Chapter 14: Protection

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagne ©2013

5 Chapter 14: Protection

Goals of Protection

Principles of Protection

Domain of Protection

Access Matrix

Implementation of Access Matrix
Access Control

Revocation of Access Rights
Capability-Based Systems

Language-Based Protection

Operating System Concepts — 9t Edition 14.2 Silberschatz, Galvin and Gagne ©2013

G Objectives

m Discuss the goals and principles of protection in a modern
computer system

m Explain how protection domains combined with an access
matrix are used to specify the resources a process may
access

m Examine capability and language-based protection systems

7 ".}(
“ 295

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 14.3

" Goals of Protection

® [n one protection model, computer consists of a collection of
objects, hardware or software

m Each object has a unigue name and can be accessed through
a well-defined set of operations

® Protection problem - ensure that each object is accessed
correctly and only by those processes that are allowed to do so

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 14.4

=

Fr Principles of Protection

® Guiding principle — principle of least privilege

e Programs, users and systems should be given just
enough privileges to perform their tasks

e Limits damage if entity has a bug, gets abused

e Can be static (during life of system, during life of
process)

e Or dynamic (changed by process as needed) — domain
switching, privilege escalation

e “Need to know” a similar concept regarding access to
data

- =
VA
“ PUL

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 14.5

<% Principles of Protection (Cont.)

m Must consider “grain” aspect

e Rough-grained privilege management easier, simpler,
but least privilege now done in large chunks

» For example, traditional Unix processes either have
abilities of the associated user, or of root

e Fine-grained management more complex, more
overhead, but more protective

» File ACL lists, RBAC
® Domain can be user, process, procedure

Operating System Concepts — 9t Edition 14.6 Silberschatz, Galvin and Gagne ©2013

<SP Domain Structure

m Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can
be performed on the object

® Domain = set of access-rights

< O, {read, write} >
< Oy, {read, write} >
< O,, {execute} >

< Oy, {execute} >
< O, {read} >

< Oy, {print} >

Operating System Concepts — 9t Edition 14.7 Silberschatz, Galvin and Gagne ©2013

<% Domain Implementation (UNIX)

® Domain = user-id
® Domain switch accomplished via file system
» Each file has associated with it a domain bit (setuid bit)

» When file is executed and setuid = on, then user-id is
set to owner of the file being executed

» When execution completes user-id is reset
® Domain switch accomplished via passwords

e su command temporarily switches to another user’ s
domain when other domain’ s password provided

® Domain switching via commands

e sudo command prefix executes specified command in
another domain (if original domain has privilege or
password given)

- : _.' h
N_»_“/’/,“/' - :‘, ‘«:\!
(94 %"

APK

Operating System Concepts — 9t Edition 14.8 Silberschatz, Galvin and Gagne ©2013

=

-

%’ Domain Implementation (MULTICS)

m LetD;and D;be any two domain rings

m Ifj<I=D, cD

ring O

ring 1

ring N—1

ML
oy

. /‘)/,&,R:_\/

“ 2957

Operating System Concepts — 9t Edition 14.9 Silberschatz, Galvin and Gagne ©2013

gt Multics Benefits and Limits

® Ring / hierarchical structure provided more than the basic
kernel / user or root / normal user design

Fairly complex -> more overhead
But does not allow strict need-to-know
e Object accessible in D; but notin D;, then j must be < i

e But then every segment accessible in D, also
accessible in D,

/5)‘;* S
S
4 %
A ﬁ' 2

Operating System Concepts — 9t Edition 14.10 Silberschatz, Galvin and Gagne ©2013

7 Access Matrix

View protection as a matrix (access matrix)
Rows represent domains
Columns represent objects

Access (i, j) Iisthe set of operations that a process
executing in Domain; can invoke on Object;

object
. E F, Fs printer
domain
D, read read
D, print
D, read execute
read read
D, write write

=~ ;\‘--.‘w\‘

£ Wl

y <
A ﬁ-;’. 2

Operating System Concepts — 9t Edition 14.11 Silberschatz, Galvin and Gagne ©2013

— .
S i Use of Access Matrix

® If a process in Domain D; tries to do “op” on object O;, then
“op” must be in the access matrix

m User who creates object can define access column for that
object

B Can be expanded to dynamic protection

e Operations to add, delete access rights

e Special access rights:
» owner of O,
» copy op from O; to O, (denoted by *)
» control — D; can modify D; access rights
» transfer — switch from domain D; to D,

e Copy and Owner applicable to an object

e Control applicable to domain object

. /‘%i‘, B
Y

/ ‘\"

“« -Ag‘:')

Operating System Concepts — 9t Edition 14.12 Silberschatz, Galvin and Gagne ©2013

g Use of Access Matrix (Cont.)

