
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 12: File System

Implementation

12.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

 Chapter 12: File System Implementation

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 NFS

 Example: WAFL File System

12.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Objectives

 To describe the details of implementing local file systems and

directory structures

 To describe the implementation of remote file systems

 To discuss block allocation and free-block algorithms and trade-

offs

12.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks)

 Provided user interface to storage, mapping logical to physical

 Provides efficient and convenient access to disk by allowing

data to be stored, located retrieved easily

 Disk provides in-place rewrite and random access

 I/O transfers performed in blocks of sectors (usually 512

bytes)

 File control block – storage structure consisting of information

about a file

 Device driver controls the physical device

 File system organized into layers

12.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Layered File System

12.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

File System Layers

 Device drivers manage I/O devices at the I/O control layer

 Given commands like “read drive1, cylinder 72, track 2, sector

10, into memory location 1060” outputs low-level hardware

specific commands to hardware controller

 Basic file system given command like “retrieve block 123”

translates to device driver

 Also manages memory buffers and caches (allocation, freeing,

replacement)

 Buffers hold data in transit

 Caches hold frequently used data

 File organization module understands files, logical address, and

physical blocks

 Translates logical block # to physical block #

 Manages free space, disk allocation

12.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

File System Layers (Cont.)

 Logical file system manages metadata information

 Translates file name into file number, file handle, location by

maintaining file control blocks (inodes in UNIX)

 Directory management

 Protection

 Layering useful for reducing complexity and redundancy, but

adds overhead and can decrease performanceTranslates file

name into file number, file handle, location by maintaining file

control blocks (inodes in UNIX)

 Logical layers can be implemented by any coding method

according to OS designer

12.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

File System Layers (Cont.)

 Many file systems, sometimes many within an operating

system

 Each with its own format (CD-ROM is ISO 9660; Unix has

UFS, FFS; Windows has FAT, FAT32, NTFS as well as

floppy, CD, DVD Blu-ray, Linux has more than 40 types,

with extended file system ext2 and ext3 leading; plus

distributed file systems, etc.)

 New ones still arriving – ZFS, GoogleFS, Oracle ASM,

FUSE

12.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

File-System Implementation

 We have system calls at the API level, but how do we implement

their functions?

 On-disk and in-memory structures

 Boot control block contains info needed by system to boot OS

from that volume

 Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table) contains

volume details

 Total # of blocks, # of free blocks, block size, free block

pointers or array

 Directory structure organizes the files

 Names and inode numbers, master file table

12.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

File-System Implementation (Cont.)

 Per-file File Control Block (FCB) contains many details about

the file

 inode number, permissions, size, dates

 NFTS stores into in master file table using relational DB

structures

12.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

In-Memory File System Structures

 Mount table storing file system mounts, mount points, file

system types

 The following figure illustrates the necessary file system

structures provided by the operating systems

 Figure 12-3(a) refers to opening a file

 Figure 12-3(b) refers to reading a file

 Plus buffers hold data blocks from secondary storage

 Open returns a file handle for subsequent use

 Data from read eventually copied to specified user process

memory address

12.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

In-Memory File System Structures

12.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or

raw – just a sequence of blocks with no file system

 Boot block can point to boot volume or boot loader set of blocks that

contain enough code to know how to load the kernel from the file

system

 Or a boot management program for multi-os booting

 Root partition contains the OS, other partitions can hold other

Oses, other file systems, or be raw

 Mounted at boot time

 Other partitions can mount automatically or manually

 At mount time, file system consistency checked

 Is all metadata correct?

 If not, fix it, try again

 If yes, add to mount table, allow access

12.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Virtual File Systems

 Virtual File Systems (VFS) on Unix provide an object-oriented

way of implementing file systems

 VFS allows the same system call interface (the API) to be used

for different types of file systems

 Separates file-system generic operations from

implementation details

 Implementation can be one of many file systems types, or

network file system

 Implements vnodes which hold inodes or network file

details

 Then dispatches operation to appropriate file system

implementation routines

12.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Virtual File Systems (Cont.)

 The API is to the VFS interface, rather than any specific type of

file system

12.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Virtual File System Implementation

 For example, Linux has four object types:

 inode, file, superblock, dentry

 VFS defines set of operations on the objects that must be

implemented

 Every object has a pointer to a function table

 Function table has addresses of routines to implement that

function on that object

 For example:

 • int open(. . .)—Open a file

 • int close(. . .)—Close an already-open file

 • ssize t read(. . .)—Read from a file

 • ssize t write(. . .)—Write to a file

 • int mmap(. . .)—Memory-map a file

12.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Directory Implementation

 Linear list of file names with pointer to the data blocks

 Simple to program

 Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use

B+ tree

 Hash Table – linear list with hash data structure

 Decreases directory search time

 Collisions – situations where two file names hash to the

same location

 Only good if entries are fixed size, or use chained-overflow

method

12.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Allocation Methods - Contiguous

 An allocation method refers to how disk blocks are allocated for

files:

