
Assignment 1

1. Problem 3-1 on p. 57
2. Problem 3-2 on p. 58
3. Problem 4-5 on p. 86
4. Problem 6-1 on p. 142
5. Problem 7-4 on p. 162
6. Prove correctness (including halting) of SelectionSort (use loop invariants)
7. Provide worst and average case runtime analysis of SelectionSort
8. Provide runspace analysis of SelectionSort

1

2

Solutions

Problem 1: Suppose a polynomial in n of degree d has the form

p(n) =
d∑

i=0

ain
i

with leading coefficient ad > 0, and let k ≥ 1 be a constant (not necessarily an
integer).

Prove the following:

(a) If k ≥ d then p(n) ≤ O(nk).
(b) If k ≤ d then p(n) ≥ Ω(nk).
(c) If k = d then p(n) = Θ(nk).

Proof of (c). First we do some algebra:

p(n) =

d∑

i=0

ain
i = nd

d∑

i=0

ain
i−d = nd(

d−1∑

i=0

ain
i−d + ad) = nd(ad + q(n))

where

q(n) =

d−1∑

i=0

ain
i−d.

Note that q(n) is a sum of terms each of which is a constant multiplied by a power
of n, the power being less than or equal to −1. By calculus, the limit of q(n) is zero
as n → ∞. So there is an integer n0 such that

|q(n)| < 0.5ad

for all n ≥ n0. Using more elementary algebra, and assuming n ≥ n0, we can see that

nd(ad − 0.5ad) ≤ nd(ad + q(n)) ≤ nd(ad + 0.5ad).

Letting c1 = 0.5ad and c2 = 1.5ad, we have:

c1n
d ≤ p(n) ≤ c2n

d

for all n ≥ n0. From this last inequality we see that p(n) = Θ(nd). QED

We have shown part (c) first, which makes (a) and (b) very straightforward:

Proof of (a). Since k− d ≥ 0, we have nd ≤ ndnk−d = nk, so that O(nd) ≤ O(nk).
Using part (c), we have

p(n) ≤ O(nd) ≤ O(nk)

as required. QED

3

Proof of (b). Since d− k ≥ 0, we have nd = nknd−k ≥ nk, so that Ω(nd) ≥ Ω(nk).
Using part (c), we have

p(n) ≥ Ω(nd) ≥ Ω(nk)

as required. QED

Problem 2: Indicate in the table below whether A is O, Ω, or Θ of B. Assume that
k ≥ 1, ε > 0, and c > 1 are constants.

A B O Ω Θ
a. logk n nk yes — —
b. nk cn yes — —
c.

√
n nsin n — — —

d. 2n 2n/2 — yes —
e. nlog c clog n yes yes yes

f . log(n!) log(nn) yes yes yes

(No entry = no.)

c: The essential point is that sin n takes on values between -1 and 1, getting arbi-
trarily close to any particular value as n traverses the positive integers. In particular,
sin n gets “within epsilon” of 1 and also “within epsilon” of -1 for sufficiently large n.
(This is because n gets arbitrarily near multiples of π for large n.) Therefore nsin n

gets near n = n1 and 1/n = n−1, thus wandering all over the place between zero and
n.

e: Note that A and B are actually equal: Show that log A = log B and hence
conclude A = B.

f : Note that log n! = Θ(n log n) [formula (6)] and that n log n = log nn [property
of logarithms] whence log n! = Θ(log nn).

4

Problem 3: This problem develops properties of the Fibonacci numbers, which are
given by the recurrence fn = fn−1 +fn−2 with initial conditions f0 = 0, f1 = 1. Define
the generating function for the Fibonacci sequence as the formal power series

F (z) =

∞∑

i=0

fiz
i

.

(a). Show that F (z) = z + zF (z) + z2F (z).

Proof: Expand the right hand side RHS:

z + zF (z) + z2F (z) = z + z(
∞∑

i=0

fiz
i) + z2(

∞∑

i=0

fiz
i) = (1 + f0)z +

∞∑

i=2

(fi−1 + fi−2)z
i

Now plug in the initial conditions and recurrence relation, to obtain

RHS = z +
∞∑

i=2

fiz
i =

∞∑

i=0

fiz
i

which is identical to the left hand side. QED

(b). Show that

F (z) =
z

1 − z − z2
=

z

(1 − φz)(1 − φ̂z)
=

1√
5
(

1

(1 − φz)
− 1

(1 − φ̂z)
)

where

φ =
1 +

√
5

2
= +1.61803...

and

φ̂ =
1 −

√
5

2
= −0.61803...

