
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 13: I/O Systems

13.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 13: I/O Systems

 Overview

 I/O Hardware

 Application I/O Interface

 Kernel I/O Subsystem

 Transforming I/O Requests to Hardware Operations

 STREAMS

 Performance

13.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Objectives

 Explore the structure of an operating system’s I/O subsystem

 Discuss the principles of I/O hardware and its complexity

 Provide details of the performance aspects of I/O hardware

and software

13.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Overview

 I/O management is a major component of operating system

design and operation

 Important aspect of computer operation

 I/O devices vary greatly

 Various methods to control them

 Performance management

 New types of devices frequent

 Ports, busses, device controllers connect to various devices

 Device drivers encapsulate device details

 Present uniform device-access interface to I/O subsystem

13.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

I/O Hardware

 Incredible variety of I/O devices

 Storage

 Transmission

 Human-interface

 Common concepts – signals from I/O devices interface with computer

 Port – connection point for device

 Bus - daisy chain or shared direct access

 PCI bus common in PCs and servers, PCI Express (PCIe)

 expansion bus connects relatively slow devices

 Controller (host adapter) – electronics that operate port, bus, device

 Sometimes integrated

 Sometimes separate circuit board (host adapter)

 Contains processor, microcode, private memory, bus controller, etc

– Some talk to per-device controller with bus controller, microcode,

memory, etc

13.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

A Typical PC Bus Structure

13.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

I/O Hardware (Cont.)

 I/O instructions control devices

 Devices usually have registers where device driver places

commands, addresses, and data to write, or read data from

registers after command execution

 Data-in register, data-out register, status register, control

register

 Typically 1-4 bytes, or FIFO buffer

 Devices have addresses, used by

 Direct I/O instructions

 Memory-mapped I/O

 Device data and command registers mapped to

processor address space

 Especially for large address spaces (graphics)

13.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Device I/O Port Locations on PCs (partial)

13.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Polling

 For each byte of I/O

1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out

register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when

transfer done

 Step 1 is busy-wait cycle to wait for I/O from device

 Reasonable if device is fast

 But inefficient if device slow

 CPU switches to other tasks?

 But if miss a cycle data overwritten / lost

13.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Interrupts

 Polling can happen in 3 instruction cycles

 Read status, logical-and to extract status bit, branch if not zero

 How to be more efficient if non-zero infrequently?

 CPU Interrupt-request line triggered by I/O device

 Checked by processor after each instruction

 Interrupt handler receives interrupts

 Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler

 Context switch at start and end

 Based on priority

 Some nonmaskable

 Interrupt chaining if more than one device at same interrupt

number

13.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Interrupt-Driven I/O Cycle

13.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Intel Pentium Processor Event-Vector Table

13.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Interrupts (Cont.)

 Interrupt mechanism also used for exceptions

 Terminate process, crash system due to hardware error

 Page fault executes when memory access error

 System call executes via trap to trigger kernel to execute

request

 Multi-CPU systems can process interrupts concurrently

 If operating system designed to handle it

 Used for time-sensitive processing, frequent, must be fast

13.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Direct Memory Access

 Used to avoid programmed I/O (one byte at a time) for large data

movement

 Requires DMA controller

 Bypasses CPU to transfer data directly between I/O device and

memory

 OS writes DMA command block into memory

 Source and destination addresses

 Read or write mode

 Count of bytes

 Writes location of command block to DMA controller

 Bus mastering of DMA controller – grabs bus from CPU

 Cycle stealing from CPU but still much more efficient

 When done, interrupts to signal completion

 Version that is aware of virtual addresses can be even more efficient -

DVMA

13.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Six Step Process to Perform DMA Transfer

13.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Application I/O Interface

 I/O system calls encapsulate device behaviors in generic classes

 Device-driver layer hides differences among I/O controllers from kernel

 New devices talking already-implemented protocols need no extra

work

 Each OS has its own I/O subsystem structures and device driver

frameworks

 Devices vary in many dimensions

 Character-stream or block

 Sequential or random-access

 Synchronous or asynchronous (or both)

 Sharable or dedicated

 Speed of operation

 read-write, read only, or write only

13.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

A Kernel I/O Structure

13.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Characteristics of I/O Devices

13.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Characteristics of I/O Devices (Cont.)

 Subtleties of devices handled by device drivers

 Broadly I/O devices can be grouped by the OS into

 Block I/O

 Character I/O (Stream)

 Memory-mapped file access

 Network sockets

 For direct manipulation of I/O device specific characteristics,

usually an escape / back door

 Unix ioctl() call to send arbitrary bits to a device control

register and data to device data register

13.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Block and Character Devices

 Block devices include disk drives

 Commands include read, write, seek

 Raw I/O, direct I/O, or file-system access

 Memory-mapped file access possible

 File mapped to virtual memory and clusters brought via

demand paging

 DMA

 Character devices include keyboards, mice, serial ports

 Commands include get(), put()

 Libraries layered on top allow line editing

13.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Network Devices

 Varying enough from block and character to have own

interface

 Linux, Unix, Windows and many others include socket

interface

 Separates network protocol from network operation

 Includes select() functionality

 Approaches vary widely (pipes, FIFOs, streams, queues,

mailboxes)