 Contiguous allocation – each file occupies set of contiguous

blocks

 Best performance in most cases

 Simple – only starting location (block #) and length (number

of blocks) are required

 Problems include finding space for file, knowing file size,

external fragmentation, need for compaction off-line

(downtime) or on-line

12.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Contiguous Allocation

 Mapping from logical to physical

LA/512

Q

R

Block to be accessed = Q +

starting address

Displacement into block = R

12.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Extent-Based Systems

 Many newer file systems (i.e., Veritas File System) use a

modified contiguous allocation scheme

 Extent-based file systems allocate disk blocks in extents

 An extent is a contiguous block of disks

 Extents are allocated for file allocation

 A file consists of one or more extents

12.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Allocation Methods - Linked

 Linked allocation – each file a linked list of blocks

 File ends at nil pointer

 No external fragmentation

 Each block contains pointer to next block

 No compaction, external fragmentation

 Free space management system called when new block

needed

 Improve efficiency by clustering blocks into groups but

increases internal fragmentation

 Reliability can be a problem

 Locating a block can take many I/Os and disk seeks

12.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Allocation Methods – Linked (Cont.)

 FAT (File Allocation Table) variation

 Beginning of volume has table, indexed by block number

 Much like a linked list, but faster on disk and cacheable

 New block allocation simple

12.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered

anywhere on the disk

pointer block =

 Mapping

Block to be accessed is the Qth block in the linked chain of blocks

representing the file.

Displacement into block = R + 1

LA/511

Q

R

12.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Linked Allocation

12.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

File-Allocation Table

12.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Allocation Methods - Indexed

 Indexed allocation

 Each file has its own index block(s) of pointers to its data blocks

 Logical view

index table

12.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Indexed Allocation

12.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Indexed Allocation (Cont.)

 Need index table

 Random access

 Dynamic access without external fragmentation, but have overhead
of index block

 Mapping from logical to physical in a file of maximum size of 256K
bytes and block size of 512 bytes. We need only 1 block for index
table

LA/512

Q

R

Q = displacement into index table

R = displacement into block

12.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Indexed Allocation – Mapping (Cont.)

 Mapping from logical to physical in a file of unbounded length (block
size of 512 words)

 Linked scheme – Link blocks of index table (no limit on size)

LA / (512 x 511)

Q1

R1

Q1 = block of index table

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

12.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Indexed Allocation – Mapping (Cont.)

 Two-level index (4K blocks could store 1,024 four-byte pointers in outer

index -> 1,048,567 data blocks and file size of up to 4GB)

LA / (512 x 512)

Q1

R1

Q1 = displacement into outer-index

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

12.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Indexed Allocation – Mapping (Cont.)

12.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Combined Scheme: UNIX UFS

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses

12.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Performance

 Best method depends on file access type

 Contiguous great for sequential and random

 Linked good for sequential, not random

 Declare access type at creation -> select either contiguous or

linked

 Indexed more complex

 Single block access could require 2 index block reads then

data block read

 Clustering can help improve throughput, reduce CPU

overhead

12.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Performance (Cont.)

 Adding instructions to the execution path to save one disk I/O is

reasonable

 Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000

MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second

 Typical disk drive at 250 I/Os per second

 159,000 MIPS / 250 = 630 million instructions during one

disk I/O

 Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during

one disk I/O

12.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Free-Space Management

 File system maintains free-space list to track available blocks/clusters

 (Using term “block” for simplicity)

 Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =

1 block[i] free

0 block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

12.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

 block size = 4KB = 212 bytes

 disk size = 240 bytes (1 terabyte)

 n = 240/212 = 228 bits (or 32MB)

 if clusters of 4 blocks -> 8MB of memory

 Easy to get contiguous files

12.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Linked Free Space List on Disk

 Linked list (free list)

 Cannot get contiguous
space easily

 No waste of space

 No need to traverse the
entire list (if # free blocks
recorded)

12.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Free-Space Management (Cont.)

 Grouping

 Modify linked list to store address of next n-1 free blocks in first
free block, plus a pointer to next block that contains free-block-
pointers (like this one)

 Counting

 Because space is frequently contiguously used and freed, with
contiguous-allocation allocation, extents, or clustering

 Keep address of first free block and count of following free
blocks

 Free space list then has entries containing addresses and
counts

12.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Free-Space Management (Cont.)

 Space Maps

 Used in ZFS

 Consider meta-data I/O on very large file systems

 Full data structures like bit maps couldn’t fit in memory ->
thousands of I/Os

 Divides device space into metaslab units and manages metaslabs

 Given volume can contain hundreds of metaslabs

 Each metaslab has associated space map

 Uses counting algorithm

 But records to log file rather than file system

 Log of all block activity, in time order, in counting format

 Metaslab activity -> load space map into memory in balanced-tree
structure, indexed by offset

 Replay log into that structure

 Combine contiguous free blocks into single entry

12.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Efficiency and Performance

 Efficiency dependent on:

 Disk allocation and directory algorithms

 Types of data kept in file’s directory entry

 Pre-allocation or as-needed allocation of metadata

structures

 Fixed-size or varying-size data structures

12.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Efficiency and Performance (Cont.)

