DO NOT CRCULATE petention Copy

$\because .$. Junctassifien

HAKS w 542

Copy 1

SERTES

Prext Donsery:
S. Dlam
J. vonilmunam

Boport writen By:
R.D. Richtayer
J. Fonlymuman

Classification changed to UNCTASSIFTED
by authority of the U. S, Atomic Energy Conmmisstomi
Per C

$A B S$ MRKM

There it saproducod hers ame correspondence on a method of eviveng suctros defurion problems in which dmea are chosen at random to repreacm a nunber of meutrons in a chentamenoting sygtome the hietory of thean neutrons and their progeny is doterming by dotailod caloulftions of tho motoas get
 certain points in suoh a way as to roprowent the cocuronoo of varioue probesees With the correct probebilitions If the history is followed far anough, tha chain seaction thus ropresentsd way be ragarded as a ropreanntative gampio
 shathethoally to obtain various average quaztitios of interest for ompar hap with axpornonta or for dosign probloms.

Thie method is designod to deal with problems of a nore oomatented nature than conventional methods besed, for oxamples on tha Boltamana agastana For ammple. it is not noooseary to aestriot noutron onorgies to a single value or avea to a finite number of values and one can study the cistwibuthons of noutrons or of colligions of any epecheted type not only with reapset to
 diroetion of motion time furthormores the deta oan be ueed for the shey of Aluctastions and othrr statiotion phenomena.

THE INSTITUTE FOR ADVINCLDEPHDDT

Fownded by Mn Lowid Elamborgor and Mr. Fifthenth PRINCITON, NEW-JRRBEY
Sehool of Mithemetheo

VIA ATMMIL: REOISTHim

Mr. R. Riohtrayer
Post orfiee Box 1668
Santif JPe, New Macieo
Dear Bebs

 versatilon on Friday, Mareh 7th. ?

I have been thinking a good deal about the poelibilltthe Iatiagl mothods to solve neution diffueion and multiplication pobicofy accordance with the principle suggented by stan Dlan. The morefithink bedt this, the more I become comvinced that the idea has great merit. H protect conclusions and expectations can be mumarised as followe:
(1) The atatiatical approach is very woll uuted to a digdtal tratmontif worked out the details of a criticality discusaion under the followhe conditions:
(a) Spherically mymetric geomotry
(b) Variable (if dealred, continuoubly variable) composition aleag the radius, of active material (25 or 49), tampor miterial (28 or peco WC), and slower-down material (H in some form).
(c) Isotropic generation of noutrons by all prosesses of (b).
(d) Appropriate velocity spectrum of neutrons emerging fron the ool1salm processes of (b), and appropriate desoription of the orose-soctione of all procentes of (b) as functione of the neutron veloelty t.e., an infínitely many (continyoysly: Atatherfbuted) noutron voloodty fromp treatment.

 Heutwene:

 Westy snilyut thele ofrectie on the betwip.

 rn* orituality poolen retqurts folloming 100 prianry neutrone through

 It Ins bo, bewerav, grat tiete flgared (100×100) ure wnecessarily

 $1+16$
table" organs of the ENIAC.

(3) Certain preliminary explorations of the statistical-digital method could be and should be carried out manually. I will say somewhat more subsequantly.
(4) It is not quite impossible that a manual-graphical approach (with a mall wount of low-precision digital work interspersed) is feasible. It would require a not inconsiderable number of computers for aeveral days per criticality problem, but it may be possible, and it may perhaps deserve consideration until and uniess the ENIAC becomes available.

