely as a sum of atoms. (By the convention, this now includes 0.) f has an
inverse

g : P (In) → B

defined by

g(J) =
∑
i∈J

ai.

Thus, f is a bijection, since it has an inverse. In order to see that f is an isomorphism,
we must show that f preserves sums, products, and complements.

Two key observations are that if J and K are subsets of In, then∑
j∈J

aj +
∑
k∈K

ak =
∑

i∈J∪K

ai

and (∑
j∈J

aj

)
·
(∑

k∈K

ak

)
=

∑
i∈J∩K

ai.

3. ABSTRACT BOOLEAN ALGEBRAS 137

The first follows from the Idempotent Law x + x = x, since, in the left-hand sum,
if i ∈ J ∩K, then, after combining like terms, we get the summand ai +ai = ai. That
is, after simplifying using the Idempotent Law, we get a term ai for each i in J ∪K,
and no others.

The second follows from the Idempotent Law x ·x = x and Theorem 3.11.1. After
using the Distributive and Associative Laws, the left-hand side is a sum of terms ajak,
where j is in J and k is in K. Since the aj’s are atoms, Theorem 3.11.1 says that the
only nonzero terms are terms in which j = k. This only occurs when j = k ∈ J ∩K,
and, in this case, ajaj = aj.

Thus, if x =
∑

j∈J aj, y =
∑

k∈K ak are arbitrary elements of B, then

x + y =
∑

i∈J∪K

ai and xy =
∑

i∈J∩K

ai,

so that

f(x + y) = J ∪K = f(x) ∪ f(y) and f(xy) = J ∩K = f(x) ∩ f(y).

In order to see that f preserves complements, we need one further observation: If
x =

∑
j∈J aj, and if J is the complement of J in In, then

x =
∑
j′∈J

aj′ .

For example, if n = 5 and x = a1 + a4, then x = a2 + a3 + a5. This follows from
Property 4 in Theorem 3.4.1: After using the Distributive Law, the terms in the
product (∑

j∈J

aj

)
·
(∑

j′∈J

aj′

)
are each of the form ajaj′ , where j is in J and j′ in J . Since J and J are disjoint,
j 6= j′ for any such term, and so, by Theorem 3.11.1, the product ajaj′ = 0. That is,(∑

j∈J

aj

)
·
(∑

j′∈J

aj′

)
= 0.

On the other hand, we have already shown in the proof of Theorem 3.13.1 (and
Exercise 3.13.2) that the sum of all of the atoms is 1, so that(∑

j∈J

aj

)
+

(∑
j′∈J

aj′

)
=

∑
i∈J∪J

ai =
∑
i∈In

ai = a1 + a2 + · · ·+ an = 1.

Property 4, Theorem 3.4.1, now guarantees that if x =
∑

j∈J aj, then

x =
∑
j′∈J

ai,

3. ABSTRACT BOOLEAN ALGEBRAS 138

and so
f(x) = J = f(x).

�

Corollary 3.14.1.1. Suppose that B1 and B2 are finite Boolean algebras having
bases of the same size. Then B1 and B2 are isomorphic.

Exercise 3.14.1. Show that if B is a finite Boolean algebra, then B is isomorphic
to Bn for some positive integer n.

4. LOGIC GATES 139

4. Logic Gates

4.1. Logic Gates.

Definition 4.1.1. Boolean algebra can be used to model circuit design in an
electronic device. Basic elements are gates. The three most common gates are

(1) Inverter:

x x

(2) AND:
x

x

x

1

2

n

.

..

x x x1 2 3
... nx

(3) OR:

x

x

x

1

2

n

.

..

x x x x1 2 3 n...+ ++ +

Discussion

Gates are the basic building blocks of circuits. We combine gates to construct
combinatorial circuits or gating networks that have as output a given Boolean expres-
sion.

4.2. Example 4.2.1.

Example 4.2.1. Construct a combinatorial circuit for the function F given by the
following table:

4. LOGIC GATES 140

x y z F (x, y, z)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Solution.

x

y

z

x

x

x

y

y

y

z

z

z

����� +����� +����� +�����

Discussion

The figure given in the solution to example 4.2.1 comes from the disjunctive normal
form for the function. The function is equivalent to xyz + xy z + xyz + x y z. This

4. LOGIC GATES 141

function is also equivalent to xy + x z, so the combinatorial network below also has
the same output.

x

y

z

��� + xz

Clearly the network given here is simpler than the one given in the solution for
example 4.2.1. In this section we will not be concerned with simplifying the net-
works, only with getting the correct output using the gates discussed. Simplification
processes will be addressed in the next set of lecture notes.

