
Since the early 1800s, researchers have
considered iteration methods an attrac-
tive means for approximating the solu-
tions of large linear systems. They make

these solutions possible now that we can do re-
alistic computer simulations. The classical itera-
tion methods typically converge very slowly (and
often not at all). Around 1950, researchers real-
ized that these methods lead to solution se-
quences that span a subspace—the Krylov sub-
space. It was then evident how to identify much
better approximate solutions, without much ad-
ditional computational effort.

When simulating a continuous event, such as
the flow of a fluid through a pipe or of air around
an aircraft, researchers usually impose a grid over
the area of interest and restrict the simulation to
the computation of relevant parameters. An ex-
ample is the pressure or velocity of the flow or
temperature inside the gridpoints. Physical laws

lead to approximate relationships between these
parameters in neighboring gridpoints. Together
with the prescribed behavior at the boundary
gridpoints and with given sources, this leads
eventually to very large linear systems of equa-
tions, Ax = b. The vector x is the unknown para-
meter values in the gridpoints, b is the given in-
put, and the matrix A describes the relationships
between parameters in the gridpoints. Because
these relationships are often restricted to nearby
gridpoints, most matrix elements are zero.

The model becomes more accurate when we
refine the grid—that is, when the distance be-
tween gridpoints decreases. In a 3D simulation,
this easily leads to large systems of equations.
Even a few hundred gridpoints in each coordi-
nate direction leads to systems with millions of
unknowns. Many other problems also lead to
large systems: electric-circuit simulation, mag-
netic-field computation, weather prediction,
chemical processes, semiconductor-device sim-
ulation, nuclear-reactor safety problems, me-
chanical-structure stress, and so on.

The standard numerical-solution methods for
these linear systems are based on clever imple-
mentations of Gaussian elimination. These
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methods exploit the sparse linear-system struc-
ture as much as possible to avoid computations
with zero elements and zero-element storage.
But for large systems these methods are often
too expensive, even on today’s fastest supercom-
puters, except where A has a special structure.
For many of the problems previously listed, we
can mathematically show that the standard so-
lution methods will not lead to solutions in any
reasonable amount of time. So, researchers have
long tried to iteratively approximate the solution
x. We start with a good guess for the solution—
for instance, by solving a much easier nearby
(idealized) problem. We then attempt to im-
prove this guess by reducing the error with a
convenient, cheap approximation for A—an it-
erative solution method.

Unfortunately, defining suitable nearby linear
systems is difficult—in the sense that each step
in the iterative process is cheap, and most im-
portant, that the iteration converges sufficiently
fast. Suppose that we approximate the n × n ma-
trix A of the linear system Ax = b by the simpler
matrix K. Then, we can formulate the above
sketched iteration process as follows: in step i +
1, solve the new approximation xi+1 for the solu-
tion x of Ax = b, from

Kxi+1= Kxi + b − Axi .

For arbitrary initial start x0, this process’s con-
vergence requirement is that the largest eigen-
value, in modulus, of the matrix I − K−1A is less
than 1. The smaller this eigenvalue is, the faster
the convergence will be (if K = A, we have conver-
gence in one step). For most matrices, this is prac-
tically impossible. For instance, for the discretized
Poisson equation, the choice K = diag(A) leads to a
convergence rate 1 − O(h2), where h is the distance
between gridpoints. Even for the more modern
incomplete LU decompositions, this convergence
rate is the same, which predicts a very marginal
improvement per iteration step. We get reason-
able fast convergence only for strongly diagonally
dominant matrices. In the mid 1950s, this led to
the observation in Ewald Bodewig’s textbook that
iteration methods were not useful, except when A
approaches a diagonal matrix.1

Faster iterative solvers

Despite the negative feelings about iterative
solvers, researchers continued to design faster
iterative methods.

The developments of modern and more suc-

cessful method classes started at about the same
time, interestingly, in a way not appreciated at
the time. The first and truly iterative approach
tried to identify a trend in the successive ap-
proximants and to extrapolate on the last itera-
tion results. This led to the successive overrelax-
ation methods, in which an overrelaxation (or
extrapolation) parameter steered the iteration
process. For interesting classes of problems, such
as convection-diffusion problems and the neu-
tron-diffusion equation, this led to attractive
computational methods that could compete with
direct methods (maybe not so much in comput-
ing time, but certainly because
of the minimal computer
memory requirements). David
Young2,3 and Richard Varga4

were important researchers
who helped make these meth-
ods attractive. The SOR me-
thods were intensively used by
engineers until more success-
ful methods gradually replaced
them.