Proof: The first equality is proved by solving the equation proved in (a) for F (z).
The other two equalities are proved by calculation, for example:

(1−φz)(1− φ̂z) = 1−(φ+ φ̂)z+(φφ̂)z2 = 1−(1/2+1/2)z+((1−5)/4)z2 = 1−z−z2

(c). Show that

F (z) =

∞∑

i=0

1√
5
(φi − φ̂i)zi

5

Proof: Recall the fact:
1

1 − az
=

∞∑

i=0

aizi

(verify by multiplying both sides by 1 − az). Thus applying part (b) we obtain:

F (z) =
1√
5
(

1

(1 − φz)
− 1

(1 − φ̂z)
) =

1√
5
(

∞∑

i=0

φizi −
∞∑

i=0

φ̂izi) =
∞∑

i=0

1√
5
(φi − φ̂i)zi

which proves the result.

(d). Prove that fi = φi/
√

5, rounded to the nearest integer.

Proof: Note that the absolute value of the second base is |φ̂| = |(1 −
√

5)/2| < 1

and hence |φ̂i| < 1 for all i. Applying part (c), we have fi = φi/
√

5 − φ̂i/
√

5, where
the second term is smaller than 1/2 in absolute value. QED

(e). Prove that fi+2 ≥ φi for i ≥ 0.

Proof: First note that φ and φ̂ are the roots of the quadratic P (z) = z2 − z − 1.
In particular, φ2 = φ + 1, so that

φi−1 + φi−2 = φi−2(φ + 1) = φi−2φ2 = φi,

which shows that the sequence φi satisfies the Fibonacci recursion (but not the initial
conditions defining fi). We prove the assertion by induction on i ≥ 2.

For the base cases, note that f2 = 1 = φ0 and f3 = 2 = (1+
√

9)/2 > (1+
√

5)/2 =
φ1. The inductive step uses the calculation:

fi+2 = fi+1 + fi ≥ φi−1 + φi−2 = φi

where the inequality follows from the inductive hypothesis and the equality follows
from the fact that φ satisfies the recursion. QED

6

Problem 4: The procedure Build-Max-Heap in section 6.3 can be implemented by
repeatedly using Max-Heap-Insert to insert the elements into a heap. Consider the
following implementation:

template <class I, class P>

void g_build_max_heap (I beg, I end, const P& LessThan)

// pre: I is a random access iterator class

// T is the value_type of I

// P is a predicate class for type T

// post: the specified range of values is a max-heap using LessThan,

{

if (end - beg <= 1)

return;

size_t size = end - beg;

for (size_t i = 1; i < size; ++i)

g_push_heap(beg, beg + (i + 1), LessThan);

}

(a) Do g build max heap and Build-Max-Heap in the text always create the same
heap when run on the same input array? (Prove or disprove.)

Answer: No. Run the two algorithms on the array A = [1,2,3,4,5] results in
[6,4,5,1,3,2] and [6,5,3,4,2,1], respectively.

(b) Show that in the worst case g build max heap requires Θ(n log n) time to
build an n-element heap.

The algorithm body consists of a single loop of length n that executes the loop
body n−1 times. The iteration i of the loop body consists of one call to g push heap

on a range of length i+1. We know that g push heap has worst-case runtime Θ(log i).
Therefore the algorithm runtime is

Θ(

n∑

i=1

log i) = Θ(n log n),

by application of Equation (4) from the Formulas handout.

7

Problem 5: This problem is about the stack depth (which adds to the runspace
requirements of the algorithm) of QuickSort. Here are two versions of QuickSort,
for an array A with range [p,r). (Note that the notation here is the standard C
interpretation of range, that includes the begin index and excludes the end index.
This differs from the text.)

void QuickSort(A,p,r) void QuickSort2(A,p,r)

{ {

if (r - p > 1) while (r - p > 1)

{ {

q = partition(A,p,r); q = partition(A,p,r);

QuickSort(A,p,q); QuickSort2(A,p,q);

QuickSort(A,q+1,r); p = q + 1;

} }

} }

These each call the same version of Partition (below). (QuickSort2 is obtained
from QuickSort by eliminating tail recursion, a process that can be formalized and
accomplished by optimizing compilers.)

size_t partition(A,p,r)

{

i = p;

for (j = p; j < r-1; ++j)

{

if (A[j] <= A[r-1])

{

swap(A[i],A[j]);

++i;

}

}

swap(A[i],A[r-1]);

return i;

}

(a) Give an informal argument that QuickSort2 is a sort.