4.3. NOR and NAND gates.

Definition 4.3.1. The NOR and NAND gates are given by

x

y
x|y

NAND

x

y
x y

NOR

Discussion

4. LOGIC GATES 142

Recall the definition of NAND and NOR from Representing Boolean Functions. It
was proven in that lecture that the sets {|} and {↓} are both functionally complete.
So a combinatorial circuit can always be created so that it consists only of NAND
gates or only of NOR gates.

4.4. Example 4.4.1.

Example 4.4.1. Construct a circuit for the output of the expression

x + yz

using only NAND gates.

Solution.

x

y

z

x|(y|z)

Discussion

We use the following to get the expression in terms of NAND operators only.

x + yz = (x)(yz) by DeMorgan’s Laws

= (x)|(yz) by the definition of NAND

= x|(y|z) by the definition of NAND.

We then use this expression to make the circuit.

The expression used for the solution of Example 4.4.1 is not the only possible
expression. We could have also found an expression for x + yz using the equivalences
x = x|x, xy = (x|y)|(x|y), and x + y = (x|x)|(y|y). Using these equivalences we
get x + yz = (x|x) + (y|z)|(y|z) = {(x|x)|(x|x)}|{[(y|z)|(y|z)]|[(y|z)|(y|z)]}. This
expression is much more complex than the one used for the solution in Example
4.4.1, though!

Exercise 4.4.1. Construct a circuit for the output of the expression in Example
4.4.1 using only NOR gates.

4. LOGIC GATES 143

4.5. Half Adder.

Definition 4.5.1. The half adder circuit has as input the variables x and y and
has as output the variables s and c given by the table.

Input Output
x y
0 0
0 1
1 0
1 1

s c
0 0
1 0
1 0
0 1

The functions c = xy and s = (x + y)(xy) give the correct output for these
functions. Therefore, the circuit for the half adder follows:

x

s=(x+y)(xy)

c=xy

4.6. Full Adder.

Definition 4.6.1. The full adder circuit has as input the variables x, y, and ci

and has as output the variables s and ci+1 given by the table.

4. LOGIC GATES 144

Input Output

x y ci

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

s ci+1

0 0

1 0

1 0

0 1

1 0

0 1

0 1

1 1

We can use the half adder to calculate the full adder as shown in the circuit below.

x

y

ci Half
adder

Half
adder xy

(x+y)(xy)

ci+1

carry of half adder

s=sum of half adder

Discussion

Recall from Applications of Number Theory the algorithm for adding two integers
a and b written in base 2:

Let a = (an−1an−2 · · · a1a0)2 and b = (bn−1bn−2 · · · b1b0)2, and suppose the sum of
a and b is s = (snsn−1sn−2 · · · s1s0)2. Note that if the binary expansions for a and b
do not have the same number of digits we add zeros to the left of the smaller one to
make them the same length.

Since s = a + b we have

a0 + b0 = 2c0 + s0

a1 + b1 + c0 = 2c1 + s1

a2 + b2 + c1 = 2c2 + s2

4. LOGIC GATES 145

...

an−1 + bn−1 + cn−2 = 2cn−1 + sn−1

sn−1 = cn−1.

At the first stage of the addition we only add the first bits of a and b and get out
the values for c0 and s0. The half adder gives us this operation. In fact, the half adder
gives us a “first stage” of each of the following additions as well. However, we must
go further than adding the bits of a and b to get the carries and sums on subsequent
stages because we must also consider the carry from the previous addition. The full
adder gives us the carry and sum when we input the appropriate bits for a and b and
the previous carry.

Exercise 4.6.1. Explain each stage of the algorithm used to find the sum of the
binary numbers 1011 and 110 by giving each step including which adder is used and
its input and output.

5. MINIMIZING CIRCUITS 146

5. Minimizing Circuits

5.1. Minimizing Circuits. A circuit is minimized if it is a sum-of-products
that uses the least number of products of literals and each product contains the least
number of literals possible to produce the desired output.