This manual-graphical procedure has actually some similarity with a statistical-graphical prociedure with which solutions of a bombing problem were obtained during the war, by a group working under S. Wilks (Princeton University and Applied wathematics Panel, NDRC). I will look into this matter further, and possibly get Wilks' opinion on the mathomatioal aspects.
(5) If and when the problem of (1) will have been satisfactorily handled in a reasonable number of special cases, it will be time to investigate the nore general case, where bydrodynamics also oome into play; 1.e., efficiency calculations, as suggested at the end of (1). I think that I know how to set up this problem, too: One has to follow, say 100 neutrons through a short time interval Δt; get their momentum and enorgy tranefer and generation in the ambient matter; caloulate from this the displacement of matter; recalculate the history of the 100 neutrona by assuming that matter is in the middle position between its original (unperturbed) state and the above displaced (perturbed) state; recalculate the displacement of matter due to this (corrected) neutron hietory; reoaloulate the neutron history due to thils (corrected) displacement of matter, etc.,

hiatory and displacement of matter "ia: reaicheico "Thj" is the treatment of the first time interval Δt. When $1 . t^{\circ} 10 \circ$ ibmiffotid, it will serve as a besis for a similar treatment of the second time interval Δt; this, in turn, similaris for the third time interval Δt_{3} etc., otc. In this set-up there will be no serious difficulty in sllowing for the role of light, too. If a discrimination according to wavelength is not necessary; i.e., if the radiation can be treated at every point as isotropic and black, and its mean free path is relatively ahort, then light oan be treated by the usual "diffusion" methods, and this is clearly only a very minor complication. If it turns out that the above idealizations are improper, then the photons, too, may have to be treated "individually" and statistically, on the same footing as the neutrons. This is, of couree, 2 non-trivial complication, but it can hardly consume much more time and instructions than the corresponding neutronic part. It seems to me, therefore, that this approach will gradually lead to a completely satiafactory theory of efficiency, and ultimately permit prem diction of the bohavior of all possible arrangements, the simple ones as well as the sophisticated ones.
(B) The program of (5) will, of couree, require the ENIAC at least, if not more. I have no doubt whatever that it will be perfectly tractable with the post-ENIAC device which we are building. After a certain amount of exploring (1), way with the ENIAC, will have taken place, it will be possible to judge how eerlous the complexities of (\$5) are likely to be.

Regarding the actual, physical state of the ENIAC my information is this: It is in Aberdeen, and iti is being put together there. The official datefor its completion is atill April lst. Various people give various subjective estimates as to the actual date of. cpmpletion, ranging from mid-April
to late May. It sema as if the late May outisateiwero father safe.
I will inquire more into this matter, and also into the possibility of getiting some of its time subsequently. The indicatione that I have had so far on the latter score are oncouraging.

In what follows, I will give a more precies description of the approach outlined in (I); i.e:, of the simplest way I can now see to handle this group of problems.

Consider a spherically symmetric geometry. Let r be the distance from the origin. Describe the inhomogeneity of this system by assuming N concentric, homogeneous (spherical shell) zones, enumerated by an index $i=1, \ldots, N$. Zone No. i is defined by $r_{i, 1} \leqslant r_{0} \leqslant r_{i}$, the $r_{0}, r_{1}, r_{2}, \cdots$, $\cdots-1, \vec{N}$ being given:

Where R is the outer radius of the entire system.
Let the systiem consist of the three components discussed in (I), (b), to be denoted A, T, S, respectivel.y. Describe the composition of each zone in terns of its content of each of A, T, S. Specily these for each zone in relative volume fractions. Let these be in zone $N_{0}, i \quad x i, y, i, i$, respectively. Introduce the cross sections per cm^{3} of pure material, multiplied by ${ }^{10}\left(\log _{f} \hat{c}=.4 S \ldots\right.$, and as functions of the neutron velocity $थ$, as follows:

Fission in A, with production of

Scattering as well as fission are assumed to produce isotropically
distributed neutrons, with the follawing velofity" distributions:
If the incident neutron teek ine velocity N, then the scattered
neutrons velocity statistics are desegriped for at s , by the relations

$$
v^{\prime}=v \varphi_{A}(v), v^{i} \cdots \varphi_{1}(v), v^{\prime}-v \varphi_{S}(v) .
$$

Here $N^{\prime \prime}$ is the velocity of the scattered neutrons $\varphi_{A}(\nu), \varphi_{\Gamma}(\nu), \varphi_{s}(\nu)$ are known functions, characteristic of the three substances A, T, S (they vary all from 1 to 0), and γ, is a random variable, statistically equidistributed in the interval $0,1$.