The early computers had
relatively small memories that
made iterative methods still
attractive, because you had to store only the
nonzero matrix elements. Also, iterative solu-
tion, although slow, was the only way out for
many PDE-related linear systems. Including it-
eration parameters to kill dominant factors in
the iteration errors—as in SOR—made the so-
lution of large systems possible.

Varga reports that by 1960, Laplacian-type
systems of 20,000 could be solved as a daily rou-
tine on a Philco-20000 computer with 32,000
words of core storage.4 This would have been
impossible with a direct method on a similar
computer. However, the iterative methods of
that time required careful tuning. For example,
for the Chebyshev accelerated iteration meth-
ods, you needed accurate guesses for the matrix’s
extremal eigenvalues. Also, for the overrelax-
ation methods, you needed an overrelaxation pa-
rameter that was estimated from the largest
eigenvalue of some related iteration matrix.

Another iterative-method class that became
popular in the mid 1950s was the Alternating Di-
rection method, which attempted to solve dis-
cretized PDEs over grids in more dimensions by
successively solving 1D problems in each coordi-
nate direction. Iteration parameters steered this
process. Varga’s book, Matrix Iterative Analysis,
gives a good overview of the state of the art in
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1960.4 It even mentions a system with 108,000
degrees of freedom. Many other problems with a
variation in matrix coefficients, such as electron-
ics applications, could not be solved at that time.

Because of the nonrobustness of the early it-
erative solvers, research focused on more effi-
cient direct solvers. Especially for software used
by nonnumerical experts, the direct methods
have the advantage of avoiding convergence
problems or difficult decisions on iteration pa-
rameters. The main problem, however, is that
for general PDE-related problems discretized
over grids in 3D domains, optimal direct tech-
niques scale O(n2.3) in floating-point operations,
so they are of limited use for the larger, realistic
3D problems. The work per iteration for an it-
erative method is proportional to n, which
shows that if you succeed in finding an iterative
technique that converges in considerably fewer
than n iterations, this technique is more efficient
than a direct solver.

For many practical problems, researchers
have achieved this goal, but through clever
combinations of modern iteration methods
with (incomplete) direct techniques: the ILU
preconditioned Krylov subspace solvers. With
proper ordering techniques and appropriate
levels of incompleteness, researchers have re-
alized iteration counts for convection-diffusion
problems that are practically independent of
the gridsize. This implies that for such prob-
lems, the required number of flops is propor-
tional with n (admittedly with a fairly large
proportionality constant). The other advantage
of iterative methods is that they need modest
amounts of computer storage. For many prob-
lems, modern direct methods can also be very
modest, but this depends on the system’s ma-
trix structure.

The Krylov subspace solvers

Cornelius Lanczos5 and Walter Arnoldi6 also
established the basis for very successful meth-
ods in the early 1950s. The idea was to keep all
approximants computed so far in the iteration
process and to recombine them to a better so-
lution. This task might seem enormous, but
Lanczos recognized that the basic iteration (for
convenience we will take K = I) leads to approx-
imants xi that are in nicely structured subspaces.
Namely, these subspaces are spanned by the
vectors r0, Ar0, A2r0, ..., Ai−1r0, where r0 = b −
Ax0. Such a subspace is a Krylov subspace of di-
mension i for A and r0.

Compute r0 = b − Ax0 for some initial guess x0

for i = 1,2, …
Solve zi−1 from Kzi−1 = ri−1

if i = 1
p1 = z0

else
βi−1 = ρi−1/ρi−2 ;
pi = zi−1 + βi−1pi−1

endif
qi = Api

xi = xi−1 + α ipi

ri = ri−1 − α iqi

check convergence; continue if necessary
end;

α ρi i i ip q= −1 / *

ρi i ir z− − −=1 1 1
*

Figure 1. The conjugate gradient algorithm.

r = b − Ax0, for a given initial guess x0

for j = 1, 2, ....
β = , v1=r/β; =β e1;

for i = 1, 2, ...,m
w = Avi;
for k = 1, ...,i

;
hi+1,i = ; vi+1 = w/hi+1,i;
for k = 2, …,i

µ = hk−1,i

hk−1,i = ck−1µ + sk−1hk,i

hk,i = −sk−1µ + ck−1hk,i

ri,i = cihi,i + sihi+1,i

if ρ is small enough then
(nr = i; goto SOL);