B Access matrix design separates mechanism from policy
e Mechanism
» Operating system provides access-matrix + rules

» If ensures that the matrix is only manipulated by
authorized agents and that rules are strictly enforced

e Policy
» User dictates policy
» Who can access what object and in what mode
m But doesn’t solve the general confinement problem

Operating System Concepts — 9t Edition 14.13 Silberschatz, Galvin and Gagne ©2013

)

\.

‘w«g;‘/ Access Matrix of Figure A with Domains as Objects

Sl gl B | R || p | b | b | D,
domain printer

D, read read switch

D, print switch | switch

D, read |execute

D, ‘r;j?ti ;(:r?ti switch

Operating System Concepts — 9t Edition 14.14 Silberschatz, Galvin and Gagne ©2013

<P,
N

o 4

y
/.

Access Matrix with Copy Rights

object
F; F, F5
domain
D, execute write*
D, execute read* execute
D; execute
(a)
object
F; F, Fs
domain
D, execute write*
Dz execute read* execute
D, execute read
(b)
14.15

Operating System Concepts — 9t" Edition

Silberschatz, Galvin and Gagne ©2013

S

r

4

=

-

Access Matrix With Owner Rights

Operating System Concepts — 9t" Edition

object
F F, F;
domain
owner .
& execute write
“ read™
D, c;?v%ir owner
write
D, execute
(a)
object
‘ F 5 £
domain
owner .
b; execute write
owner read*
D, read* owner
write® write
D, write write
(b)

14.16

Silberschatz, Galvin and Gagne ©2013

y

—_

m’;‘ﬁ Modified Access Matrix of Figure B

R

object
’ £ (I R = lase il BN S e (R
domain printer
D, read read switch
. . switch

D, print switch | °° 4)
D, read |execute
D, write write switch

Operating System Concepts — 9t Edition 14.17 Silberschatz, Galvin and Gagne ©2013

=

) . .
iy Implementation of Access Matrix

m Generally, a sparse matrix
m Option 1 — Global table

e Store ordered triples <domain, object,
rights-set> in table

e Arequested operation M on object O; within domain
D; -> search table for < D;, O;, R, >

» with M € R,
e But table could be large -> won’ t fit in main memory

e Difficult to group objects (consider an object that all
domains can read)

Operating System Concepts — 9t Edition 14.18 Silberschatz, Galvin and Gagne ©2013

=

— : :
«$»/ Implementation of Access Matrix (Cont.)

m Option 2 — Access lists for objects
e Each column implemented as an access list for one
object

e Resulting per-object list consists of ordered pairs
<domain, rights-set> defining all domains with
non-empty set of access rights for the object

e Easily extended to contain default set -> If M € default
set, also allow access

Operating System Concepts — 9t Edition 14.19 Silberschatz, Galvin and Gagne ©2013

F N

S
- ,ml

«¢%> Implementation of Access Matrix (Cont.)

m Each column = Access-control list for one object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

m Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 — Read
Object F4 — Read, Write, Execute
Object F5 — Read, Write, Delete, Copy

/5)‘;* S
7 ".}(
A us;’.‘

Operating System Concepts — 9t Edition 14.20 Silberschatz, Galvin and Gagne ©2013

=

) i : :
s & Implementation of Access Matrix (Cont.)

m Option 3 — Capability list for domains
e Instead of object-based, list is domain based

e Capability list for domain is list of objects together with operations
allows on them

e Object represented by its name or address, called a capability

e Execute operation M on object O;, process requests operation and
specifies capability as parameter

» Possession of capability means access is allowed

e Capability list associated with domain but never directly accessible
by domain

» Rather, protected object, maintained by OS and accessed
indirectly

» Like a “secure pointer”
» ldea can be extended up to applications

N e : ‘\‘

> ;.ﬂ:;‘ ‘\!
Y ‘v\(\

“ AN

Operating System Concepts — 9t Edition 14.21 Silberschatz, Galvin and Gagne ©2013

=

o h ™
‘M“’:/‘f' . .
#”" Implementation of Access Matrix (Cont.)

m Option 4 — Lock-key
e Compromise between access lists and capability lists
e Each object has list of unique bit patterns, called locks
e Each domain as list of unique bit patterns called keys

e Process in a domain can only access object if domain
has key that matches one of the locks

gl
VA
A AN

Operating System Concepts — 9t Edition 14.22 Silberschatz, Galvin and Gagne ©2013

af - -
- Comparison of Implementations

® Many trade-offs to consider
e Global table is simple, but can be large
e Access lists correspond to needs of users

» Determining set of access rights for domain non-
localized so difficult

» Every access to an object must be checked
Many objects and access rights -> slow

e Capability lists useful for localizing information for a given
process

» But revocation capabilities can be inefficient

e Lock-key effective and flexible, keys can be passed freely
from domain to domain, easy revocation

) “s__“//: /‘%; ‘g\!
Y et
/ w

A APX o

Operating System Concepts — 9t Edition 14.23 Silberschatz, Galvin and Gagne ©2013

=

S
- ,.m.l

“$»7 Comparison of Implementations (Cont.)