Every fission neutron has the velocity N_{0}.
I suppose that this picture exther gives a model or at least provides a prototype for essentially all those phenomena about which we have relevant observational information at present, and actually for somewhat more. It may be expected to provide a reabonable vehicle for the additional relevant observational material that is likely to ariee in the near future.

Do you agree with this?

In this model the state of a neutron is characterised by its position \mathcal{F}, its velooity v, and the angle θ between ite direction of motion and that radiua. It is more convenient to replace θ by $s=\tau \cos \theta$, so that $\sqrt{x^{2}-s^{2}}$ is the iperiheliyp distance of its (linearly extrapolated) path.

Hote that if a neutron is produeed isotropicollys i.e., if ite direetion 'at birth' is equidistributad, then (because space is threo-dimensional) $\cos \theta$ dill be equidistribated in the interval $-1 / 1$ 1.0., s in the intarvil $-1 / r$.

It is conveniont to add to the ohareoterisatioh of a neutron expileitiy the No. 2 of the sone in whioh it 1 f found, 1.0., with $r_{i-1} \leq r \equiv r_{i}$. It is turthosmore edribable to keop treak of the tive t to thich the apooirtontions rofer.

Page Seven

Now consider the subsequent , history if : \% utc a neutron. Unless it suffers a collision in zone No. i, it will leave this zone along its straight path, and pass into zones Nos. $i+1$ or i 1. It is desirable to start a 'new' neutron whenever the neutron under consideration has suffered a colision (absorbing, scattering, or fissioning, - in the last-mentioned case several 'new' neutrons will, of course, have to be started), or whenever it passes into another zone (without having collided).

Consider first, whether the neutron's linearly extrapolated path goes forward from zone No. i into zone No. ill or i i | . Denote these two possibilities by I and II.

If the neutron moves outward; i.e., if $S \geqslant 0$, then we have cortainly I. If the neutron moves inward; i.t., if $S=O$, then we have either I or II, the latter if, and only if, the path penetrates at all into the sphere $r_{i, 1}$. It is easily seen that the latter is equivalent to $s^{2} ン$ $>r^{2}-r_{i}{ }_{1}$. So we have:

$$
\begin{aligned}
& s \geqslant 0 \therefore A^{\prime} \\
& s<0 \therefore \notin\left\{\begin{array}{l}
r_{i-1}{ }^{2}+s^{2} r^{2} \leq 0 \therefore \mathscr{L}^{\prime}\left\{\begin{array}{l}
\end{array} \therefore 1\right. \\
\left.r_{1} 1^{2}+s^{2} r^{2}=0 \therefore \mathscr{L}^{\prime \prime}\right\} \therefore 11
\end{array}\right.
\end{aligned}
$$

The exit from zone No. i will therefore occur at

$$
\hat{r}^{*}\left\{\begin{array}{l}
=r_{i} \text { for } 1 \\
=r_{i} \text { for } 11
\end{array}\right.
$$

It is easy to calculate that the distance from the neutron's original position to the exit position is $d-s^{*} s$, where

$$
s^{*}+\sqrt{1}^{*}, s^{2} r^{2}, \quad+\text { for } I
$$

The probability that the neutron will travel a distance d^{\prime} without suffering a collision iss $10^{-} \not \mathrm{d}^{\prime}$, where

$$
\begin{aligned}
& +\left(\sum_{a T}(v)+\sum_{s}\right.
\end{aligned}
$$

It is at this point that tho statistical. Character of the method comes into evidence. In order to determine the actual fate of the neutron, one has to provide now the calculation with a value λ, belonging to a random variable, statistically equidistributed in the interval $0, /$ ice., λ is to be picked at random from a population that is statistically equidiatributed in the interval 0,1 . Then it is decreed that 10^{-4} has turned out to be $\lambda ; 1 . e .$,