SOL:  for k = nr−1, ..., 1

; if p small enough quit

r = b − Ax

x y vii

n
i

r= =∑ 1
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Figure 2: GMRES(m) of Saad and Schultz.
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Lanczos showed that you can generate an or-
thogonal basis for this subspace with a very sim-
ple three-term recurrence relation if the matrix
A is symmetric. This simplified the optimal-
solution computations in the Krylov subspace.
The attractive aspect is that you can obtain
these optimal solutions for approximately the
same computational costs as the approximants
for the original iterative process, which was ini-
tially not recognized as a breakthrough in iter-
ative processes. The early observation was that,
after n − 1 steps, this process must terminate
because the Krylov subspace is of dimension n.
For that reason, this Lanczos process was re-
garded as a direct-solution method. Re-
searchers tested the method on tough (although
low-dimensional) problems and soon observed
that after n − 1 steps the approximant xn could
be quite far away from the solution x, with
which it should coincide at that point. This
made potential users suspicious.

Meanwhile, Magnus Hestenes and Eduard
Stiefel7 had proposed a very elegant method for
symmetric positive definite systems, based on the
same Krylov subspace principles: the conjugate
gradient method. This method suffered from the
same lack of exactness as Lanczos’ method and
did not receive much recognition in its first 
20 years.

The conjugate gradient method
It took a few years for researchers to realize

that it was more fruitful to consider the conju-
gate gradient method truly iterative. In 1972,
John Reid was one of the first to point in this di-
rection.8 Meanwhile, analysis had already shown
that a factor involving the ratio of the largest and
smallest eigenvalue of A dictated this method’s
convergence and that the actual values of these
eigenvalues play no role.

About the same time, researchers recognized
that they could construct good approximations
K for A with the property that the eigenvalues
of K−1A were clustered around 1. This implied
that the ratio of these eigenvalues was moderate
and so led to fast convergence of conjugate gra-
dients when applied to K−1Ax = K−1b when K is
also symmetric positive definite. This process is
called preconditioned conjugate gradients. Figure 1
describes the algorithm, where x * y denotes the
innerproduct of two vectors x and y (complex
conjugate if the system is complex).

David Kershaw was one of the first to experi-
ment with the conjugate gradient method, with
incomplete Cholesky factorization of A as a pre-

conditioner for tough problems related to fusion
problems.9 Table 1 quotes iteration numbers for
the basic Gauss-Seidel iteration (that is, the ba-
sic iteration for K the lower triangular part of A4)
the accelerated version SOR (actually, a slightly
faster variant, Block SOR4), and conjugate gra-
dients preconditioned with incomplete Cholesky
(also known as ICCG). The iteration numbers
were necessary to reduce the initial-residual
norm by a factor of 10−6.

Table 1 shows the sometimes gigantic im-
provements from the (preconditioned) conjugate
gradients. These and other results also motivated
the search for other powerful Krylov subspace
methods for a more general equation system.

GMRES
Researchers have proposed quite a few spe-

cialized Krylov methods, including Bi-CG and
QMR for unsymmetric A; MINRES and
SYMMLQ for symmetric-indefinite systems;
and Orthomin, Orthodir, and Orthores for gen-
eral unsymmetric systems. The current de facto
unsymmetric-system standard is the GMRES
method, proposed in 1986 by Youcef Saad and
Martin Schultz.10 In this method, the xi in the
dimension i Krylov subspace is constructed for
which the norm ||b – Axi||2 is minimal. This
builds on an algorithm, proposed by Arnoldi,6

that constructs an orthonormal basis for the
Krylov subspace for unsymmetric A.

The price for this ideal situation is that you
have to store a full orthogonal basis for the
Krylov subspace, which means the more itera-
tions, the more basis vectors you must store.
Also, the work per iteration increases linearly,
which makes the method attractive only if it con-
verges really fast. For many practical problems,
GMRES takes a few tens of iterations; for many
other problems it can take hundreds, which
makes a full GMRES unfeasable.