13.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Clocks and Timers

 Provide current time, elapsed time, timer

 Normal resolution about 1/60 second

 Some systems provide higher-resolution timers

 Programmable interval timer used for timings, periodic

interrupts

 ioctl() (on UNIX) covers odd aspects of I/O such as

clocks and timers

13.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Nonblocking and Asynchronous I/O

 Blocking - process suspended until I/O completed

 Easy to use and understand

 Insufficient for some needs

 Nonblocking - I/O call returns as much as available

 User interface, data copy (buffered I/O)

 Implemented via multi-threading

 Returns quickly with count of bytes read or written

 select() to find if data ready then read() or write()

to transfer

 Asynchronous - process runs while I/O executes

 Difficult to use

 I/O subsystem signals process when I/O completed

13.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Two I/O Methods

Synchronous Asynchronous

13.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Vectored I/O

 Vectored I/O allows one system call to perform multiple I/O

operations

 For example, Unix readve() accepts a vector of multiple

buffers to read into or write from

 This scatter-gather method better than multiple individual I/O

calls

 Decreases context switching and system call overhead

 Some versions provide atomicity

 Avoid for example worry about multiple threads

changing data as reads / writes occurring

13.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Kernel I/O Subsystem

 Scheduling

 Some I/O request ordering via per-device queue

 Some OSs try fairness

 Some implement Quality Of Service (i.e. IPQOS)

 Buffering - store data in memory while transferring between devices

 To cope with device speed mismatch

 To cope with device transfer size mismatch

 To maintain “copy semantics”

 Double buffering – two copies of the data

 Kernel and user

 Varying sizes

 Full / being processed and not-full / being used

 Copy-on-write can be used for efficiency in some cases

13.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Device-status Table

13.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Sun Enterprise 6000 Device-Transfer Rates

13.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Kernel I/O Subsystem

 Caching - faster device holding copy of data

 Always just a copy

 Key to performance

 Sometimes combined with buffering

 Spooling - hold output for a device

 If device can serve only one request at a time

 i.e., Printing

 Device reservation - provides exclusive access to a device

 System calls for allocation and de-allocation

 Watch out for deadlock

13.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Error Handling

 OS can recover from disk read, device unavailable, transient

write failures

 Retry a read or write, for example

 Some systems more advanced – Solaris FMA, AIX

 Track error frequencies, stop using device with

increasing frequency of retry-able errors

 Most return an error number or code when I/O request fails

 System error logs hold problem reports

13.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

I/O Protection

 User process may accidentally or purposefully attempt to

disrupt normal operation via illegal I/O instructions

 All I/O instructions defined to be privileged

 I/O must be performed via system calls

 Memory-mapped and I/O port memory locations must

be protected too

13.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Use of a System Call to Perform I/O

13.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Kernel Data Structures

 Kernel keeps state info for I/O components, including open file

tables, network connections, character device state

 Many, many complex data structures to track buffers, memory

allocation, “dirty” blocks

 Some use object-oriented methods and message passing to

implement I/O

 Windows uses message passing

 Message with I/O information passed from user mode

into kernel

 Message modified as it flows through to device driver

and back to process

 Pros / cons?

13.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

UNIX I/O Kernel Structure

13.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Power Management

 Not strictly domain of I/O, but much is I/O related

 Computers and devices use electricity, generate heat, frequently

require cooling

 OSes can help manage and improve use

 Cloud computing environments move virtual machines

between servers

 Can end up evacuating whole systems and shutting them

down

 Mobile computing has power management as first class OS

aspect

13.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Power Management (Cont.)

 For example, Android implements

 Component-level power management

 Understands relationship between components

 Build device tree representing physical device topology

 System bus -> I/O subsystem -> {flash, USB storage}

 Device driver tracks state of device, whether in use

 Unused component – turn it off

 All devices in tree branch unused – turn off branch

 Wake locks – like other locks but prevent sleep of device when lock

is held

 Power collapse – put a device into very deep sleep

 Marginal power use

 Only awake enough to respond to external stimuli (button

press, incoming call)

13.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

I/O Requests to Hardware Operations

 Consider reading a file from disk for a process:

 Determine device holding file

 Translate name to device representation

 Physically read data from disk into buffer

 Make data available to requesting process

 Return control to process

13.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Life Cycle of An I/O Request

13.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

STREAMS

 STREAM – a full-duplex communication channel between a

user-level process and a device in Unix System V and beyond

 A STREAM consists of:

 STREAM head interfaces with the user process

 driver end interfaces with the device

 zero or more STREAM modules between them

 Each module contains a read queue and a write queue

 Message passing is used to communicate between queues

 Flow control option to indicate available or busy

 Asynchronous internally, synchronous where user process

communicates with stream head

13.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

The STREAMS Structure

13.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Performance

 I/O a major factor in system performance:

 Demands CPU to execute device driver, kernel I/O

code

 Context switches due to interrupts

 Data copying

 Network traffic especially stressful

13.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Intercomputer Communications

13.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Improving Performance

 Reduce number of context switches

 Reduce data copying

 Reduce interrupts by using large transfers, smart controllers,

polling

 Use DMA

 Use smarter hardware devices

 Balance CPU, memory, bus, and I/O performance for highest

throughput

 Move user-mode processes / daemons to kernel threads

13.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Device-Functionality Progression

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

End of Chapter 13