$$
\alpha^{\prime}=\frac{-{ }^{10} \log \lambda}{4}
$$

From hare on, the further procedure is clear.
If $\alpha^{\prime} \geq \alpha^{\prime}$, then the neutron is ruled to have reached the neighboring zone No. $i+1$ (t . for for) without having suffered a collision. The 'now' neutron (ice., the original one, but viewed at the interzone boundary, and heading into the new zone), has characteristics which are easily determined: i is replaced by $i \pm 1, \mu^{*}$ by,S is easily seen to go over into $s^{*}, v i s$ unchanged, t goes over into $t^{*}=t+\frac{d}{v}$. Hence, the 'new' characteristics are

$$
i \pm 1, r^{*}, s^{*}, N, t^{*} .
$$

If, on the other hand, $d \stackrel{<}{<} d$, then the neutron is ruled to have suffered a collision while still within zone No. \dot{i}, after a travel al/ . The position at this stage is now

$$
r^{*}=\sqrt{r^{2}+2 s d+\quad d^{1}}
$$

and the time

$$
t^{*}=l+\frac{d^{\prime}}{\omega}
$$

The characteristic contains, accordingly, at any rate i, τ^{*} and t^{*} in place of 2 , N and t. It remains to determine what becomes of s and r.

As pointed out before, the 'new' S will. be equidistributed in the
interval $-r^{*}, r^{*}$. It is therucre:nnd nice dy dion with a further value ρ^{\prime}, belonging to a random variable, statiotioalis equidistributed in the interval 0,1 . Then one can rule that s he e the value

$$
s^{\prime}=r^{*}\left(2 p^{\prime}-1\right)
$$

As to the 'new' v, it is necessary to determine first the character of the collision: Absorption (by any one of A, T, S); scattering by A, or by T, or by S ; fission (by A) producing 2, or 5, or 4 neutrons. These seven alternatives have the relative probabilities

$$
\begin{aligned}
& f_{1}=\sum_{a A}(v) x_{i}+\sum_{a T}(v) y_{i}+\sum_{a S}(v) z_{i}, \\
& f_{2}-f_{1}=\sum_{S A}(v) x_{i}, \\
& f_{3} f_{0}=\sum_{S T}(v) y_{i}, \\
& f_{4} f_{3}=\sum_{S S}(N) x_{i}, \\
& f_{5} f_{4}=\sum_{f A}(v) x_{i}, \\
& f_{6} f_{3}=\sum_{(B)}(v) x_{i}, \\
& f_{6}=\sum_{f A}(v) x_{i},
\end{aligned}
$$

We can therefore now determine the character of the collision by a statistical procedure like the preceding ones: Provide the calculation with a value belonging to a random variable, statistically equidistributed in the interval $i, /$. Form $\mu i=\mu \notin$, this is then equidistributed in the interval ${ }^{\prime}, f$. Let the seven above cases correspond to the seven intervals
 Rule, that that one of those seven cases holds in whose interval μ actually turns out to lie.

Now the value of can be specified. Let us consider the seven available cases in succession.

Absorption: The neutron has disappeared. It is simplest to characterize this situation by replacing ν by $O \quad: \because: \cdot:$

Scattering by A: Provide the "calculation th value V belonging to a random variable, statistically"equiddstrabuted tin the interval

Replace of by

Scattering by T: Same as gloves but

Scattering by S: Same as above, but

$$
y^{\prime} \quad a \quad(, y)
$$

Fission: In this case replace, by formeralng to whether the case in question is that one corresponding to the production of eq ox
 addition to the ρ / f^{\prime} diseased shoves the ${ }^{\prime}$ urathon $\beta^{\prime \prime}$ " $j^{\prime \prime \prime \prime}, s^{\prime \prime \prime \prime}$ may be needed.

This completes the manemathon diseripten of tine procaine. The computations l execution would be something 11 to thill
 terietice

$$
i, N, 3, N, t
$$

and also the necessary random values
$A, \beta, 1, e^{\prime} / e^{\prime \prime} / \beta^{1+1} C^{1 / 1}$
I on see mo point in giving more than, nays, 7 fluent tor censed orin of the 5
 In fact, I would jude that the ne numbers of places me indady higher than

 trona inderdnef, tee., that one wy deniril.