Figure 2 shows a GMRES version in which a
restart occurs after every m iterations to limit the
memory requirements and the work per itera-
tion. The application for a preconditioned sys-
tem K−1Ax = K−1b is straightforward.

Table 1. Kershaw’s results for a fusion problem.

Method Number of iterations

Gauss Seidel 208,000
Block successive overrelaxation methods 765
Incomplete Cholesky conjugate gradients 25
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Bi-CGSTAB
The GMRES cost per iteration has also led to

a search for cheaper near-optimal methods.
Vance Faber and Thomas Manteuffel’s famous
result showed that constructing optimal solu-
tions in the Krylov subspace for unsymmetric A
by short recurrences, as in the conjugate gradi-
ents method, is generally not possible. The gen-
eralization of conjugate gradients for unsym-
metric systems, Bi-CG, often displays an
irregular convergence behavior, including a pos-
sible breakdown. Roland Freund and Noel
Nachtigal gave an elegant remedy for both phe-
nomena in their QMR method. BiCG and
QMR have the disadvantage that they require an
operation with AT per iteration step. This addi-
tional operation does not lead to a further resid-
ual reduction.

In the mid 1980s, Peter Sonneveld recog-
nized that you can use the AT operation for a
further residual reduction through a minor
modification to the Bi-CG scheme, almost
without additional computational costs. This
CGS method was often faster but significantly
more irregular, which led to a precison loss. In
1992, I showed that Bi-CG could be made faster
and smoother, at almost no additional cost, with
minimal residual steps.11 Figure 3 schematically
shows the resulting Bi-CGSTAB algorithm, for
the solution of Ax = b with preconditioner K.

It is difficult to make a general statement
about how quickly these Krylov methods con-
verge. Although they certainly converge much
faster than the classical iteration schemes and
convergence takes place for a much wider class
of matrices, many practical systems still cannot
be satisfactorily solved. Much depends on
whether you are able to define a nearby matrix
K that will serve as a preconditioner. Recent re-
search is more oriented in that direction than in
trying to improve the Krylov subspace meth-
ods, although we might see some improvements
for these methods as well. Effective and efficient
preconditioner construction is largely problem-
dependent; a preconditioner is considered as ef-
fective if the number of iteration steps of the
preconditioned Krylov subspace method is ap-
proximately 100 or less.

In this contribution, I have highlighted
some of the Krylov subspace methods that
researchers have accepted as powerful
tools for the iterative solution of very large

linear systems with millions of unknowns. These
methods are a breakthrough in iterative solution
methods for linear systems. I have mentioned a
few names that were most directly associated
with the development of the most characteristic
and powerful methods—CG, GMRES, and Bi-
CGSTAB—but these only represent the tip of
the iceberg in this lively research area. For more
information, see the “Further reading” sidebar.

Another class of acceleration methods that has
been developed since around 1980 are the multi-
grid or multilevel methods. These methods ap-
ply to grid-oriented problems, and the idea is to
work with coarse and fine grids. Smooth solu-
tion components are largely determined on the

Compute r0 = b − Ax0 for some initial guess x0

Choose , for example 
for i = 1, 2, ...

if ρi−1 = 0 method fails
if i = 1

pi = ri-1

else
βi−1 = (ρi−1/ρi−2)(α i−1/ωi−1)
pi = ri−1 + βi−1(pi−1 − ωi−1vi−1)

endif
Solve from 

s = ri−1 − α i vi

if small enough then
and stop

Solve z from Kz = s
t = A z
ωi = s*t/t*t

if xi is accurate enough then quit
ri = s − ωit
for continuation it is necessary that ωi ≠ 0

end

x x p zi i i i= + +−1 α ωˆ

x x pi i
i

( ) ( ) ˆ= +−1 α

s

α ρi i ir v= −
∗

1 0/ ˆ

v pi = Aˆ

Kp piˆ =p̂

ρi ir r−
∗

−=1 0 1ˆ

r̂ r0 0=r̂0

Figure 3. The Bi-CGSTAB algorithm.
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coarse grid; the fine grid is for the more locally
varying components. When these methods work
for regular problems over regular grids for
PDEs, they can be very fast and are much more
efficient than preconditioned Krylov solvers.
However, there is no clear separation between
the two camps: you can use multigrid as a pre-
conditioner for Krylov methods for less regular
problems and the Krylov techniques as
smoothers for multigrid. This is a fruitful direc-
tion for further exploration.
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