Note that by setting p = q+1 at the end of the loop body of QuickSort2, the
effect is that the next execution of the loop body results in the same process as a call
to QuickSort(q+1,r). Thus the two algorithm bodies perform the same sequence of

8

tasks. Since we have already shown that QuickSort is a sort, so also must QuickSort2
be a sort.

(b) Describe a scenario in which the stack depth of QuickSort2 is Θ(n) on an
n-element array (n = r− p).

If the input array is sorted, the partition index will always be the largest index
in the range, resulting in recursive calls to QuickSort2(A,p,i) for i = r ... p, a
total on n recursive calls.

(c) Modify the code for QuickSort2 so that the worst-case stack depth is Θ(log n),
while maintaining O(n logn) expected runtime of the algoriithm.

Using a randomized version of Partition will at least make the expected stack usage
O(log n), but we would still have the worst case Ω(n). To ensure that stack space
does not grow worse than log n we can modify the algorithm so that the recursive call
is made on the smaller of the two ranges:

void QuickSort3(A,p,r)

{

while (r - p > 1)

{

q = partition(A,p,r);

if (q - p < r - q)

{

QuickSort3(A,p,q);

p = q + 1;

}

else

{

QuickSort3(A, q+1, r)

r = q;

}

}

}

This modification ensures that the recursive call is made on a range that is no larger
than 1/2 the size of the previous call and terminates when the range is 1, so there
are at most log n recursive calls.

9

Problem 6: Prove correctness (including halting) of SelectionSort (use loop invari-
ants)

Here is selection sort (from the lecture notes, with some added loop invariants):

SelectionSort (array A[0..n))

// pre:

// post: A[0..n) is sorted

{

for (i = 0; i < n; ++i)

{

// Loop Invariant 1: A[0..i) is sorted

k = i;

for (j = i; j != n; ++j)

if (A[j] < A[k])

k = j;

// Loop Invariant 2: A[k] is a smallest element of A[i..n)

Swap (A[i], A[k]);

// Loop Invariant 3: A[i] is a smallest element of A[i..n)

// Loop Invariant 4: A[i] is a largest element of A[0..i]

}

return;

}

Proof of halting: There are two loops, nested, each with length bounded by n.

Proof of correctness: Let P1(i), P2(i), P3(i), P4(i) denote the four loop invariants
shown in the listing. Clearly if we prove P1(n) we have proved that SelectionSort is
a sort.

First consider P2(i): suppose that s is the index of a smallest element of the range
A[i .. n). Then the condition will ensure that k is assigned the value s after the
comparison. Therefore P2(i) is true for all i. Then it is straightforward to deduce
P3(i), just observing the effect of the call to Swap.

Now we can prove P1(i) and P4(i) by “double” induction.

Base case: P1(0) and P4(0)

These are trivially true: an empty range or a range of one element is automatically
sorted.

10

Inductive step part 1: P1(i) implies P4(i)

By P3(i − 1), A[i-1] is a smallest element of A[i-1..n), which implies that A[i-1]
<= A[i]. P4(i) follows because A[0..i) is sorted.

Inductive step part 2: P1(i) and P4(i) imply P1(i + 1)

We are given that A[0..i) is sorted and must prove that A[0..i+1) is sorted after
the next iteration of the loop. Invoking P1(i) and P4(i) we see that A[0..i) is sorted
and that A[i] is at least as large as any element in A[0..i). Therefore A[0..i] =

A[0..i+1) is sorted.

Problem 7: Provide worst and average case runtime analysis of SelectionSort.

The algorithm body runs exactly the same independent of data, because the
lengths of the outer and inner loops are not data dependent. This runtime is

Θ(

n∑

i=0

n∑

j=i

1) = Θ(

n∑

i=0

(n − i)) = Θ(

n∑

i=0

i) = Θ(n2)

by Equation (1) of Formulas.

Problem 8: Provide runspace analysis of SelectionSort.

There are four local variables used in the algorithm body, independent of n. There-
fore the runspace is +Θ(1).