The eonputitione1 provers should then th tie cramped an to produce

variables can be inserted in a aubisedueat ogeriticin; and the cards with w- $=0$ (i.a., corresponding neutrons that were absorbed within the assembly) as well as those with $i=N+/$ (i.e., corresponding to neutrons that escaped from the assembly), may be sorted out.

The manner in which this material can then be used for all kinds of neutron statistic investigations is obvious.

I append a tentative "computing sheet" for the calculation above. It is, of course, neither an actual ncomputing sheet" for a (human) computer group, nor a set-up for the ENIAC, but I think that it is woll suited to serve as a basis for elther. It should give a reasonably immediate idea of the amount of work that is involved in the procedure in question.

I cannot assert this with certainty yet, but it seems to me very likely that the instructions given on this "computing sheet" do not exceed the 'logical' capacity of the ENIAC. I doubt that the processing of 100 'neutrons' will take much longer than the reading, punching and (once) sorting time of 100 cards; 1.e., about 3 minutes. Hence, taking 100 neutrons' through 100 of these stages should take about 800 minutes; 1.e., 5 hours.

Please let me know what you and Stan think of these thinge. Does the approach and the formulation and generality of the cribicality problem seem reasonable to you, or would you prefer some other variant?

Would you consider coming, East some time to discuse matters further?
When could this be?
With best regards;
Very truly yours,

Data:
(I) $x_{i}, x_{i}, y_{i}, z_{i}$

$$
\begin{aligned}
& x_{1} y_{i}, z_{i} \\
& \text { as runotion of } i=1, \cdots, N
\end{aligned} \quad\left(r_{0}=0 .\right)
$$

(2) $\sum_{a A}(w), \sum_{a t}(v), \sum_{a, s}(v), \sum_{s A}(v), \sum_{s t}(v), \sum_{s, j}(v)$, $\sum_{f A}^{(2)}(v), \sum_{f A}^{(3)}(v), \sum_{f A}^{(4)}(v)$
as runation of $N^{-A} \geqq 0, \leqq v_{0}{ }^{2}$.
(3) v_{0}
(4) $\varphi_{A}(\nu), \varphi,(\nu), \varphi_{S}(\nu)$
as function of $\nu \geqq 0, \leq 12)$.
(5) $-10 \log \lambda$
a function of $\lambda<0,<1$ 2).

Card $C:$
C1 2
7) Tabriated, to be interpolated,
Co r or approximated by polynomials.
$\mathrm{CB}_{8} \mathrm{~S}$
(Continuou domain.)
C. N
$0 . t$

Randon Variablen:
$41 \quad \lambda$
$\mathrm{He}_{\mathrm{e}} \mu$
Es v
Hep
$A_{5}^{\prime \prime}$
R $P^{\prime \prime}$
${ }^{R}{ }_{2} \rho^{\prime \prime \prime}$

Calenatation:
Instruotions:
$1 r$ of $C_{1}-1$, ane (1)
2 or of C_{1}, see (1)
5 $\left(C_{3}\right)^{2}$
$4\left(C_{2}\right)^{2}$
$5 \quad 3-4$
$6 \quad C_{3}\left\{\begin{array}{l}\geq 0 \\ <0\end{array} \therefore \infty\right.$
Only for $B=7(1)^{2}$
only for $\mathbb{B} \quad 8 \quad 5+7$
only for $\ell_{i} \quad 9 \quad 8 \begin{cases}-1 & \therefore X^{\prime} \\ >0 & \therefore D^{\prime \prime}\end{cases}$
10 wi wr $\quad \therefore \frac{2}{1}$
11 Lter $\sin ^{\prime} \therefore+1$
$12(10)^{2}$
$13 \quad 5+12$
$14 \quad 11(81 \mathrm{gn}) \times \sqrt{13}$
$15 \quad 14 \cdots C_{3}$
$16 \times$ of X_{1}, see (1)
17 y of C_{1}, see (1)
18 of C_{1}, see (1)
$19 \sum_{\text {ar }}$ of C_{4}, see (2).