 Performance

 Keeping data and metadata close together

 Buffer cache – separate section of main memory for frequently

used blocks

 Synchronous writes sometimes requested by apps or needed

by OS

 No buffering / caching – writes must hit disk before

acknowledgement

 Asynchronous writes more common, buffer-able, faster

 Free-behind and read-ahead – techniques to optimize

sequential access

 Reads frequently slower than writes

12.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Page Cache

 A page cache caches pages rather than disk blocks using virtual

memory techniques and addresses

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk) cache

 This leads to the following figure

12.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

I/O Without a Unified Buffer Cache

12.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Unified Buffer Cache

 A unified buffer cache uses the same page cache to cache

both memory-mapped pages and ordinary file system I/O to

avoid double caching

 But which caches get priority, and what replacement

algorithms to use?

12.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

I/O Using a Unified Buffer Cache

12.46 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Recovery

 Consistency checking – compares data in directory structure

with data blocks on disk, and tries to fix inconsistencies

 Can be slow and sometimes fails

 Use system programs to back up data from disk to another

storage device (magnetic tape, other magnetic disk, optical)

 Recover lost file or disk by restoring data from backup

12.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Log Structured File Systems

 Log structured (or journaling) file systems record each metadata

update to the file system as a transaction

 All transactions are written to a log

 A transaction is considered committed once it is written to the

log (sequentially)

 Sometimes to a separate device or section of disk

 However, the file system may not yet be updated

 The transactions in the log are asynchronously written to the file

system structures

 When the file system structures are modified, the transaction is

removed from the log

 If the file system crashes, all remaining transactions in the log must

still be performed

 Faster recovery from crash, removes chance of inconsistency of

metadata

12.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

The Sun Network File System (NFS)

 An implementation and a specification of a software system

for accessing remote files across LANs (or WANs)

 The implementation is part of the Solaris and SunOS

operating systems running on Sun workstations using an

unreliable datagram protocol (UDP/IP protocol and Ethernet

12.49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

NFS (Cont.)

 Interconnected workstations viewed as a set of independent machines
with independent file systems, which allows sharing among these file
systems in a transparent manner

 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral subtree of the local
file system, replacing the subtree descending from the local
directory

 Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

 Files in the remote directory can then be accessed in a
transparent manner

 Subject to access-rights accreditation, potentially any file system
(or directory within a file system), can be mounted remotely on top
of any local directory

12.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

NFS (Cont.)

 NFS is designed to operate in a heterogeneous environment of

different machines, operating systems, and network architectures;

the NFS specifications independent of these media

 This independence is achieved through the use of RPC primitives

built on top of an External Data Representation (XDR) protocol

used between two implementation-independent interfaces

 The NFS specification distinguishes between the services provided

by a mount mechanism and the actual remote-file-access services

12.51 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Three Independent File Systems

12.52 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Mounting in NFS

Mounts Cascading mounts

12.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

NFS Mount Protocol

 Establishes initial logical connection between server and client

 Mount operation includes name of remote directory to be mounted

and name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded

to mount server running on server machine

 Export list – specifies local file systems that server exports for

mounting, along with names of machines that are permitted to

mount them

 Following a mount request that conforms to its export list, the

server returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to

identify the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not

affect the server side

12.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

NFS Protocol

 Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

 searching for a file within a directory

 reading a set of directory entries

 manipulating links and directories

 accessing file attributes

 reading and writing files

 NFS servers are stateless; each request has to provide a full set
of arguments (NFS V4 is just coming available – very different,
stateful)

 Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching)

 The NFS protocol does not provide concurrency-control
mechanisms

12.55 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Three Major Layers of NFS Architecture

 UNIX file-system interface (based on the open, read, write, and

close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local files from

remote ones, and local files are further distinguished according to

their file-system types

 The VFS activates file-system-specific operations to handle

local requests according to their file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture

 Implements the NFS protocol

12.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Schematic View of NFS Architecture

12.57 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

NFS Path-Name Translation

 Performed by breaking the path into component names and

performing a separate NFS lookup call for every pair of

component name and directory vnode

 To make lookup faster, a directory name lookup cache on the

client’s side holds the vnodes for remote directory names

12.58 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX system

calls and the NFS protocol RPCs (except opening and closing

files)

 NFS adheres to the remote-service paradigm, but employs

buffering and caching techniques for the sake of performance

 File-blocks cache – when a file is opened, the kernel checks with

the remote server whether to fetch or revalidate the cached

attributes

 Cached file blocks are used only if the corresponding cached

attributes are up to date

 File-attribute cache – the attribute cache is updated whenever new

attributes arrive from the server

 Clients do not free delayed-write blocks until the server confirms

that the data have been written to disk

12.59 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example: WAFL File System

 Used on Network Appliance “Filers” – distributed file system

appliances

 “Write-anywhere file layout”

 Serves up NFS, CIFS, http, ftp

 Random I/O optimized, write optimized

 NVRAM for write caching

 Similar to Berkeley Fast File System, with extensive

modifications

12.60 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

The WAFL File Layout

12.61 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Snapshots in WAFL

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

End of Chapter 12