® Most systems use combination of access lists and
capabilities

e First access to an object -> access list searched

» If allowed, capability created and attached to
process

Additional accesses need not be checked
» After last access, capability destroyed
» Consider file system with ACLs per file

=
7 <
U ﬁ' 2

Operating System Concepts — 9t Edition 14.24 Silberschatz, Galvin and Gagne ©2013

O Access Control

®m Protection can be applied to non-file

resources user 1
m Oracle Solaris 10 provides role- role 1
based access control (RBAC) to privileges 1

implement least privilege privileges 2

e Privilege is right to execute
system call or use an option |

within a system call executes with role 1 privileges
e Can be assigned to processes l

e Users assigned roles granting
access to privileges and
programs

» Enable role via password to
gain its privileges

e Similar to access matrix

N e -, ‘ \‘

> ;.ﬂ:;‘ ' ‘\ !
Y ‘v\(\

“ A8

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 14.25

F N

S
<

G5 Revocation of Access Rights

®m Various options to remove the access right of a domain to an
object

e Immediate vs. delayed
e Selective vs. general
e Partial vs. total
e Temporary vs. permanent
m Access List — Delete access rights from access list
e Simple — search access list and remove entry

e Immediate, general or selective, total or partial,
permanent or temporary

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 14.26

|
x

&1"’2 Revocation of Access Rights (Cont.)

m Capability List — Scheme required to locate capability in the
system before capability can be revoked

e Reacquisition — periodic delete, with require and denial if
revoked

e Back-pointers — set of pointers from each object to all
capabilities of that object (Multics)

e Indirection — capability points to global table entry which points
to object — delete entry from global table, not selective (CAL)

e Keys — unique bits associated with capability, generated when
capability created

» Master key associated with object, key matches master key
for access

» Revocation — create new master key

» Policy decision of who can create and modify keys — object
owner or others?

~~~~~~ S5
I8 4 %’
) AN 2

Operating System Concepts — 9t Edition 14.27 Silberschatz, Galvin and Gagne ©2013




[,
x
= -oam_»‘l

s Capability-Based Systems

m Hydra
e Fixed set of access rights known to and interpreted by the system
» I.e. read, write, or execute each memory segment

» User can declare other auxiliary rights and register those with
protection system

» Accessing process must hold capability and know name of
operation

» Rights amplification allowed by trustworthy procedures for a
specific type

e |Interpretation of user-defined rights performed solely by user's
program; system provides access protection for use of these rights

e Operations on objects defined procedurally — procedures are
objects accessed indirectly by capabilities

e Solves the problem of mutually suspicious subsystems
e Includes library of prewritten security routines

Operating System Concepts — 9t" Edition 14.28

) “s__“//: /‘%; ‘g\ !
Y
/ \\' .

L 2957

Silberschatz, Galvin and Gagne ©2013



&{;ﬁ Capability-Based Systems (Cont.)

m Cambridge CAP System
e Simpler but powerful

e Data capability - provides standard read, write, execute
of individual storage segments associated with object —
implemented in microcode

e Software capability -interpretation left to the
subsystem, through its protected procedures

» Only has access to its own subsystem

» Programmers must learn principles and techniques
of protection

Operating System Concepts — 9t Edition 14.29 Silberschatz, Galvin and Gagne ©2013




S i Language-Based Protection

m Specification of protection in a programming language
allows the high-level description of policies for the
allocation and use of resources

® Language implementation can provide software for
protection enforcement when automatic hardware-
supported checking is unavailable

®m [nterpret protection specifications to generate calls on
whatever protection system is provided by the hardware
and the operating system

¥ = ‘ “‘

¢ /}éﬁ f“’\!
7 ‘?{ :

“d A%

Operating System Concepts — 9t Edition 14.30 Silberschatz, Galvin and Gagne ©2013




) : '
T Protection in Java 2

Protection is handled by the Java Virtual Machine (JVM)

A class is assigned a protection domain when it is loaded by
the JVM

® The protection domain indicates what operations the class
can (and cannot) perform

m If alibrary method is invoked that performs a privileged
operation, the stack is inspected to ensure the operation can
be performed by the library

m Generally, Java’s load-time and run-time checks enforce type
safety

m Classes effectively encapsulate and protect data and
methods from other classes

¥ = ‘ “‘

¢ /}éﬁ f“’\!
7 ‘?{ :

“d A%

Operating System Concepts — 9t Edition 14.31 Silberschatz, Galvin and Gagne ©2013




o Stack Inspection

tecti ’

(pj(r)omeacinl:on :gglﬁted URL loader networking

socket . i .80 i

permission: | MoNne lucent.com:80, connec any

class: gui: get(URL u): open(Addr a):
g.jt.at.(url); éic.)ﬁ’rivileged { c.:r.léckPermission
open(addr); open(‘proxy.lucent.com:80’); (a, connect);
e connect (a);

<request u from proxy=>

A 2

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 14.32



End of Chapter 14

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagne ©2013