Explanatione:
r_{i-1}
r_{i}
s^{2}
r^{2}
$s^{2}-r^{2}$
$s\left\{\begin{array}{lll}\geq 0 & \therefore & W \\ <0 & \therefore & B\end{array}\right.$
r_{i-1}^{2}
$r_{i-1}^{2}+s^{2}-r^{2}$
$r_{i-1}^{2}+s^{2}-r^{2}\left\{\begin{array}{l}=0 \therefore W^{\prime} \\ -0 \therefore \oiint^{\prime \prime}\end{array}\right.$

$\left.\begin{array}{c}\mathcal{A}^{\prime \prime} \mathscr{D}^{\prime} \therefore+1- \\ \therefore-1\end{array}\right\} \varepsilon$
$r^{* 2}$
$r^{* 2}+s^{2}-r^{2}$
s^{*}
.0
x_{i}
$y i$
z_{i}
$\sum_{\infty, 1}(v)$

Thetrawtions:
$20 \quad 16$ w 19
$2 \mathrm{~L} \mathrm{Eax}^{\text {or }} \mathrm{C}_{4}$ (1) (2)
218 17早:1
$2520+32$

2518×24
$2625+29$
$21 \sum_{5 A} 01(4$, (6) (2)
2816×3
$1926>25$
10 Sst of $(4$, weo (2)
21 17×30
$1240+81$
is \sum_{s} of $C 4$, ien (2)
11418×18
$116 \quad 32+34$
$16 \sum_{f A}^{(a)}$ of $(4$, , $\operatorname{le}(2)$
$17 \quad 16 \times 36$
18 B5 +15
$110 \sum_{1}-101 C_{4}$, wo (2)
$14,5=5$
Q4. Be +44
$14 \sum_{f}^{(4)}$ of (t), wes (2)
414.26

Explanatione:

$$
1, \operatorname{sic}(v) x_{i}
$$

$\sum_{3 A}(0)$
$A_{2}-f_{1}=\sum_{S A}(N) x_{1}$
$\sum_{2}^{12}(0)$
$43-4=2 s i(v) y_{i}$
$\mathcal{E s}_{s_{S}}(N)$
$A_{4} f_{3}=\sum_{s}(w) z_{i}$
$f(a)$
$f^{A}$$(v)$
$f_{5}-f_{4}=\sum_{f A}^{(2)}(v) x_{i}$
15
$\sum_{f A}^{(B)}(v)$
$f_{6}^{f A} f=\sum_{f A}^{(3)}(N) x_{i}$
16
$\sum_{16}^{-6}(t)$
$f^{f A}-16=\sum_{f(4)}^{(0) x_{i}}$
f
$-10 \log \rho$

$$
\begin{aligned}
& \text { EaA (ir) } x_{i} \\
& \text { ? } 21 \text { (1) } \\
& \sum_{\text {and }}(x) y i \\
& \sum_{a 4}(t) x_{i} 1 \text { Ka, (u) } 1 \% \\
& \sum_{a p}(60) \\
& \sum_{\text {ap }}(1,1) y_{i} \\
& f_{1} \sum_{a d}(0) x_{i}+x_{1}(t) y_{i} t
\end{aligned}
$$

only for $g=50 \quad \varepsilon_{1}+11$
only for $\because=51 \begin{aligned} & \varepsilon_{1}^{\prime}: S C \\ & \varepsilon_{2}^{!}: 10\end{aligned}$
$r_{s}^{\prime}: 14$
$と_{4}^{\prime}: \mathscr{C}_{4}$
$\varepsilon_{5}^{\prime}: 4_{9}$
From here on only ζ_{ℓ} ：