The laws of Boolean algebra can often be used to simplify a complicated Boolean
expression, particularly the sum-of-products expressions that we have used to rep-
resent Boolean functions. Any such simplification also leads to a simplification of
combinatorial circuits.

5.2. Example 5.2.1.

Example 5.2.1. F (x, y, z) = xyz + xyz + xy z + x y z

Mimimized Expression: xz + y z.

Discussion

We can simplify the expression in Example 5.2.1 as follows.

(xyz + xyz) + (xy z + x y z) = xy(z + z) + y z(x + x)

xy(1) + y z(1)

There are various methods that do not require “ad-hoc” manipulation of variables
for simplifying expressions and we cover two of the basic methods here: Karnaugh
Maps and Quine McCluskey.

5.3. Karnaugh Maps.

(1) For a given number of variables, n, form a table containing 1’s for all possible
minterms arranged so the minterms that are adjacent (left to right or above
and below) differ by only a singe literal.

(2) Circle blocks of adjacent 1’s. Start with the largest possible block with
number of rows and columns powers of 2. Continue circling the largest block
possible so that every 1 is within at least one block.

(3) The simplified form is the sum of the products represented by each block.

5.4. Two Variables. The Table below shows how the Karnaugh map represents
the minterms for two variables.

5. MINIMIZING CIRCUITS 147

xyx

y y

xy

xy xyx

Example 5.4.1 (Example 1: Two Variables). Simplify xy + xy + xy.

Solution. First create a table with 1’s corresponding to each minterm.

x

y

x

y

1

11

Next circle blocks of size 2× 2, 1× 2, and/or blocks of size 1× 1

x

y

x

y

1

11

Last, write the sum of the terms represented by the circled blocks.

x + y

Discussion

When using the Karnaugh maps to simplify functions of two variable we try to
find blocks of 1’s. If all 4 squares have ones, we have a 2×2 block we circle. Otherwise
look for 1 × 2 blocks of ones. Circle any block of this size possible. If there is a 1
not covered, see if it is in a 1× 2 block. If it is circle the block, if not circle the one.
Continue in this manner until all the ones are circled.

5. MINIMIZING CIRCUITS 148

Now, suppose the blocks representing xy and xy are circled. The product that
corresponds to this block is x since xy +xy = x(y +y) = x. A method of determining
the product corresponding to a block is to look for the literal(s) that are the same in
every entry in that block.

5.5. Three Variables. The Table below shows how the Karnaugh map repre-
sents the minterms for three variables.

x

x

yzyzyzyz

xyzxyz

xyz xyz

xyz

xyz

xyz

xyz

The Karnaugh maps may be set up with the variables in different arrangements
than the one in the above chart, but they must be set up so that adjacent squares
differ by only one literal. Notice the entries in the left column differ from the ones in
the right column by a single variable. We consider the top left adjacent to the top
right and the bottom left adjacent to the bottom right. If you imagine rolling the
chart and taping the red edges you have a tube which best represents this Karnaugh
map.

Example 5.5.1. Example 2: Three Variables

Simplify xyz + xyz + xyz + xyz + x y z + x yz.

Solution: First create a table with 1’s corresponding to each minterm.

x

x

yzyzyzyz

1 1

1 1 1 1

Next circle blocks of size 2× 4, 1× 4, 2× 2, 1× 2 and/or blocks of size 1× 1

5. MINIMIZING CIRCUITS 149

x

x

yzyzyzyz

1 1

1 1 1 1

Last, write the sum of the terms represented by the circled blocks.

z + x

Discussion

To simplify we check as follows

(1) If all the squares have ones the function simplifies to 1.
(2) Check for blocks of size 2× 2, 4× 1, 2× 1, or 1× 1. Circle the largest block

you can find.
(3) If there is a 1 not circled, find the largest possible block containing it and if

possible try to use a block that contains other 1’s that are not circled.
(4) continue until all the 1’s have been circled.
(5) Write down the sum of the products represented by the circled blocks.

5.6. Four Variables. The Table below shows how the Karnaugh map represents
the minterms for four variables.

uvuvuvuv

xy

xy

xy

xy

xyuv xyuv

xyuvxyuv

xyuv

xyuv

xyuv xyuv xyuvxyuv

xyuv

xyuv

xyuv xyuv xyuv xyuv

As with the map with three variables, we consider the squares on the left adjacent
to the corresponding ones on the right. In addition we wish to consider the top

5. MINIMIZING CIRCUITS 150

row entries adjacent to the corresponding entries in the bottom row. This may be
visualized by rolling the chart so we tape the red edges together to create a tube.
Now curve the tube around so the blue edges may be taped together to create a donut
shape (also called a torus).

Example 5.6.1 (Example 3: Four Variables). Simplify xyuv + xyuv + xyuv +
xy u z + y yuv + y y u z + xyuv + xyuv.

Solution. First create a table with 1’s corresponding to each minterm.

xy

xy

xy

xy

uv uvuvuv

1

11

11

11

1

Next circle blocks of size 4×4, 2×4, 1×4, 2×2, 1×2 and/or blocks of size 1×1

xy

xy

xy

xy

uv uvuvuv

1

11

11

11

1

Last, write the sum of the terms represented by the circled blocks.

yv + y v

Discussion

This time we check for blocks of size 4× 4, 2× 4, 2× 2, 4× 1, 2× 1, or 1× 1.

5. MINIMIZING CIRCUITS 151

The Karnaugh maps begin to lose their ease of use when we move to more vari-
ables. It is still possible to use Karnaugh maps for four variables, but the adjacent
squares are more difficult to visualize.

Exercise 5.6.1. Draw Karnaugh maps for five variables and identify which blocks
are adjacent.

5.7. Quine-McCluskey Method. The Quine-McCluskey method is a method
used for simplifying the conjunctive normal form of a Boolean expression. This
method is easier to program than the Karnaugh Maps.

Example 5.7.1. Simplify the expression

xyuv + xuuv + xyuv + xy u v + x yuv + x y u v + xyuv

Solution.

(1) Represent each minterm by a binary string. Use 1 for the variable and 0 for
the complement:

(2) Make a table listing the minterms, the binary strings, and the number of 1’s
in the stings. Enumerate the list.

Minterm String no. of ones
1 xyuv 1111 4
2 xuuv 1101 3
3 xyuv 0111 3
4 xyuv 1010 2
5 x yuv 0010 1
6 xy u v 1000 1
7 x y u v 0000 0

(3) Find the strings that differ by only one bit. Replace the different bit with a
dash and remove the variable from the product that corresponds to that bit.

(4) Create a new table by listing the combined product, the new product, and
the binary string.

Product String
(1, 2) xyv 11− 1
(1, 3) yuv −111
(4, 5) yuv −010
(4, 6) xy v 10− 0
(5, 7) x y v 00− 0
(6, 7) y u v −000

(5) Use the previous table to continue to reduce the products by finding strings
that differ by one bit.

5. MINIMIZING CIRCUITS 152

Product String
((4, 5), (6, 7)) y v −0− 0

(6) Since there are no bit strings in the last table that differ by a single bit we
are ready to find the simplified expression.

(7) From the last table we have the string y v. This simplified the minterms
numbered 4 through 7. From the table before we look for strings that simplify
the minterms numbered 1 through 3. We use xyv and yuv to “cover” the
minterms 1, 2, and 3. The simplified form is

y v + xyv + yuv

Discussion

Notice that a string with a certain number of 1’s will have exactly one more or
one less 1 if one of the bits are changed. Thus when we are looking for bit strings that
differ by only one bit we only need to look at the bits that have exactly one more or
one less 1. This is the only reason we add a column with the number of 1’s in it. We
could also add this column in the later tables.

Combining (4, 5) and (6, 7) gives us the same string as we get by combining (4, 6)
and (5, 7), so we only use one of these combinations. Any time the numbers are the
same we will obtain the same string.

We continue creating tables until we get to a table where none of the bit strings
in that table differ by a single bit (including the dashes). Once we have all the tables
created we need to “cover” all the minterms. In this example, we start with the last
table and use the strings given in that table to cover the minterms numbered 4, 5, 6,
7. Since this was the only product in the last table we now move to the second to
the last table and look one or more products that cover the remaining minterms, 1,
2, and 3. Since there is a product that covers 1 and 2 we will use it. Now we have to
cover 3. Any product that covers 3 will do, but there is only one choice in this table
so we use it. If there had not been a product in the second to the last table that
covered 3, we would move up to the previous table.

It is possible to an expression to have more than one minimal expression. It is
also possible that there are several choices of strings from a given table that could be
used to cover the minterms. We chose the combinations that use the fewest possible
strings to cover the most minterms.