$$
54 \quad \varphi_{3} \times 46
$$

$$
55 \quad \times \leq 4
$$

$$
\underline{56} \quad(46)^{2}
$$

$$
5755+56
$$

$$
584+57
$$

$$
59 \quad \sqrt{6}
$$

$$
\begin{aligned}
& 52 \quad R_{2} \times 44 \\
& 53 \quad 3 \leq \ll \therefore Q_{1} \\
& \left\{\begin{array}{ll}
\geq 0
\end{array}\right\} \therefore Q_{2} \\
& \left\{\begin{array}{l}
\leq<9 \\
<3<2
\end{array}\right\} \therefore \mathcal{G}_{s} \\
& \left\{\begin{array}{l}
\geqq 36 \\
1 \\
1
\end{array}\right\} \therefore V_{4} \\
& \left\{\begin{array}{l}
\geqq 55 \\
<58
\end{array}\right\} \therefore 4_{5} \\
& \left\{\begin{array}{c}
\geq 38 \\
<41
\end{array}\right\} \therefore \mathbb{Q}_{t} \\
& \geq 41 \quad \therefore Q_{7}
\end{aligned}
$$

Explanations：

$$
\ddot{\mu}-\mu f
$$

$$
\mu<f_{1} \therefore G_{1}
$$

$$
\left\{\begin{array}{l}
\geq f_{1} \\
f_{0}
\end{array}\right\} \therefore G_{2}
$$

$$
\left\{\begin{array}{c}
z_{2} f_{2} \\
<f_{3}
\end{array}\right\} \therefore Q_{3}
$$

$$
\left\{\begin{array}{c}
\geq f_{3} \\
f_{4}
\end{array}\right\} \therefore \varepsilon_{4}
$$

$$
\left\{\begin{array}{l}
\geqq \\
\lessgtr \\
< \\
\hline
\end{array}\right\}
$$

$$
\geqq f_{0} \quad \therefore Q_{2}
$$

$$
5 d^{\prime}
$$

$$
2 s d^{\prime}
$$

$$
d^{12}
$$

$$
2 s d^{\prime}+d^{12}
$$

$$
r^{2}+2 s d^{1}+d^{12}
$$

$$
\begin{aligned}
& d^{\prime}\left\{\begin{array}{l}
\geq d \\
<d P \\
<d
\end{array}\right. \\
& \left.\begin{array}{l}
P: \text { gl: } \\
G: d:=\tau
\end{array}\right\} w=\tau \\
& L^{*} C+C \\
& \text { i* } \boldsymbol{*}+\varepsilon \\
& \mathcal{C}_{1}^{\prime}: i^{*} \\
& と_{c}^{\prime}: \ldots r^{*} \\
& \mathscr{C}_{s}^{\prime}: s^{*} \\
& \mathscr{C}_{4}^{\prime}: \text { v } \\
& \text { Cis: } C^{*}
\end{aligned}
$$

only for $\varphi_{1}: 60 \quad \varepsilon_{1}^{\prime}: \mathcal{L}_{1}$
$\mathcal{C}_{2}^{\prime}: \leq 9$
$\mathcal{E}_{3}^{\prime}: \ldots$
$\mathcal{E}_{4}^{\prime}: 0$
$\mathscr{E}_{5}^{\prime}: 49$
ど4: $_{4}^{\prime}{ }^{0}$
$\mathcal{C}_{3}^{\prime}: \iota^{*}$
From here on only $\Psi_{1}, \ldots, \Psi_{1}$, :
only for $\dot{\zeta}_{2}: \frac{61}{} \varphi_{A}$ of k_{3}, see (4) $\quad \varphi_{A}(v)=\varphi$
only for $k_{3}: \frac{62}{6}$ ¢T of k_{3}, see (4) $\varphi_{1}^{\prime}(v)-\varphi$
only for $Q_{4}: \frac{83}{\Psi_{S}}$ of R_{3}, see (4) $\mathcal{F}_{5}(v)$ Y
only for $\left\{\begin{array}{l}64 \\ \mathcal{L}_{4} \times(61 \text { or } 62 \text { or } 63)\end{array}\right.$ ण 4
$\left.\mathbb{Q}_{2}, \mathscr{Q}_{3}, \mathscr{Q}_{2}\right\}$
$65 Q_{x_{1}} \Psi_{j_{1}} \Psi_{4} \therefore 64$
$\left.\varepsilon_{b}, q_{6}, q_{0}, \therefore 13\right)$
$\left.\varepsilon_{2}, \pi_{3}, \psi_{4} \quad \therefore w_{\varphi}=\right\} v^{\prime}$
$\left.\mathscr{C}_{5}, \mathscr{E}_{\varepsilon_{1}} \mathscr{\varphi}_{i}, \therefore v_{0}=\right\}^{v}$
$66 \quad 2 x R_{4}$.

$$
2 \rho^{\prime}
$$

67 66-1

$$
2 e^{\prime} 1
$$

$68 \quad 59 \times \underline{67}$

$$
s^{\prime}
$$

$69 \dot{\varepsilon}_{1}^{\prime}: \zeta_{1}$
$\varphi^{\prime}, 59$

$$
\frac{\varphi_{1}^{\prime}}{\underline{\varepsilon}_{c}^{\prime}}: r^{*}
$$

$\mathcal{C}_{3}^{\prime}: 68$
$\mathcal{C}_{4}^{\prime}: \frac{65}{45}$
$\mathcal{C}_{5}^{\prime}: 45$
From here on only $\varphi_{\alpha_{5}}, \varphi_{\varepsilon_{6}}, \mathcal{C}_{2}$:

$$
\begin{aligned}
& \underline{\varphi}_{3}^{\prime}: s^{\prime} \\
& \frac{\varphi_{4}^{\prime}: v^{\prime}}{\varphi_{5}^{\prime}: t^{*}}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{70}{71} & 2 \times \frac{R_{5}}{7} \\
\frac{71}{72} & 59 \times 71
\end{array}
$$

$$
2 \rho^{\prime \prime}
$$

$$
2 e^{4}-1
$$

$$
s^{\prime \prime}
$$

$$
\text { 꼬 } \begin{aligned}
& \varphi_{1}^{\prime \prime}: \varphi_{1} \\
& \varphi_{2}^{\prime \prime}: 5 \\
& \varepsilon_{3}^{\prime \prime}: \% \\
& \varphi_{4}^{\prime \prime}: 65 \\
& \varepsilon_{5}^{\prime \prime}: 49
\end{aligned}
$$

From here on only $4_{4}, Y_{,}$：

$$
\begin{aligned}
& 742 \times R_{6} \text {. } \\
& 75 \quad 74-1 \\
& 76 \quad 59 \times 75 \\
& 77 \quad と_{1}^{\prime \prime \prime}: と_{1} \\
& \text { है. } 59 \\
& \text { と }_{8}^{\prime \prime \prime}: 76 \\
& \varepsilon_{4}^{\prime \prime}: 65 \\
& \text { C"I: es }
\end{aligned}
$$

From here on only ψ_{q} ：

$$
\text { Aprid ao } 2947
$$

Frongesox Johz vonternacma
 fohood of hethenatios
Princostor, Wem for soy

Becm doluny:
As Gtan told yohp your lothe hat aroused a gront doal of intoregh

 probloms for hydride gadgeta. It 18 not to mun our intontion to mughet
 porhap aiternatirg procoguros shoula be worked out aliso perhaps oze of ws could do the whth a bitho ansintanco from yous for oxmmpa during a Vinzt to Probncotoz。

The specifit pointa at whioh it seens to us modivioations maght be dostred are as follows:

1. of the threo oompoments A, Sthat you conadior ony ont th fosatongble whorosg in systome of intorest to us, there mill be an appoolabla aumber of dieatona fu the tuballoy of the tampers as wall as in the come masterdal.

 thome xmatyonc

 Spom a giver misciomo
 Eorto On tho othor hand, whan moderation really oocure, $i t$ bems to wa
 cactepred mantor.
2. Eor moter bytume oh tho type onsidared. it woud probebly

 Whe tuithal deot on couds reproscate a group of noubrons all having a 0

 ST of the muthighoctive chatre whi have beon followed nathl time ty and

 mo dus an foma

Sincerely

R., D. RIchrmyer.

